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The Monge problem

If two distributions of mass µ, ν ∈
P(Ω) are given on a compact
domain of Rd , the Monge prob-
lem reads:

inf
{ ∫
|x − T(x)|dµ(x) : T : Ω→ Ω, T#µ = ν

}
.

The problem can be generalized with µ ∈ P(X), ν ∈ P(Y) and c : X ×Y →
R, thus becoming

inf
{ ∫

c(x,T(x))dµ(x) : T : X → Y , T#µ = ν
}
.

This problem, proposed in the 18th century, has stayed with no solution
for more than 200 years. . .
G. Monge, Mémoire sur la théorie des déblais et des remblais, 1781
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The Kantorovich problem

L. Kantorovich proposed to reformulate the same problem by describing
the “transport” from X to Y via a different language:

inf
{ ∫

X×Y
c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
,

where Π(µ, ν) := {γ ∈ P(X ×Y) : (πx)#γ = µ, (πy)#γ = ν}. We have now
a convex, infinite-dimensional, linear programming problem.

Existence is
easy by weak compactness of probability measures. And there is also a
dual formulation, obtained via inf-sup exchange

L. Kantorovich, On the transfer of masses, 1942.
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inf
γ≥0

sup
ϕ,ψ

∫
cdγ +

(∫
ϕdµ −

∫
ϕ(x)dγ

)
+

(∫
ψdν −

∫
ψ(y)dγ

)
L. Kantorovich, On the transfer of masses, 1942.
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Existence of solutions

Theorem

If X and Y are compact and c continuous, then

there exists a solution γ to the primal problem
min

{∫
c dγ : γ ∈ Π(µ, ν)

}
(KP),

there exist a solution (ϕ, ψ) ∈ C(X) × C(Y) to the dual problem
max

{∫
ϕdµ +

∫
ψdν : ϕ(x) + ψ(y) ≤ c(x, y)

}
(DP),

min(KP)= max(DP),
given γ and (ϕ, ψ), they are optimal in the primal and dual problems,
respectively, if and only if we have ϕ(x) + ψ(y) = c(x, y) on supp(γ).

If µ has no atoms, the infimum in the Monge problem equals min(KP)

inf
{∫

c(x,T(x))dµ(x) : T#µ = ν

}
= min

{∫
c dγ : γ ∈ Π(µ, ν)

}
and if the optimal γ is of the form γ = (id,T)#µ (i.e. it is concentrated on
the graph of a map T : X → Y), then T solves the Monge problem.
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Stable Marriages
X = types of women, Y = types of men, µ and ν their distributions.
uw(x, y) = the interest of Ms x for Mr y, um(x, y) = that of Mr y for Ms x.
Problem: finding a stable set of marriages, i.e. a measure γ ∈ Π(µ, ν)
(who marries whom), such that no new couple (x, y) will decide to divorce
(each one from his/her current partner) to go together.
Case of transferable utility: once x and y get married, they decide how
to split their total utility uw(x, y) + um(x, y), into a quantity ϕ(x) (utility
surplus for Ms x - now Mrs y), and ψ(y) for Mr y. Only the sum U(x, y) :=
uw(x, y) + um(x, y) really plays a role.
A stable marriage is a triple (γ, ϕ, ψ) such that

U(x, y) = ϕ(x) + ψ(y) γ-a.e.,
U(x, y) ≤ ϕ(x) + ψ(y) for all (x, y),
γ ∈ Π(µ, ν).

Just solve (KP) and (DP) for c = −U and change the sign to ϕ, ψ.
D.Gale,L.S.Shapley, CollegeAdmissionsandtheStabilityofMarriage,Amer. Math. Month. 1962
P.-A. Chiappori, R. J. McCann, L. P. Nesheim Hedonic price equilibria, stable matching, and
optimal transport: equivalence, topology, and uniqueness, Economic Theory, 2010.
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Prices

X = types of goods on the market, Y = consumers, µ, ν their distributions.
u(x, y) = the utility of the consumer y when he buys the good x.
The goal is to determine the prices of the goods and who buys what.
Suppose that the price p(x) of each good is known; then, each y will
choose what to buy by solving maxx u(x, y) − p(x). Let us call p(u)(y) the
value of the max. We look for (γ, p) such that

γ ∈ Π(µ, ν).

p(u)(y) = u(x, y) − p(x) for (x, y) ∈ supp(γ).

Just solve (KP) and (DP) for c = −u and use p = −ϕ and p(u) = ψ.

Wait, wait. . . prices are only obtained up to an additive constant??
Consider a special good x0 corresponding to “not buying anything at all”,
and impose p(x0) = 0 (if µ({x0}) > 0 then there are not enough goods for
everybody and some consumers will stay out of the market).
The happy ending of free market economy: the stable (equilibrium) solu-
tion is also the one which maximizes the social utility (optimal).
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Monopolist pricing, principal-agent, contract theory. . .

A company has the monopoly on a given sector and can decice prices p
and production µ. Now X =of feasible goods. We also have a production
cost k : X → R. Y , ν, u and x0 are as before (with k(x0) = 0).
Goal: find the optimal pricelist p. Every y selects its optimal good Xp(y) ∈
argmaxx u(x, y) − p(x), and that the total income of the company is

I(p) :=

∫
(p − k)(Xp(y))dν(y) =

∫
(p − k)dµ,

where µ = X#ν (measure of the real production of goods). The price p
will be chosen so as to maximize I(p), with p(x0) = 0.

Of course the formulation should be revisited in case the optimal point
Xp(y) is not unique. . .

M. Armstrong, Multiproduct nonlinear pricing, Econometrica, 1996
M. Ghisi and M. Gobbino The monopolist’s problem: existence, relaxation and approximation,
Calc. Var. PDE, 2005
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The Rochet-Choné formulation of the principal-agent
problem

Consider u(x, y) = x · y, with x, y ∈ Rd (which means: goods x have
d characteristics, consumers are classified by their interest for each of
them). Look at maxx x · y − p(x): we are touching p from below by affine
functions and p can be replaced by its convex envelop p (if p(x) > p(x)
then no y will ever buy x, so it’s better to decrease its price to p(x)). The
maximizer x is characterized by y =∇p(x), i.e. Xp(y)=(∇p)−1(y)=∇p∗(y).
Using p(∇p∗(y)) = y · ∇p∗(y) − p∗(y), the income maximization problem
becomes a problem on p∗. The condition p(0) = 0 will bring p∗ ≥ 0:

min
{∫

(k(∇p∗(y)) + p∗(y) − y · ∇p∗(y)) dν(y) : p∗ convex, p∗ ≥ 0
}
,

which is a calculus of variations problem with (non-standard) convexity
constraints.
J.-C.Rochet,P.Choné Ironing,Sweeping,and Multidimensional Screening. Econometrica,1998.
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Optimal transport maps, Brenier’s theorem, and gradients
of convex functions

Let’s consider X = Y ⊂ Rd and c smooth. Take γ, ϕ, ψ optimal and
(x0, y0) ∈ supp(γ). We get that x 7→ c(x, y0) − ϕ(x) is maximal at x = x0,
hence ∇xc(x0, y0) = ∇ϕ(x0). If c satisfies the twist condition (∇xc is
injective in y for every x0), then y0 = (∇xc(x0, ·))−1(∇ϕ(x0)) := T(x0) is
uniquely defined, and γ is unique and concentrated on the graph of T (of
course, differentiability of ϕ must be guaranteed).

Theorem

Suppose c(x, y) = −x · y and µ absolutely continuous. Then, given ν, the
optimal γ in (KP) is unique and concentrated on the graph of ∇ϕ, where ϕ
is a convex function and solves (DP).
A map T is optimal for the Monge problem if and only if it is the gradient
of a convex function (which is differentiable a.e., hence µ-a.e.).

Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs,
CRAS, 1987.
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Wasserstein spaces
Distances, curves, geodesics, and barycenters
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Wasserstein distances and Wasserstein spaces - 1
Starting from the values (KP) we can define a set of distances over P(X),
in the following way: for any p ∈ [1,+∞[ set

Wp(µ, ν) =
(
min (KP) with c(x, y) = |x − y |p

)1/p
.

Compared to Lp distances between densities we can say that they are
“horizontal” instead of “vertical”.
Topology and functional analysis: if X is compact, then the conver-
gence for any Wp is equivalent to the weak convergence in the dual of
C(X), the space of continuous functions on X .

f(x)

f(x)

g(x)

g(x)

x T(x) x T(x)

f

g
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Wasserstein distances and Wasserstein spaces - 2
There is also a dynamical formulation whenever X ⊂ Rd is convex:

Wp
p (µ, ν) = inf

{ ∫ 1

0

∫
ρt |vt |

p dxdt : ∂tρ + ∇ · (ρv) = 0, ρ0 = µ, ρ1 = ν
}

= inf
{ ∫ 1

0

∫
|wt |

p

ρ
p−1
t

dxdt : ∂tρ + ∇ · w = 0, ρ0 = µ, ρ1 = ν
}

This kinetic energy minimization is the so-called Benamou-Brenier formu-
lation, which amounts to a convex optimization problem, solvable by Aug-
mented Lagrangian methods.
In the case p = 1 the last problem gives an alternative formulation, which
is dynamic but stationary, and is known as the Beckmann’s minimal flow
formulation of the Monge problem:

W1(µ, ν) = min
{∫
|w | : ∇ · w = µ − ν

}
.

J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge- Kantorovich
mass transfer problem, Numer. Math., 2000.
M. Beckmann, A continuous model of transportation, Econometrica, 1952.
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Wasserstein distances and Wasserstein spaces - 3

The measures ρt which minimize the Benamou-Brenier formulation are
indeed constant-speed geodesics connecting µ to ν and they have an ex-
plicit expression

ρt = ((1 − t)id + tT)#µ,

where T is the optimal transport map from µ to ν. Such a map exists and
is unique, since |x − y |p satisfies the twist condition (for p > 1).
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Wasserstein barycenters

Picture and numerics by G. Peyré

Given some distributions of mass µi on
a metric space X , how can we “average”
them, to get a typical distribution out of
them? We can apply different weights
λi with

∑
i λi = 1, but want to preserve

qualitative properties (concentration,. . . )
which would disappear if we took

∑
i λiµi .

In a Hilbert space, a barycenter
∑

i λixi is
the solution of miny

∑
i λi ||y − xi ||

2.
Here solve minρ

∑
i λiW2

2 (ρ, µi).

M. Agueh, G. Carlier, Barycenters in the Wasserstein space, SIAM J. Math. An., 2011.
J. Rabin, G. Peyré, J. Delon, M. Bernot. Wasserstein Barycenter and Its Application to Texture
Mixing, Scale Space and Variational Methods in Computer Vision, 2012.
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Geodesic convexity

What does it mean that a function F : X → R is convex, when X is a
metric space? we can say that F is geodesically convex if t 7→ F (x(t))
is convex for every constant-speed geodesics connecting arbitrary points
x(0), x(1). In the case X = W2(Rd) this was introduced by McCann with
the name of displacement convexity and the geodesics ρt are known.
Three main functionals are considered

H(ρ) :=

∫
H(ρ(x))dx, V(ρ) :=

∫
Vdρ, W(ρ) :=

∫
W(x − y)dρ(x)dρ(y).

Theorem

V is geodesically convex if and only if V is convex,W if W is convex,
and H if s 7→ sdH(s−d) is convex nondecreasing (this is satisfied by
H(s) = sp , p > 1, and H(s) = s log s).

R. J. McCann A convexity principle for interacting gases. Adv. Math., 1997.
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Equilibria and optimization with measures
Non-atomic games and urban equilibria
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Nash equilbria with a continuum of players

Consider a game with infinitely many identical players, each one negligible
compared to the others (non-atomic games), and a common space S of
strategies; players choose their strategies and we look for the realized
measure, ρ ∈ P(S), which induces a payoff function fρ : S → R and we
want: fρ(x) = min fρ for every x ∈ supp(ρ).

Definition/notation: given a functional F : P(S) → R we define its first
variation as the function δF

δρ
, if it exists, such that

d
dε
F (ρ + εχ)|ε=0 =

∫
δF

δρ
(ρ)dχ.

In the particular case where fρ = δF
δρ

, then the above game is a potential
game, and equilibria can be found by minimizing F (ρ) among ρ ∈ P(S).
If F is convex, then necessary optimality conditions are also sufficient,
and every equilibrium is a minimizer.
J. Nash, Equilibrium points in n-person games, Proc. Nati. Acad. Sci., 1950.
J. Nash, Non-Cooperative Games Ann. Math., 1951.
R. J. Aumann, L. S. Shapley, Values of Non-Atomic Games, 1968.
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An example from urban use of land

A number of agents must choose where to live in an urban region Ω ⊂ Rd ;
ρ ∈ P(Ω) is their density. Every agent considers the sum of three costs:

an exogenous cost, depending on the amenities of x only: V(x)
(distance to the points of interest. . . );
an interaction cost, depending on the distances with all the others;
when living at x the cost is

∫
W(x − y)ρ(y) dy where W is usually an

increasing function of the distance;
a residential cost, increasing in the density at x; at x the cost is
h(ρ(x)), for h : R+ → R increasing (where more people live, the
price of land is higher or, for the same price, they have less space).

The total cost that we consider is fρ(x) := V(x) + (W ∗ ρ)(x) + h(ρ(x)).

M.J. Beckmann. Spatial equilibrium and the dispersed city, Mathematical Land Use Theory,
1976.
M. Fujita and J. F. Thisse. Economics of Agglomeration: Cities, Industrial Location, and Re-
gional Growth. 2002.
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Equilibrium and optimality conditions

Consider the following quantity

F (ρ) :=

∫
Ω

V(x)ρ(x)dx+
1
2

∫
Ω

∫
Ω

W(x−y)ρ(x)ρ(y)dxdy+

∫
Ω

H(ρ(x))dx,

where H is defined through H′ = h.
We can see that fρ := V + W ∗ ρ + h(ρ) = δF

δρ
.

Warning: the energy F is not the total cost for all the agents, which should
be

∫
Ω

fρ(x)ρ(x)dx.
Minimizers are equilibria. What about the converse? In generalW is not
convex (think at W(z) = |z|2, so that 1

2W(ρ) =
∫
|x |2dρ(x)−(

∫
xdρ(x))2).

Theorem

If F is geodesically convex, then minimizers of F and equilibria for fρ
coincide.

A. Blanchet, P. Mossay, F. Santambrogio Existence and uniqueness of equilibrium for a spatial
model of social interactions, Int. Econ. Rev., 2015.
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About the residential cost
Suppose that agents have a certain budget to be divided into land con-
sumption and money consumption, and that they have a concave and
increasing utility function U for land. They solve a problem of the form

max{U(L) + m : pL + m ≤ B},

where p represents the price for land, L is the land consumption, m is
the left-over of the money, and B the budget constraint. The optimal land
consumption will be such that U′(L) = p. The optimal utility is B + U(L)−
U′(L)L (relation between L and utility).
The land consumption is the reciprocal of the density, hence L = 1

ρ
, and

the residential cost h(ρ), which is the opposite of the utility, is

h(ρ) =
1
ρ

U′
(
1
ρ

)
− U

(
1
ρ

)
− B .

1
t U′( 1

t ) − U( 1
t ) =

(
−tU( 1

t )
)′

, hence h = H′ with H(t) = −tU( 1
t ) − Bt .

H satisfies McCann’s condition if and only s 7→ U(sd) is concave and
increasing.
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Cournot-Nash urban equilibria

Cournot-Nash equilibria concern nonatomic games where agents are not
indistinguishable. Consider an extra variable z ∈ Z , the origin of agents,
and µ ∈ P(Z) its distribution. Agents must choose a location x ∈ Ω,
and their payoff is given by c(z, x) + fρ(x), where ρ is the distribution of
their choices on Ω. We look for a triple (γ, ρ, ϕ) with γ ∈ Π(µ, ρ), ϕ(z) =
minx c(z, x) + fρ(x) and ϕ(z) = c(z, x) + fρ(x) on spt(γ).
This condition may be obtained by solving

min
{∫

c dγ + F ((πx)#γ) : (πz)#γ = µ

}
.

In the case c(x, y) = |x − y |p this means minρ Wp
p (µ, ρ) + F (ρ). The Kan-

torovich potentials will be of the form (ϕ,−fρ).
Convexity: the extra term Wp

p (µ, ρ) is convex in ρ. It is in general non
geodesically convex (!!) but it is convex along generalized geodesics ρt =
((1 − t)T0 + tT1)#µ (with Ti the optimal map from µ to ρi , i = 0, 1).
A.Blanchet, G.Carlier, Optimal transport and Cournot-Nash Equilibria, Math.Op. Res.,2016
L. Ambrosio, N. Gigli, G. Savaré Gradient Flows, 2005
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Variants
Congestion problems – Martingale transport
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Congestion and continuous Wardrop equilibria

Consider min{
∫
|w | : ∇ · w = µ−ν} = min(KP). If we insert a weight,

min{
∫

k(x)|w | : ∇ · w = µ−ν} becomes equivalent to (KP) with the cost c

given by the distance dk (dk (x,y) := min
{ ∫ 1

0 k(ω)|ω′| : ω(0)=x, ω(1)=y
}
).

But in congested urban regions, k mainly depends on traffic itself, i.e. on
w. Hence, we should consider the superlinear Beckmann’s problem

min
{∫

H(|w |) : ∇ · w = µ − ν

}
,

which is connected to degenerate elliptic equations ∇ · (H′(|∇φ|) ∇φ
|∇φ|

) =
µ− ν, and to equilibrium problems where the cost per unit length of a path
is H′(i) and i is the traffic intensity.

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1952.
G. Carlier, C. Jimenez, F. Santambrogio, Optimal transportation with traffic congestion and
Wardrop equilibria, SIAM J. Contr. Optim. 2008.
L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows and very
degenerate elliptic equations, J. Math. Pures et Appl., 2010.
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}
,

which is connected to degenerate elliptic equations ∇ · (H′(|∇φ|) ∇φ
|∇φ|

) =
µ− ν, and to equilibrium problems where the cost per unit length of a path
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J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1952.
G. Carlier, C. Jimenez, F. Santambrogio, Optimal transportation with traffic congestion and
Wardrop equilibria, SIAM J. Contr. Optim. 2008.
L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows and very
degenerate elliptic equations, J. Math. Pures et Appl., 2010.
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MFG with density penalization

A vairant of the Benamou-Brenier problem: for G(x, ·) convex, minimize

A(ρ, v) :=

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2+G(x, ρt )

)
+

∫
Ω

ΨρT

among pairs (ρ, v) such that ∂tρ+∇· (ρv) = 0, with given ρ0. The solution
is given by v = −∇φ, where (ρ, φ) solves a coupled system:−∂tϕ + |∇ϕ|2

2 = G′(x, ρ), ϕ(T , x) = Ψ(x),

∂tρ − ∇ · (ρ∇ϕ) = 0, ρ(0, x) = ρ0(x).

Every agent minimizes
∫ T

0

[
1
2 |ω

′(t)|2+G′(ω(t), ρt (ω(t)))
]
dt+Ψ(ω(T)): the

running cost depends on the density ρt realized by the agents themselves.

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007
P.-L. Lions, courses at Collège de France, 2006/12, videos available online
P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
G. Buttazzo, C. Jimenez, E. Oudet An optimization problem for mass transportation with con-
gested dynamics SICON, 2009
J.-D.Benamou,G.Carlier,F.Santambrogio,VariationalMeanFieldGames,ActiveParticles I, 2016
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Option pricing
Let Z = f(S1

T ,S
2
T , . . . ,S

N
T ) be an option with payoff depending on several

assets S i
T at a same time T . Its value is EQ[Z ] for a probability Q which

makes each price a martingale. Suppose that Z is new on the market, but
that the European Calls on each S i already exist for each strike price K .
We know the law µi of each of the S i

T , but not their joint law (under Q):
estimating the price of Z is a multi-marginal transport problem

min /max
{∫

f(x1, x2, . . . , xN) dγ : (πi)#γ = µi

}
If on the contrary, Z = f(S1,S2, . . . ,ST ) depends on the history of a same
asset (and the corresponding call options (St − K)+ exist on the market
for every strike and every maturity time), then the problem is different

min /max
{
EQ[f(S1, . . . ,SN)] : (Si)#Q = µi , (St )t is a Q-martingale

}
.

Kantorovich problems with the martingale constraints are a new frontier of
optimal transport!
M. Beiglböck, N. Juillet On a problem of optimal transport under marginal martingale con-
straints, Ann. Prob., 2016
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Robust super-hedging
The same problem can be read in this way: suppose we want to hedge
a possible loss of f(S1, . . . ,SN), depending on the prices of the asset S.
What we can do:

buy usual options, based on the value of the asset at time t , i.e. buy
φ(St ), paying

∫
φ dµt ;

buy the asset itself at time t ≤ N − 1, pay St , and re-sell at price St+1

(but the number of assets to buy can only be chosen according to
the information at time t , i.e. it must be of the form ψ(S1, . . . ,St ),
which hedges an amount ψ(S1, . . . ,St )(St+1 − St ).

The optimal hedging problem becomes

min

 N∑
t=0

∫
ϕt dµt :

N∑
t=0

ϕt (xt ) +
N−1∑
t=0

ψ(x1, . . . , xt )(xt+1−xt ) ≥ f(x1, . . . , xN)

 .
This problem is exactly the dual of the martingale transport problem (the
φt dualize the marginal constraints, the ψt the martingale constraints).
A. Galichon, P. Henry-Labordère, N. Touzi, A stochastic control approach to no-arbitrage bounds
given marginals, with an application to lookback options Ann. Appl. Prob., 2014.
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That’s all for this short presentation of OT and some of its applications

Thanks for your attention
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