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Branched networks in a discrete framework

Take some points xi , yj in Ω ⊂ Rd . Inject a mass ai at xi and absorb bj at yj .
Consider weighted oriented graphs G = (eh, êh, θh)h (eh are the edges, êh their
orientations, θh the weights), satisfying Kirchhoff’s law: at each node

incoming + injected mass = outcoming + absorbed mass

For 0 ≤ α < 1, among these graphs we minimize the energy

Eα(G ) :=
∑
h

θαhH1(eh).

The inequality (m1 + m2)α < mα
1 + mα

2 makes a branching behavior optimal.

Particular cases: α = 1 Monge optimal transport (no joint-trasportation incen-
tive is present); α = 0: Steiner’s minimal connection.

E. N. Gilbert, Minimum cost communication networks, Bell System Tech. J., 1967.
E. N. Gilbert and H. O. Pollak, Steiner minimal trees. SIAM J. Appl. Math., 1968.
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From the discrete to the continuous framework

With every G we can associate a vector measure representing the flow

uG :=
∑
h

θhêhH1
|eh .

Kirchhoff’s law is satisfied if and only if ∇ · uG = µ − ν, where µ =
∑m

i=1 aiδxi
and ν =

∑n
j=1 bjδyj .

For general µ, ν ∈ P(Ω), Q. Xia proposed to extend Eα by relaxation

Mα(u) = inf
{

lim inf
n

Eα(Gn) : Gn finite graph, uGn → u
}
,

and to minimize Mα under the constraint ∇ · u = µ− ν. We also have

Mα(u) =

{∫
M
θαdH1 if u = U(M, θ, ξ),

+∞ otherwise.
where U(M, θ, ξ) is the rectifiable vector measure u = θξ · H1

|M (θ : M → R+ is

a real multiplicity and ξ : M → Rd , |ξ| = 1 an orientation of M).

Q. Xia, Optimal Paths related to Transport Problems. Comm. Cont. Math., 2003.
F. Maddalena, S. Solimini, J.M. Morel, A variational model of irrigation patterns. Int.
Free Bound., 2003.
M. Colombo, A. De Rosa, A. Marchese, S. Stuvard On the lower semicontinuous en-
velope of functionals defined on polyhedral chains, preprint.
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Branched transport distances

The cost is not proportional to the “mass” θ but to θα; small masses are penalized
and singular measures are easier to reach.
On a bounded domain Ω, if α = 1 we can always connect with finite Monge cost
any pair of probabilities, but here it is the case only for α close to 1. Set

dα(µ, ν) := min{Mα(u) : ∇ · u = µ− ν}.

If α > 1 − 1
d , then dα < +∞ for any µ, ν ∈ P(Ω) and dα is a distance over

P(Ω) metrizing weak topology. Sharp comparison results with the Wasserstein
distances Wp also exist:

W1/α ≤ dα ≤W β
1 , for β = d(α− (1− 1

d
)).

If α ≤ 1− 1
d , only “low dimensional” measures are reachable by branched trans-

port (the best ones being atomic measures, the worst Lebesgue).

J.-M. Morel, F. S., Comparison of distances between measures, Appl. Math. Lett., 2007.
F. Maddalena, S. Solimini, Transport distances and irrigation models, J. Conv. An, 2009.
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The landscape function associated with stable river basins

In the study of river basins, given a rain input µ and a single outlet ν = δ0,
geophysicists look for a pair (N, z): N is the drainage network and z : spt(µ)→
R is the elevation of each point. Such a pair is stable iff two facts occurr: water
flows along the steepest descent of z (∇z is parallel to the newtork and opposite
to its direction) and a slope-discharge relation of the form

|∇z | = θα−1

is satisfied (θ(x) is the amount of water passing through x , and α ≈ 1/2 is a
fixed exponent). In a discrete netork framework, such a pair can be found by
minimizing an Eα energy, using the graph G as a network, and defining

z(x) =
∑
h∈Ex

θα−1
h H1(eh),

where Ex is the set of edges in the unique path connecting 0 to x (the optimal
G is acyclic). . . We can do the same for the continuous case.

R. Rigon, A. Rinaldo, I. Rodriguez-Iturbe, E. Ijjasz-Vasquez, R. L. Bras Optimal
channel networks: a framework for the study of river basin morphology, Water Res. Res., 1993.
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The landscape function associated with branched transport

Given an optimal u, we define (warning: proper definitions are needed!)

z(x) =

∫ 1

0

θα−1(ω(t))|ω′(t)|dt

where ω : [0, 1] → M is any curve with ω(0) = 0, ω(1) = x and ω′ oriented as
−ξ a.e. We have

z is well-defined (independent of ω) and l.s.c.

z(x) ≥ z(x0)− θ(x0)α−1ξ(x0) · (x − x0) + o(|x − x0|) (slope-discharge
condition, and direction of the slope)

if Ω has an interior cone condition and µ ≥ c > 0 on Ω, then z ∈ C 0,β(Ω)
(then generalized to lower-dimensional measures µ)

dα(µ, δ0) =
∫
zdµ and for µε = (1− ε)µ+ εµ̃

dα(µε, δ0) ≤ dα(µ, δ0) + αε

∫
zd(µ̃− µ)

(the first variation of dα is αz).

F. S., Optimal Channel Networks, Landscape Function and Branched Transport, Int. Free
Bound., 2007.
A. Brancolini, S. Solimini, On the Hölder Regularity of the Landscape Function, IFB, 2011
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Just an idea of the optimal networks

From one source point ν = δ0 to the uniform measure µ = 1
2πH

1
|S1 , for different

values of α.

(numerics by E. Oudet; I’ll explain later where the simulations come from)

A very general reference for branched transport:

M. Bernot, V. Caselles, J.M. Morel, Optimal Transportation Networks, Models and
Theory, LNM 2009

Filippo Santambrogio Branched transport and fractals



Theory: Branched Transport, landscape, shape optimization
Approximation

Numerics

Fractals

The solutions of the branched transport problem that we can guess, simulate or
compute show some sort of fractal behavior, but, in which sense?

the optimal network if necessarily one-dimensional, and has no fractal
dimension

yet, some scaling laws on its branching behavior exist: Brancolini and
Solimini proved that from every branch L of lenght ` and for every ε < `,
the number of branches stemming from L with length between ε and 2ε
are O(`/ε), with some universal bounds.

the frontiers between adjacent irrigation basins (water divide lines) are a
good candidate to be of fractal dimension (conjecture by J.-M. Morel). . .

or other sets related to branched transport and to the landscape z . . .

I. Rodriguez-Iturbe et al. Fractal structures as least energy dissipation patterns: the case
of river networks, Geophys. Res. Lett., 1992.
I. Rodriguez-Iturbe, A. Rinaldo Fractal River Basins, 1997.
A. Brancolini, S. Solimini., Fractal regularity results on optimal irrigation patterns, J. Math.
Pures. Appl., 2014.
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Pures. Appl., 2014.
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Fractal divide lines

Picture from https://de.wikipedia.org/wiki/Wasserscheide ( c©creative commons)
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A shape optimization problem

Fix an exponent α > 1− 1/d . What is the best shape to be irrigated, for the
branched transport cost, from δ0?

min {dα(IA, δ0) : |A| = 1} .

Equivalently, solve

min {dα(µ, δ0) : µ ∈ P(Ω), µ ≤ 1} .

Note that, for α = 1, the solution is the ball of unit volume. What about α < 1?
The conjecture is that the boundary ∂A of the optimal set A is indeed of fractal
dimension.

work in progress with P. Pegon (Orsay) and Q. Xia (UC Davis)
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What we can prove on the optimal set

The optimal µ exists and is indeed of the form µ = IA.

The set A is of the form A = {z ≤ C}. If we call mα the minimal value,we
have C = mα(1 + 1

αd ).

The function z is C 0,β globally on A (and equal to +∞ outside A).

A is a closed set with negligible boundary.

The point 0 belongs to the interior of A (as well as all points x with
z(x) < C ).

The boundary ∂A is of dimension at most d−β.

. . . but we are far from proving that the dimension of ∂A is d−β (or even that
A is not a smooth set, or even not a ball!).
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Elliptic approximation

A phase-field approach
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Ideas, conjectures and goals

It would be natural to approximate the minimization of Mα with some minimiza-
tion problems defined on regular vector fields u (instead of singular measures)
having a true divergence.
What about

min

{
1

ε

∫
|u|α + ε

∫
|∇u|2, u ∈ H1(Ω;Rd), ∇ · u = f

}
?

Two goals:

(theory) make a bridge with the theory of elliptic approximation for
singular energies (Modica-Mortola, Allen-Cahn, Ambrosio-Tortorelli. . . )

(applications) produce an efficient numerical method for finding optimal
branched structures.

We expect u to be close to 0 far from the network and |u| ≈ ∞ close to M.
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Heuristics for the exponents

1
ε

∫
|u|α + ε

∫
|∇u|2 is not the correct choice. We consider more generally

Mα
ε (u) = εγ1

∫
|u|p + εγ2

∫
|∇u|2.

Consider a measure U(S , θ, ξ), concentrated on a segment S with constant mul-
tiplicity θ, and approximate it with a smooth uA on a strip of width A around S .
Then

Mα
ε ≈ εγ1Ad−1

(
θ

Ad−1

)p

+ εγ2Ad−1

(
θ

Ad

)2

.

Minimizing over possible widths A gives the optimal values

A ≈ ε
γ2−γ1

2d−p(d−1) θ
2−p

2d−p(d−1) ; Mα
ε ≈ ε

γ2−(γ2−γ1) d+1
2d−p(d−1) θ2−(2−p) d+1

2d−p(d−1) .

The correct choice for approximating Mα is

p=
2− 2d + 2αd

3− d + α(d − 1)
;

γ1

γ2
=

(d − 1)(α− 1)

3− d + α(d − 1)
< 0.

Notice p ∈]0, 1[ as soon as α ∈]1− 1
d , 1[.
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A Γ−convergence theorem

Let M(Ω) be the space of finite vector measures on Ω with values in Rd whose
divergence is a finite scalar measure, endowed with the weak convergence of both
u and ∇ · u. We stick to the case d = 2 and α ∈] 1

2 , 1[. We define

Mα
ε (u) =

{
εα−1

∫
Ω
|u(x)|pdx + εα+1

∫
Ω
|∇u(x)|2dx if u ∈ H1(Ω),

+∞ otherwise,
for p = 4α−2

α+1 (using the exponent we found before).

Theorem

The functionals Mα
ε Γ-converge to cMα, with respect to the convergence of

M(Ω), as ε→ 0 (c = c(α) is a finite and positive constant). For suitable
smooting µε ⇀ µ, νε ⇀ ν, the limits of argmin{Mα

ε (u) : ∇·u = µε−νε} are
minimizers for Mα(u) under the constraint ∇·u = µ−ν.

F.S. A Modica-Mortola approximation for branched transport, CRAS , 2010
A. Monteil Uniform estimates for a Modica-Mortola type approximation of branched trans-
portation, ESAIM COCV, 2017.
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Numerics
Finding “good” local minima: networks and shapes
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Idea of the numerical method

The exact identification of global optimal networks in the combinatorial context
is NP hard (with respect to the number of sources and targets). The method
based on the elliptic approximation is, on the contrary, purely continuous : it
requires to find a vector field on the whole Ω and is not influenced by this number.
The main difficulties are related both to the approximation of singular and irreg-
ular functions and to the strongly non-convex cost functional.

Idea : (by E. Oudet, who already used this approach for other problems admitting
Γ−convergence approximations) observe that for ε � 1 the functional Mα

ε is
close from being convex. Hence we perform a gradient descent on Mα

ε for ε
large. Then, decreasing the value of ε step by step, we start a gradient descent
for Mα

εk+1
starting from the uεk found at the previous step.

Warning: No guarantee of convergence to a true minimizer, we only expect to
select a “good” local minimum.

Filippo Santambrogio Branched transport and fractals



Theory: Branched Transport, landscape, shape optimization
Approximation

Numerics

Thick optimal networks

Run for each ε a projected gradient algorithm (projecting on the constraint
∇ · u = fε), and reduce ε step by step:

E. Oudet and F. Santambrogio, A Modica-Mortola approximation for branched transport
and applications, Arch. Rati. Mech. An., 2011.
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Looking for optimal shapes

How to adapt this approach when µ is not fixed? Let νε be a suitable approxi-
mation of δ0, and solve

min {Mα
ε (u) : 0 ≤ ∇ · u + νε ≤ 1} .

The main difference concerns the projection step. For fixed f = µε − νε we
needed to solve

min

{∫
1

2
|u − u0|2 : ∇ · u = f

}
which, by duality became

max

{
−
∫

1

2
|∇ϕ|2 − ϕ(f −∇ · u0)

}
and just required to solve a Laplacian. Now, we must instead solve

min

{∫
1

2
|u − u0|2 : 0 ≤ ∇ · u + νε ≤ 1

}
which becomes

max

{
−
∫

1

2
|∇ϕ|2 − ϕ(νε +∇ · u0) + max{ϕ, 0}

}
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A fractal shape

New computations are in progress. This one was obtained by solving the non-
smooth optimization problem in the projection step by a FISTA method (with
very small gradient step).
Numerical computations done by P. Pegon. A collaboration with E. Oudet is in progress.
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. . . the end. . .

thanks for your attention.
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