"Exact" semi-discrete approaches to moment measures, affine spheres, gradient flows and variational MFG

Filippo Santambrogio

Institut Camille Jordan, Université Claude Bernard Lyon 1
 http://math.univ-lyon1.fr/~santambrogio/

Optimal Transportation and Applications Pisa, November 13, 2018

Maud, two weeks old today

Outline

Moment measures

- Optimal transport formulation for moment measures
- Optimization among convex functions
- Semi-discrete optimization and discrete Brascamp-Lieb inequality
- Variant: q-moment measures
 - Optimal transport formulation
 - Connection with affine spheres
 - Numerical results
- A different application: Moreau-Yosida regularization
 - Applications to variational Mean Field Games
 - Applications to gradient flows
 - Numerical simulations of crowd motion

Moment Measures

Definition A probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ is said to be the moment measure of a convex function $\psi : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ if $\mu = (\nabla \psi)_{\#} (e^{-\psi} dx)$.

Applications Kähler geometry (given a convex function ψ one can construct a Kahler manifold X_{ψ} whose Ricci tensor is half of the metric tensor iff the moment measure of ψ is uniform on a convex set), Stein kernels (writing μ as a moment measure of ψ allows useful change-of-variables)...

Natural questions given μ , can we find ψ ? is it unique? which measures μ are moment measurs of suitable functions ψ ? to which class of convex function should we restrict?

Note that if ψ is nice and the log-concave density $e^{-\psi}$ is integrable, then μ is *non-degenerate* (spt μ is full-dimensional), and $m_1(\mu) := \int |y| d\mu(y) < \infty$; moreover, $\int y d\mu(y) = \int \nabla \psi(x) e^{-\psi(x)} dx = -\int \nabla (e^{-\psi}) = 0$.

D. CORDERO-ERAUSQUIN, B. KLARTAG, Moment Measures, J. Funct. An. 2015

R. BERMAN, B. BERNDTSSON, Real Monge-Ampere equations and Kähler-Ricci solitons on toric log Fano varieties, *Ann. Fac. Sci. Toulouse*, 2013

S. K. DONALDSON, Kahler geometry on toric manifolds, and some other manifolds with large symmetry, 2008.

M. Faтнi, Stein kernels and moment maps, Ann. Prob., to appear

An optimal transport interpretation

Cordero-Erausquin and Klartag proposed a variational formulation to find ψ given μ . This can also be done using optimal transport.

We look for a log-concave density ρ such that the Brenier map $\nabla \psi$ from ρ to μ satisfies $\psi + \log \rho = 0$. This is an optimality condition for

$$\min_{\rho} \quad \mathcal{E}(\rho) + \mathcal{T}(\rho, \mu)$$

where $\mathcal{E}(\rho) = \int \rho \log \rho \, dx$ and \mathcal{T} is the maximal correlation transport cost

$$\mathcal{T}(\rho,\mu) = \max \{\mathbb{E}[X \cdot Y] : X \sim \rho, Y \sim \mu\}$$

=
$$\max \left\{ \int x \cdot y \, d\gamma(x,y) : \gamma \text{ transp. plan from } \rho \text{ to } \mu \right\}$$

=
$$\min \left\{ \int \psi d\rho + \int \psi^* d\mu : \psi \text{ convex} \right\}$$

F. SANTAMBROGIO, Dealing with moment measures via entropy and optimal transport, *J. Funct. An.* 2016

(4月) (4日) (4日) 日

Fix a convex compact set $\Omega \subset \mathbb{R}^d$, and solve $\min_{\rho \in \mathcal{P}(\Omega)} \mathcal{E}(\rho) + \mathcal{T}(\rho, \mu)$. A solution exists, and μ is a moment measure... with no condition on μ !

Yet, we have $\rho > 0$ on Ω , and ψ is bounded on Ω , $\psi = +\infty$ on $\mathbb{R}^d \setminus \Omega$. The discontinuity of ψ is the issue (note that if spt μ is compact then ψ is expected to be Lipschitz).

Definition ψ is said to be *essentially continuous* if for \mathcal{H}^{d-1} -a.e. point $x \in \partial \{\psi < +\infty\}$ we have $\lim_{x'\to x} \psi(x') = +\infty$.

Result if ρ solves $\min_{\rho \in \mathcal{P}_1(\mathbb{R}^d)} \mathcal{E}(\rho) + \mathcal{T}(\rho, \mu)$ then $\rho = e^{-\psi}$, $\nabla \psi$ is the Brenier map from ρ to μ , and ψ is essentially continuous (i.e. $\rho \to 0$ a.e. on the boundary of spt ρ).

Bounds on \mathcal{E} and \mathcal{T} , existence

Using $t \log t + e^{s-1} \ge st$ we get

$$\mathcal{E}(\rho) \ge \int \rho(x)h(x)\,\mathrm{d}x - \int e^{h(x)-1}\mathrm{d}x$$

for any function h such that $e^{h-1} \in L^1(\mathbb{R}^d)$ and $h \in L^1(\rho)$. Using $h = -\sqrt{|x|}$ we get

$$\mathcal{E}(\rho) \geq -\int \rho(x) \sqrt{|x|} \mathrm{d}x - \int e^{-\sqrt{|x|}-1} \mathrm{d}x \geq -C - \sqrt{m_1(\rho)}.$$

For \mathcal{T} , if we suppose that μ is centered ($\int y d\mu(y) = 0$) and non-degenerate, then there exists c > 0 such that

$$\mathcal{T}(\rho,\mu) \ge cm_1(\rho)$$
 for all ρ with $\int x d\rho(x) = 0$.

Minimizing sequences $(\rho_n)_n$ can be supposed to be also centered if μ is. Then we can apply the above bounds, get tightness for minizing sequences, and prove existence of a minimizer.

Geodesic convexity, uniqueness and characterization

Is the optimal ρ unique? is the condition " $\rho = e^{-\psi}$, with μ moment measure of ψ " equivalent to being optimal?

This requires some convexity, but $\rho \mapsto \mathcal{T}(\rho, \mu)$ is concave!

Informally (we are not supposing $\rho, \mu \in \mathcal{P}_2(\mathbb{R}^d)$) we have

$$\mathcal{T}(\rho,\mu) = \int \frac{1}{2} |x|^2 d\rho(x) + \int \frac{1}{2} |y|^2 d\mu(y) - \frac{1}{2} W_2^2(\rho,\mu),$$

and we know that $\rho \mapsto \int \frac{1}{2} |x|^2 d\rho(x)$ is 1-geodesically convex in W_2 , while $\rho \mapsto \frac{1}{2} W_2^2(\rho, \mu)$ is 1-geodesically concave. And \mathcal{E} is geodesically convex thanks to McCann's condition.

We can then prove

Uniqueness and characterization If μ is centered and not supported on a hyperplane, the solution of $\min_{\rho \in \mathcal{P}_1(\mathbb{R}^d)} \mathcal{E}(\rho) + \mathcal{T}(\rho, \mu)$ exists and is unique up to translations. Moreover, being a solution of this optimization problem is equivalent to being of the form $\rho = e^{-\psi}$, with μ moment measure of ψ .

R. J. McCANN, A convexity principle for interacting gases, Adv. Math. 1997

Optimization among convex functions

We are looking at a min-min problem

$$\min\left\{\mathcal{E}(\rho)+\int\psi(x)\rho(x)\,\mathrm{d} x+\int\psi^*(y)\,\mathrm{d} \mu(y)\ :\ \rho\in\mathcal{P}_1(\mathbb{R}^d),\psi\text{ convex}\right\}.$$

If we consider ψ as a secondary variable, for every ρ we take min_{ψ}, we obtain $\mathcal{T}(\rho,\mu)$. If instead we first compute min_{ρ}, we have to compute

$$\inf\left\{\int \rho(x)\log\rho(x)\,\mathrm{d} x+\int\psi(x)\rho(x)\,\mathrm{d} x\ :\ \rho\geq 0, \int\rho(x)\,\mathrm{d} x=1\right\}.$$

Setting $c = \int e^{-\psi(x)} dx$, the above inf equals $-\log c$. Hence we need to solve $\min\left\{\int \psi^* d\mu - \log\left(\int e^{-\psi} dx\right) : \psi \text{ convex}\right\}.$

The variational approach by Cordero-Erausquin and Klartag considers the same problem in terms of $u = \psi^*$: the first term becomes linear and the second, magically, convex (thanks to Prékopa-Leindler inequality).

Semi-discrete approach to the JKO scheme

In the JKO scheme for gradient flows in W_2 we solve problems of the form $\min_{\rho} \quad \frac{1}{2}W_2^2(\rho,\mu) + \mathcal{F}(\rho),$ where $\mathcal{F}(\rho) = \int f(\rho(x))dx$. This can be formulated as $\lim_{u \text{ convex}: \nabla u \in \Omega} \quad \frac{1}{2} \int_{\Omega} |\nabla u(x) - x|^2 d\mu(x) + \mathcal{F}((\nabla u)_{\#}\mu).$

Suppose that $\mu = \sum_{j} a_{j} \delta_{x_{j}}$ is discrete and look for a convex function on its support $S := \{x_{j}\}_{j}$. Require that its *subdifferential*

$$\partial u(x) := \{ p \in \mathbb{R}^d : u(x) + p \cdot (y - x) \le u(y) \text{ for all } y \in S \}$$

is non-empty. Any element of $\partial u(x)$ can play the role of $\nabla u(x)$, but, how to define *F*? Spreading the mass a_j uniformly on $\partial u(x_j)$ one obtains a functional (convex if *f* satisfies McCann's condition)

$$u\mapsto \sum_{j}f\left(rac{\mathbf{a}_{j}}{|\partial u(x_{j})\cap\Omega|}\right)|\partial u(x_{j})\cap\Omega|,$$

which depends on the areas of the subdifferential cells.

J.-D. BENAMOU, G. CARLIER, Q. MÉRIGOT, É. OUDET Discretization of functionals involving the Monge-Ampère operator, *Num. Math.*, 2016.

Voronoi and Laguerre cells, and semi-discrete OT

Given some points $(x_j)_j$, their Voronoi cells V_j are defined by

$$V_j := \left\{ x \in \Omega \ : \ \frac{1}{2} |x - x_j|^2 \le \frac{1}{2} |x - x_{j'}|^2 \text{ for all } j' \right\}.$$

These cells V_j are convex polyhedra. In optimal transport a variant of these cells is useful: given values ϕ_j , we look for the *Laguerre cells*

$$W_j := \left\{ x \in \Omega \ : \ \frac{1}{2} |x - x_j|^2 - \phi_j \le \frac{1}{2} |x - x_{j'}|^2 - \phi_{j'} \text{ for all } j' \right\}.$$

Note that the Laguerre cells corresponding to $\phi_j := -u(x_j) + \frac{1}{2}|x_j|^2$ are nothing but the subdifferentials of *u*.

If ρ is a density on Ω and $\mu = \sum_j a_j \delta_{x_j}$, then finding an optimal transport from ρ to μ is equivalent to finding ϕ_j such that $\rho(W_j) = a_j$ for every *j*.

This amounts to solving the dual Kantorovich problem in terms of the finite-dimensional variable ϕ :

$$\max_{\phi} \sum_{j} a_{j}\phi_{j} + \int_{\Omega} \phi^{c} \mathrm{d}\rho := \sum_{j} \left(a_{j}\phi_{j} + \int_{W_{j}} \left(\frac{1}{2} |x - x_{j}|^{2} - \phi_{j} \right) \mathrm{d}\rho(x) \right).$$

Algorithmic geometry and semi-discrete numerics for OT

Algorithmic geometry is now able to deal with Laguerre cells of many (10⁹) points in 2D and 3D, compute their measures, and differentiate this in terms of the values of ψ_i .

 W_2 geodesic between two different stars in 3D, computed via semi-discrete optimal transport (10⁶ Dirac masses to a 10⁶ simplex triangulation).

Q. Μέρισοτ, A multiscale approach to optimal transport, *Comput. Graph. Forum*, 2011. B. Lévy A numerical algorithm for L^2 semi-discrete optimal transport in 3D, *M2AN*, 2015. The natural counterpart of the BCMO scheme to solve the moment measure optimization problem would be discretize μ as $\sum_{i} a_i \delta_{x_i}$ and minimize

$$(u, P) \mapsto \sum_{j} x_{j}P_{j} + a_{j}\log\left(\frac{a_{j}}{|\partial u(x_{j}) \cap \Omega|}\right), \quad P_{j} \in \partial u(x_{j}).$$

Main difficulty: we need to use $\Omega = \mathbb{R}^d$, and the method does not work. Instead, it is possible to solve

$$\min \int u \, \mathrm{d}\mu - \log \left(\int e^{-u^*} \mathrm{d}x \right) := \sum_j a_j u_j - \log \left(\sum_j \int_{\partial u(x_j)} e^{-x \cdot x_j + u_j} \mathrm{d}x \right)$$

Let us set $F(u) = \sum_{j} \int_{\partial u(x_j)} e^{-x \cdot x_j + u_j} dx$ and $G = -\log F$. We will solve by convex optimization methods min $\langle a, u \rangle + G(u)$, or, equivalently, min $\langle a, u \rangle$: F(u) = 1, via Newton's method.

Derivatives and Hessian

We can compute the derivatives of F and G.

$$\partial_j F = \int_{\partial u(x_j)} e^{-u^*} \mathrm{d}x; \quad \text{ for } i \neq j \quad \partial_{ij} F = \int_{\Gamma_{ij}} e^{-u^*} \frac{1}{|x_i - x_j|} \mathrm{d}\mathcal{H}^{d-1},$$

where $\Gamma_{ij} = \partial u(x_j) \cap \partial u(x_i)$ (note $i \sim j$ if $\Gamma_{ij} \neq \emptyset$), and

$$\partial_{jj}F = \int_{\partial u(x_j)} e^{-u^*} \mathrm{d}x - \sum_{i:i\sim j, i\neq j} \int_{\Gamma_{ij}} e^{-u^*} \frac{1}{|x_i - x_j|} \mathrm{d}\mathcal{H}^{d-1}.$$

Set $\lambda_j := \int_{\partial u(x_j)} e^{-u^*} dx$ and $\gamma_{ij} := \int_{\Gamma_{ij}} e^{-u^*} \frac{1}{|x_i - x_j|} d\mathcal{H}^{d-1}$. Note $F = \sum_i \lambda_i$. $\partial_{ij}G = -\frac{\partial_{ij}F}{F} + \frac{\partial_i F \partial_j F}{F^2}$.

Take $v \in \mathbb{R}^N$ and compute (tedious computations + manipulations)

$$\sum_{ij} (\partial_{ij} \mathbf{G}) \mathbf{v}_i \mathbf{v}_j = \frac{1}{F} \sum_{ij:i \sim j} \gamma_{ij} |\mathbf{v}_i - \mathbf{v}_j|^2 - \frac{1}{F} \sum_j \lambda_j |\mathbf{v}_j - \overline{\mathbf{v}}|^2,$$

where $\overline{\mathbf{v}} = \sum_i \lambda_i \mathbf{v}_i / \mathbf{F}$.

ゆ くちょくりょうし

Discrete Brascamp-Lieb inequality

For the convergence of the Newton method, we would like uniform convexity of *G*, at least in the orthogonal space to the trivial invariance direction (where u_i is an affine function of x_i).

Brascamp-Lieb inequality: for ψ convex and $\int v e^{-\psi} = 0$, we have

$$\int |v|^2 e^{-\psi} \leq \int (D^2 \psi)^{-1} (\nabla v, \nabla v) e^{-\psi}$$

with equality if and only if $v = \hat{w} \cdot \nabla \psi$ for a fixed \hat{w} .

Discrete counterpart: take $v = v_j$ on $\partial u(x_j)$ and $\psi = u^*$, and suppose $\sum_j \lambda_j v_j = 0$. Then

$$\sum_{j} \lambda_{j} |v_{j}|^{2} \leq \sum_{ij: i \sim j} \int_{\Gamma_{ij}} e^{-\psi} \frac{1}{|x_{i} - x_{j}|} |v_{i} - v_{j}|^{2} = \sum_{ij: i \sim j} \gamma_{ij} |v_{i} - v_{j}|^{2},$$

with equality in the same case, i.e. when v_j is a linear function of u_j . Applied to $v - \overline{v}$, this gives the desired lower bound on D^2G .

H. J. BRASCAMP, E. H. LIEB, On extensions of the Brunn-Minkowski and Prékopa- Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, *J. Funct. Anal.*, 1976. Work in progress with B. Klartag and Q. Mérigot Few numerical studies exist for moment measures, in particular when μ is the uniform measure on a hexagon or a regular polygon in 2D (including work by Donaldson and other geometers).

The techniques coming from semi-discrete OT make this challenge almost trivial: we discretize μ as an atomic measure, keeping it centered, and non-supported on a hyperplane. Then we apply a damped Newton algorithm to the minimization of *G*.

Convergence along Newton iterations are guaranteed by uniform convexity and we can consider that the solution is "exact". Convergence as the discetization of μ becomes finer can be proven by Γ -convergence.

C. DORAN, M. HEADRICK, C. P. HERZOG, J. KANTOR, T. WISEMAN NUMERICAI Kaehler-Einstein metric on the third del Pezzo, *Comm. Math. Phys.* 2008.

R. S. BUNCH, S. K. DONALDSON Numerical approximations to extremal metrics on toric surfaces, Handbook Geom. An., 2008.

J. KITAGAWA, Q. MÉRIGOT, B. THIBERT CONVErgence of a Newton algorithm for semi-discrete optimal transport *JEMS*, to appear.

q-moment measures and transport variational formulation

Variant Given q > 0, a probability measure $\mu \in \mathcal{P}(\mathbb{R}^d)$ is said to be the q-moment measure of a convex function $\psi : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ if we have $\mu = (\nabla \psi)_{\#}(\frac{1}{\psi(x)^{d+q}} dx)$.

The condition q > 0 guarantees integrability of $\psi^{-(d+q)}$. We consider now

$$\min_{
ho} \quad \mathcal{E}_{lpha}(
ho) + \mathcal{T}(
ho,\mu)$$

where $\mathcal{E}_{\alpha}(\rho) = -\int \frac{1}{\alpha} (\rho^{ac})^{\alpha} dx$, $\alpha = 1 - \frac{1}{d+q} \in (0, 1)$, and ρ^{ac} is the density of the absolutely continuous part of ρ .

 \mathcal{E}_{α} is known to be l.s.c. for the weak-* convergence as soon as $\alpha \in (0, 1)$. It is geodesically convex for $\alpha > 1 - 1/d$ (i.e. q > 0). For lower bounds use

$$-\frac{1}{\alpha}t^{\alpha}+\left(\frac{1}{\alpha}-1\right)(s_{-})^{-\frac{\alpha}{1-\alpha}}\geq ts.$$

This provides $E_{\alpha}(\rho) \ge -C - Cm_1(\rho)^{\delta}$ but $\delta > d/(d+q-1)$ and we need q > 1 for tightness and existence.

Result If q > 1 and μ is centered and non-degenerate there exists unique (up to translations) an optimal ρ , which is a.c. and bounded from above, and is of the form $\rho = \psi^{-(d+q)}$, where $\nabla \psi$ is the Brenier map from ρ to μ_{Ξ}

Connections with affine spheres

Affine normals Given a smooth strictly convex body Ω and $x_0 \in \partial \Omega$, take Π_0 the tangent plane to $\partial \Omega$ at x_0 , $(\Pi_t)_t$ a family of parallel plans to Π_0 , $\Omega_t := \Omega \cap \Pi_t$ and z(t) the barycenter of Ω_t . The tangent direction at t = 0 to the curve $t \mapsto z(t)$ is called affine normal to Ω at x_0 .

Affine spheres An affine sphere is a convex body where the affine normal vectors at each point of the boundary point towards a same common point. If $\partial\Omega$ is parameterized as a graph of a function, being an affine sphere is a 3rd order PDE on this function.

PDE characterization Take a convex function $\psi > 0$ on \mathbb{R}^d and define $n : \mathbb{R}_+ \times \mathbb{R}^d$ via $n(1, x) = \psi(x)$ and then extended by 1-homogeneity. Take the set $B := \{n \le 1\}$ and let K be the intersection $\partial B \cap (\{0\} \times \mathbb{R}^d)$. Then B is an affine hemisphere centered at the origin if and only if ψ solves $\psi^{d+2} \det(D^2\psi) = c$, i.e. if the 2-moment measure of ψ is the uniform measure on the convex set K^o .

B. KLARTAG Affine hemispheres of elliptic type, Algebra i Analiz, 2017

Semidiscrete optimization and numerical results

With the same discretization, we now need now to solve

min < a, u >
$$-\frac{1}{d+q-1}\int \frac{1}{(u^*)^{d+q-1}} : \int \frac{1}{(u^*)^{d+q}} = 1.$$

The estimates for the uniform convexity are now based on a discrete version of the *dimensional Brascamp-Lieb* inequality.

The Newton approach is also efficient and allows for fast computations.

Few affine hemispheres in \mathbb{R}^3 based on different convex sets in \mathbb{R}^2 .

V. H. NGUYEN Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prékopa's theorem. *J. Funct. An.* 2014

Semidiscrete optimization and numerical results

With the same discretization, we now need now to solve

$$\min < a, u > -\frac{1}{d+q-1} \int \frac{1}{(u^*)^{d+q-1}}$$

The estimates for the uniform convexity are now based on a discrete version of the *dimensional Brascamp-Lieb* inequality.

The Newton approach is also efficient and allows for fast computations.

Few affine hemispheres in \mathbb{R}^3 based on different convex sets in \mathbb{R}^2 .

V. H. NGUYEN Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional Prékopa's theorem. *J. Funct. An.* 2014

Moreau-Yosida regularization of internal energies

Definition On a Hilbert space *X*, given $H : X \to \mathbb{R} \cup \{+\infty\}$, its Moreau-Yosida regularization H_{ε} is defined as $H_{\varepsilon}(x) := \inf_{y} \frac{|x-y|^2}{2\varepsilon} + H(y)$. It is always semi-concave, and convex if *H* is convex. If *H* is l.s.c., we have $H_{\varepsilon} \to H$ as $\varepsilon \to 0$, with Γ -convergence.

In the Wasserstein space, we could take $\mathcal{F} : \mathcal{P}(\Omega) \to \mathbb{R} \cup \{+\infty\}$ and define

$$\mathcal{F}_{\varepsilon}(\mu):=\min_{
ho}rac{W_{2}^{2}(\mu,
ho)}{2arepsilon}+\mathcal{F}(
ho).$$

Suppose $\mu = \sum_{j} a_{j} \delta_{x_{j}}$ and $\mathcal{F}(\rho) = \int f(\rho(x)) dx$. Using the transport cost $c(x, y) = |x - y|^{2}/2$, the dual of the above optimization problem is

$$\max_{\phi} \int \frac{\phi}{2\varepsilon} d\mu - \int f^* \left(-\frac{\phi^c(x)}{2\varepsilon} \right) dx.$$

Setting $\frac{|x|^2}{2} - \phi(x) = u(x)$ and $\frac{|y|^2}{2} - \phi^c(y) = u^*(y)$, the above problem is very similar to the previous ones (only, ϕ^c is not affine on each cell, but quadratic). Algorithmic geometry can easily find the optimal ρ given μ , and differentiate $\mathcal{F}_{\varepsilon}$ in terms of the positions and masses of the atoms of μ .

Incompressible Euler equation

Euler equations for incompressible fluids $\partial_t v + (v \cdot \nabla)v = \nabla p, \nabla \cdot v = 0$ are known to represent geodesics among measure-preserving diffeomorphism. In the Brenier's variational interpretation, they can be obtained via

$$\min \int_{\mathcal{C}} \mathcal{K}(\omega) \mathrm{d} \mathcal{Q}(\omega) \ : \ (\mathbf{e}_t)_{\#} \mathcal{Q} = \mathrm{d} x, (\mathbf{e}_0, \mathbf{e}_1)_{\#} \mathcal{Q} = \overline{\gamma} \in \mathcal{P}(\Omega \times \Omega),$$

where *C* is the space of curves $\omega : [0, 1] \to \Omega$ and $K(\omega) := \int |\omega'(t)|^2 / 2dt$. The condition $(e_t)_{\#}Q = dx$ can be replaced, as a variational approximation, by adding $\mathcal{F}_{\varepsilon}((e_t)_{\#}Q)$ where $\mathcal{F}(\rho) = 0$ if $\rho = dx, +\infty$ if not.

Y. BRENIER The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Math. Soc. 1989.

Q. MÉRIGOT, J.-M. MIREBEAU Minimal geodesics along volume preserving maps, through semidiscrete optimal transport *SINUM* 2016.

T. GALLOÜET, Q. MÉRIGOT A Lagrangian scheme à la Brenier for the incompressible Euler equations Foundation of Computational Mathematics, to appear

Variational MFG with local congestion costs - 1

In a population of agents everybody chooses its own trajectory, solving

min
$$\int_0^T \left(\frac{|x'(t)|^2}{2} + g(\rho_t(x(t))) \right) dt + \Psi(x(T)),$$

with given initial point x(0); suppose that g is increasing, i.e. agents try to avoid overcrowded regions. Yet, ρ depends on their overall choices, and hence we look for a Nash equilibrum. If φ is their value function we have

$$egin{cases} -\partial_t arphi + rac{|
abla arphi|^2}{2} &= g(
ho), \ \partial_t
ho -
abla \cdot (
ho
abla arphi) &= 0, \ arphi(au, x) &= \Psi(x), \quad
ho(0, x) =
ho_0(x). \end{cases}$$

J.-M. LASRY, P.-L. LIONS, JEUX à champ moyen. (I & II) C. R. Math. Acad. Sci. Paris, 2006, Mean-Field Games, Japan. J. Math. 2007.

M. HUANG, R.P. MALHAMÉ, P.E. CAINES, Large population stochastic dynamic games: closedloop McKean-Vlasov systems and the Nash certainty equivalence principle, *Comm. Info. Syst.* 2006

P.-L. LIONS, courses at Collège de France, 2006/12, videos available on the web

P. CARDALIAGUET, lecture notes, www.ceremade.dauphine.fr/~cardalia/

Variational MFG with local congestion costs - 2

It happens that an equilibrium can be found by minimizing the (global) energy

$$\mathcal{A}(\rho, \mathbf{v}) := \int_0^T \int_\Omega \left(\frac{1}{2} \rho_t |\mathbf{v}_t|^2 + f(\rho_t) \right) + \int_\Omega \Psi \rho_T$$

where f' = g under the constraint $\partial_t \rho + \nabla \cdot (\rho v) = 0$. This can also be written in Lagrangian terms as

$$\min\left\{\int_{\mathcal{C}} \mathcal{K} \mathrm{d} \mathcal{Q} + \int_{0}^{T} \mathcal{F}((\boldsymbol{e}_{t})_{\#} \mathcal{Q}) + \int_{\Omega} \Psi \mathrm{d}(\boldsymbol{e}_{T})_{\#} \mathcal{Q}, \ \mathcal{Q} \in \mathcal{P}(\mathcal{C}), (\boldsymbol{e}_{0})_{\#} \mathcal{Q} = \rho_{0}\right\}.$$

or, for curves valued in the Wasserstein space, as

$$\min\left\{\int_0^T \left(\frac{1}{2}|\rho'|(t)^2 + \mathcal{F}(\rho(t))\right) \mathrm{d}t + \int_{\Omega} \Psi \mathrm{d}\rho_T : \rho(0) = \rho_0\right\}.$$

P. CARDALIAGUET, P.J. GRABER. Mean field games systems of first order. *ESAIM: COCV*, 2015. J.-D. BENAMOU, G. CARLIER Augmented Lagrangian methods for transport optimization, Mean-Field Games and degenerate PDEs, *JOTA*, 2015. J.-D. BENAMOU, G. CARLIER, F. SANTAMBROGIO, Variational Mean Field Games, *Active Particles I*, 2016 We can consider atomic measures on *C*, i.e. $Q = \sum_{j} a_{j} \delta_{\omega_{j}}$ where, for simplicity, $a_{j} = 1/N$ (but different choices could model *major players*). Yet $(e_{t})_{\#}Q = \sum_{j} a_{j} \delta_{\omega_{j}(t)}$ is atomic and $\mathcal{F} = +\infty$.

Idea: replacing \mathcal{F} with $\mathcal{F}_{\varepsilon}$ the problem is perfectly posed on atomic measures, and Γ -converges (non-trivial details) to the problem with \mathcal{F} . The corresponding optimization problem is non-convex, but provides Lagrangian trajectories for a MFG with an approximate congestion cost.

Computations are easy for $f(s) = s \log s$ (i.e. $g(s) = \log s$), where densities are Gaussians on each cells, and for the particular case f(s) = 0 for $s \in [0, 1]$, $= +\infty$ if not (density-costrained MFG: here densities are uniform on cells, and vanish outside, as in partial transport problems).

P. CARDALIAGUET, A. MÉSZÁROS, F. SANTAMBROGIO, First order Mean Field Games with density constraints: Pressure equals Price, *SIAM J. Contr. Opt.*, 2016 Work in progress with Q. Mérigot and C. Sarrazin; Master and PhD thesis of C. Sarrazin.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Lagrangian approximation of gradient flows with diffusion

The same idea (replacing ${\mathcal F}$ with ${\mathcal F}_{\epsilon}$) can be used in gradient flows

$$\partial_t
ho -
abla \cdot \left(
ho
abla \left(rac{\delta \mathcal{F}}{\delta
ho}
ight)
ight) -
abla \cdot \left(
ho
abla V
ight) = 0,$$

in particular for local functionals $\mathcal{F}(\rho) = \int f(\rho(x)) dx$ which give raise to diffusion and would not be well-defined on atomic measures (note that we added a potential energy $\int V d\rho$).

For instance, the Fokker-Planck equation $\partial_t \rho - \Delta \rho - \nabla \cdot (\rho \nabla V)$ uses $\mathcal{F} = \mathcal{E}$ and lets Gaussian appear in the Moreau-Yosida regularization.

The idea is looking for $\mu(t) = \sum_j a_j \delta_{\omega_j(t)}$, with

 $\omega_j'(t) = -\nabla V(\omega_j(t)) - \nabla_j \mathcal{F}_{\varepsilon}(\mu(t)).$

Convergence proofs cannot only be based on Γ -convergence and are not trivial (or require extra assumptions), as usual when dealing with gradient flows (a control on the slope is needed).

E. SANDIER, S. SERFATY Gamma-convergence of gradient flows with applications to Ginzburg-Landau, *Comm. PDE*, 2004

Numerical approximation of crowd motion

Using $\mathcal{F}(\rho) = 0$ if $\rho \leq 1, +\infty$ otherwise we obtain a crowd motion model of gradient-flow type.

$$\begin{cases} \partial_t
ho -
abla \cdot (
ho (
abla V +
abla p)) \ p \geq 0,
ho \leq 1,
ho (1 -
ho) = 0. \end{cases}$$

The Moreau-Yosida computation for the constraint part consists in partial transport. The gradient $\nabla_j \mathcal{F}_{\varepsilon}$ w.r.t. to the positions of the atoms equals $\frac{x_j - \beta_j}{\varepsilon}$, where β_j is the barycenter of the cell corresponding to x_j .

B. MAURY, A. ROUDNEFF-CHUPIN AND F. SANTAMBROGIO, A macroscopic crowd motion model of gradient flow type, *Math. Mod. Meth. Appl. Sci.*, 2010 Work in progress with Q. Mérigot and F. Stra

The End

Thanks for your attention

Few images have been stolen from various sources on the internet. I thank their authors.