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Moment Measures

Definition A probability measure µ ∈ P(Rd) is said to be the moment
measure of a convex function ψ : Rd → R ∪ {+∞} if µ = (∇ψ)#(e−ψdx).

Applications Kähler geometry (given a convex function ψ one can con-
struct a Kahler manifold Xψ whose Ricci tensor is half of the metric tensor
iff the moment measure of ψ is uniform on a convex set), Stein kernels
(writing µ as a moment measure of ψ allows useful change-of-variables). . .

Natural questions given µ, can we find ψ? is it unique? which measures
µ are moment measurs of suitable functions ψ? to which class of convex
function should we restrict?

Note that if ψ is nice and the log-concave density e−ψ is integrable, then
µ is non-degenerate (spt µ is full-dimensional), and m1(µ) :=

∫
|y |dµ(y) <

∞; moreover,
∫

ydµ(y) =
∫
∇ψ(x)e−ψ(x)dx = −

∫
∇(e−ψ) = 0.

D. Cordero-Erausquin, B. Klartag, Moment Measures, J. Funct. An. 2015
R. Berman, B. Berndtsson, Real Monge-Ampere equations and Kähler-Ricci solitons on toric
log Fano varieties, Ann. Fac. Sci. Toulouse, 2013
S. K. Donaldson, Kahler geometry on toric manifolds, and some other manifolds with large
symmetry, 2008.
M. Fathi, Stein kernels and moment maps, Ann. Prob., to appear.
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An optimal transport interpretation

Cordero-Erausquin and Klartag proposed a variational formulation to find
ψ given µ. This can also be done using optimal transport.

We look for a log-concave density ρ such that the Brenier map ∇ψ from ρ
to µ satisfies ψ + log ρ = 0. This is an optimality condition for

min
ρ

E(ρ) + T (ρ, µ)

where E(ρ) =
∫
ρ log ρ dx and T is the maximal correlation transport cost

T (ρ, µ) = max
{
E[X · Y ] : X ∼ ρ,Y ∼ µ

}
= max

{∫
x ·y dγ(x, y) : γ transp. plan from ρ to µ

}
= min

{∫
ψdρ +

∫
ψ∗dµ : ψ convex

}
F. Santambrogio, Dealing with moment measures via entropy and optimal transport, J. Funct.
An. 2016
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Bounded and unbounded domains, continuity of ψ

Fix a convex compact set Ω ⊂ Rd , and solve minρ∈P(Ω) E(ρ) + T (ρ, µ).
A solution exists, and µ is a moment measure. . . with no condition on µ!

Yet, we have ρ > 0 on Ω, and ψ is bounded on Ω, ψ = +∞ on Rd \ Ω.
The discontinuity of ψ is the issue (note that if spt µ is compact then ψ is
expected to be Lipschitz).

Definition ψ is said to be essentially continuous if for Hd−1-a.e. point
x ∈ ∂{ψ < +∞} we have limx′→x ψ(x′) = +∞.

Result if ρ solves minρ∈P1(Rd ) E(ρ) + T (ρ, µ) then ρ = e−ψ, ∇ψ is the
Brenier map from ρ to µ, and ψ is essentially continuous (i.e. ρ → 0 a.e.
on the boundary of spt ρ).
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Bounds on E and T , existence
Using t log t + es−1 ≥ st we get

E(ρ) ≥

∫
ρ(x)h(x) dx −

∫
eh(x)−1dx

for any function h such that eh−1 ∈ L1(Rd) and h ∈ L1(ρ). Using h =
−
√
|x | we get

E(ρ) ≥ −

∫
ρ(x)

√
|x |dx −

∫
e−
√
|x |−1dx ≥ −C −

√
m1(ρ).

ForT , if we suppose that µ is centered (
∫

ydµ(y) = 0) and non-degenerate,
then there exists c > 0 such that

T (ρ, µ) ≥ cm1(ρ) for all ρ with
∫

xdρ(x) = 0.

Minimizing sequences (ρn)n can be supposed to be also centered if µ
is. Then we can apply the above bounds, get tightness for minizing se-
quences, and prove existence of a minimizer.
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Geodesic convexity, uniqueness and characterization

Is the optimal ρ unique? is the condition “ρ = e−ψ, with µmoment measure
of ψ” equivalent to being optimal?
This requires some convexity, but ρ 7→ T (ρ, µ) is concave!

Informally (we are not supposing ρ, µ ∈ P2(Rd)) we have

T (ρ, µ) =

∫
1
2
|x |2dρ(x) +

∫
1
2
|y |2dµ(y) −

1
2

W2
2 (ρ, µ),

and we know that ρ 7→
∫

1
2 |x |

2dρ(x) is 1-geodesically convex in W2, while
ρ 7→ 1

2 W2
2 (ρ, µ) is 1-geodesically concave.

And E is geodesically convex thanks to McCann’s condition.

We can then prove

Uniqueness and characterization If µ is centered and not supported on
a hyperplane, the solution of minρ∈P1(Rd ) E(ρ)+T (ρ, µ) exists and is unique
up to translations. Moreover, being a solution of this optimization problem
is equivalent to being of the form ρ = e−ψ, with µ moment measure of ψ.
R. J. McCann, A convexity principle for interacting gases, Adv. Math. 1997
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Optimization among convex functions

We are looking at a min-min problem

min
{
E(ρ) +

∫
ψ(x)ρ(x) dx +

∫
ψ∗(y) dµ(y) : ρ ∈ P1(Rd), ψ convex

}
.

If we consider ψ as a secondary variable, for every ρ we take minψ, we
obtain T (ρ, µ). If instead we first compute minρ, we have to compute

inf
{∫

ρ(x) log ρ(x) dx +

∫
ψ(x)ρ(x) dx : ρ ≥ 0,

∫
ρ(x) dx = 1

}
.

Setting c =
∫

e−ψ(x)dx, the above inf equals − log c. Hence we need to
solve

min
{∫

ψ∗ dµ − log
(∫

e−ψdx
)

: ψ convex
}
.

The variational approach by Cordero-Erausquin and Klartag considers the
same problem in terms of u = ψ∗: the first term becomes linear and the
second, magically, convex (thanks to Prékopa-Leindler inequality).
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Semi-discrete approach to the JKO scheme
In the JKO scheme for gradient flows in W2 we solve problems of the form

min
ρ

1
2

W2
2 (ρ, µ) + F (ρ),

where F (ρ) =
∫

f(ρ(x))dx. This can be formulated as

min
u convex : ∇u∈Ω

1
2

∫
Ω
|∇u(x) − x |2dµ(x) + F ((∇u)#µ).

Suppose that µ =
∑

j ajδxj is discrete and look for a convex function on its
support S := {xj}j . Require that its subdifferential

∂u(x) := {p ∈ Rd : u(x) + p · (y − x) ≤ u(y) for all y ∈ S}

is non-empty. Any element of ∂u(x) can play the role of ∇u(x), but, how
to define F? Spreading the mass aj uniformly on ∂u(xj) one obtains a
functional (convex if f satisfies McCann’s condition)

u 7→
∑

j

f
(

aj

|∂u(xj) ∩ Ω|

)
|∂u(xj) ∩ Ω|,

which depends on the areas of the subdifferential cells.

J.-D. Benamou, G. Carlier, Q. Mérigot, É. Oudet Discretization of functionals involving the
Monge-Ampère operator, Num. Math., 2016.
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Voronoi and Laguerre cells, and semi-discrete OT
Given some points (xj)j , their Voronoi cells Vj are defined by

Vj :=

{
x ∈ Ω :

1
2
|x − xj |

2 ≤
1
2
|x − xj′ |

2 for all j′
}
.

These cells Vj are convex polyhedra. In optimal transport a variant of
these cells is useful: given values φj , we look for the Laguerre cells

Wj :=

{
x ∈ Ω :

1
2
|x − xj |

2 − φj ≤
1
2
|x − xj′ |

2 − φj′ for all j′
}
.

Note that the Laguerre cells corresponding to φj := −u(xj) + 1
2 |xj |

2 are
nothing but the subdifferentials of u.
If ρ is a density on Ω and µ =

∑
j ajδxj , then finding an optimal transport

from ρ to µ is equivalent to finding φj such that ρ(Wj) = aj for every j.

This amounts to solving the dual Kantorovich problemin terms of the finite-
dimensional variable φ:

max
φ

∑
j

ajφj +

∫
Ω
φcdρ :=

∑
j

(
ajφj +

∫
Wj

(
1
2
|x − xj |

2 − φj

)
dρ(x)

)
.
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Algorithmic geometry and semi-discrete numerics for OT
Algorithmic geometry is now able to deal with Laguerre cells of many (109)
points in 2D and 3D, compute their measures, and differentiate this in
terms of the values of ψj .

W2 geodesic between two different stars in 3D, computed via semi-discrete optimal
transport (106 Dirac masses to a 106 simplex triangulation).

Q. Mérigot, A multiscale approach to optimal transport, Comput. Graph. Forum, 2011.
B. Lévy A numerical algorithm for L2 semi-discrete optimal transport in 3D, M2AN, 2015.
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A better semi-discrete approach for moment measures

The natural counterpart of the BCMO scheme to solve the moment mea-
sure optimization problem would be discretize µ as

∑
j ajδxj and minimize

(u,P) 7→
∑

j

xjPj + aj log
(

aj

|∂u(xj) ∩ Ω|

)
, Pj ∈ ∂u(xj).

Main difficulty: we need to use Ω=Rd , and the method does not work.
Instead, it is possible to solve

min
∫

u dµ − log
(∫

e−u∗dx
)

:=
∑

j

ajuj − log

∑
j

∫
∂u(xj)

e−x·xj+uj dx


Let us set F(u) =

∑
j

∫
∂u(xj)

e−x·xj+uj dx and G = − log F .
We will solve by convex optimization methods min < a, u > +G(u), or,
equivalently, min < a, u > : F(u) = 1, via Newton’s method.
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Derivatives and Hessian
We can compute the derivatives of F and G.

∂jF =

∫
∂u(xj)

e−u∗dx; for i , j ∂ijF =

∫
Γij

e−u∗ 1
|xi − xj |

dHd−1,

where Γij = ∂u(xj) ∩ ∂u(xi) (note i ∼ j if Γij , ∅), and

∂jjF =

∫
∂u(xj)

e−u∗dx −
∑

i:i∼j,i,j

∫
Γij

e−u∗ 1
|xi − xj |

dHd−1.

Set λj :=
∫
∂u(xj)

e−u∗dx and γij :=
∫

Γij
e−u∗ 1

|xi−xj |
dHd−1. Note F =

∑
i λi .

∂ijG = −
∂ijF
F

+
∂iF∂jF

F2 .

Take v ∈ RN and compute (tedious computations + manipulations)∑
ij

(∂ijG)vivj =
1
F

∑
ij:i∼j

γij |vi − vj |
2 −

1
F

∑
j

λj |vj − v |2,

where v =
∑

i λivi/F .
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Discrete Brascamp-Lieb inequality

For the convergence of the Newton method, we would like uniform convex-
ity of G, at least in the orthogonal space to the trivial invariance direction
(where uj is an affine function of xj).
Brascamp-Lieb inequality: for ψ convex and

∫
ve−ψ = 0, we have∫

|v |2e−ψ ≤
∫

(D2ψ)−1(∇v ,∇v)e−ψ

with equality if and only if v = ŵ · ∇ψ for a fixed ŵ.
Discrete counterpart: take v = vj on ∂u(xj) and ψ = u∗, and suppose∑

j λjvj = 0. Then∑
j

λj |vj |
2 ≤

∑
ij:i∼j

∫
Γij

e−ψ
1

|xi − xj |
|vi − vj |

2 =
∑
ij:i∼j

γij |vi − vj |
2,

with equality in the same case, i.e. when vj is a linear function of uj .
Applied to v − v, this gives the desired lower bound on D2G.

H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa- Leindler
theorems, including inequalities for log concave functions, and with an application to the
diffusion equation, J. Funct. Anal., 1976.
Work in progress with B. Klartag and Q. Mérigot
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Numerics for moment measures

Few numerical studies exist for moment measures,
in particular when µ is the uniform measure on a
hexagon or a regular polygon in 2D (including work
by Donaldson and other geometers).

The techniques coming from semi-discrete OT make this challenge al-
most trivial: we discretize µ as an atomic measure, keeping it centered,
and non-supported on a hyperplane. Then we apply a damped Newton
algorithm to the minimization of G.

Convergence along Newton iterations are guaranteed by uniform convex-
ity and we can consider that the solution is “exact”. Convergence as the
discetization of µ becomes finer can be proven by Γ-convergence.

C. Doran, M. Headrick, C. P. Herzog, J. Kantor, T. Wiseman Numerical Kaehler-Einstein metric
on the third del Pezzo, Comm. Math. Phys. 2008.
R. S. Bunch, S. K. Donaldson Numerical approximations to extremal metrics on toric surfaces,
Handbook Geom. An., 2008.
J. Kitagawa, Q. Mérigot, B. Thibert Convergence of a Newton algorithm for semi-discrete opti-
mal transport JEMS, to appear.
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q-moment measures and transport variational formulation
Variant Given q > 0, a probability measure µ ∈ P(Rd) is said to be the
q−moment measure of a convex function ψ : Rd → R ∪ {+∞} if we have
µ = (∇ψ)#( 1

ψ(x)d+q dx).

The condition q > 0 guarantees integrability of ψ−(d+q). We consider now

min
ρ

Eα(ρ) + T (ρ, µ)

where Eα(ρ) = −
∫

1
α

(ρac)αdx, α = 1− 1
d+q ∈ (0, 1), and ρac is the density

of the absolutely continuous part of ρ.
Eα is known to be l.s.c. for the weak-* convergence as soon as α ∈ (0, 1).
It is geodesically convex for α > 1−1/d (i.e. q > 0). For lower bounds use

−
1
α

tα +

(
1
α
− 1

)
(s−)−

α
1−α ≥ ts.

This provides Eα(ρ) ≥ −C − Cm1(ρ)δ but δ > d/(d + q − 1) and we need
q > 1 for tightness and existence.

Result If q > 1 and µ is centered and non-degenerate there exists unique
(up to translations) an optimal ρ, which is a.c. and bounded from above,
and is of the form ρ = ψ−(d+q), where ∇ψ is the Brenier map from ρ to µ.
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Connections with affine spheres
Affine normals Given a smooth strictly convex
body Ω and x0 ∈ ∂Ω, take Π0 the tangent plane
to ∂Ω at x0, (Πt )t a family of parallel plans to Π0,
Ωt := Ω∩Πt and z(t) the barycenter of Ωt . The
tangent direction at t = 0 to the curve t 7→ z(t)
is called affine normal to Ω at x0.

Affine spheres An affine sphere is a convex body where the affine nor-
mal vectors at each point of the boundary point towards a same common
point. If ∂Ω is parameterized as a graph of a function, being an affine
sphere is a 3rd order PDE on this function.

PDE characterization Take a convex function ψ > 0 on Rd and define
n : R+ × R

d via n(1, x) = ψ(x) and then extended by 1-homogeneity.
Take the set B := {n ≤ 1} and let K be the intersection ∂B ∩ ({0} × Rd).
Then B is an affine hemisphere centered at the origin if and only if ψ solves
ψd+2 det(D2ψ) = c, i.e. if the 2-moment measure of ψ is the uniform
measure on the convex set Ko .

B. Klartag Affine hemispheres of elliptic type, Algebra i Analiz, 2017
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Semidiscrete optimization and numerical results

With the same discretization, we now need now to solve

min < a, u > −
1

d + q − 1

∫
1

(u∗)d+q−1
:

∫
1

(u∗)d+q
= 1.

The estimates for the uniform convexity are now based on a discrete ver-
sion of the dimensional Brascamp-Lieb inequality.
The Newton approach is also efficient and allows for fast computations.

Few affine hemispheres in R3 based on different convex sets in R2.

V. H. Nguyen Dimensional variance inequalities of Brascamp-Lieb type and a local approach
to dimensional Prékopa’s theorem. J. Funct. An. 2014
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Moreau-Yosida regularization of internal energies
Definition On a Hilbert space X , given H : X → R ∪ {+∞}, its Moreau-
Yosida regularization Hε is defined as Hε(x) := infy

|x−y |2

2ε + H(y). It is
always semi-concave, and convex if H is convex. If H is l.s.c., we have
Hε → H as ε→ 0, with Γ-convergence.

In the Wasserstein space, we could take F : P(Ω)→ R∪{+∞} and define

Fε(µ) := min
ρ

W2
2 (µ, ρ)

2ε
+ F (ρ).

Suppose µ =
∑

j ajδxj and F (ρ) =
∫

f(ρ(x))dx. Using the transport cost
c(x, y) = |x − y |2/2, the dual of the above optimization problem is

max
φ

∫
φ

2ε
dµ −

∫
f ∗

(
−
φc(x)

2ε

)
dx.

Setting |x |2

2 − φ(x) = u(x) and |y |2

2 − φ
c(y) = u∗(y), the above problem is

very similar to the previous ones (only, φc is not affine on each cell, but
quadratic). Algorithmic geometry can easily find the optimal ρ given µ, and
differentiate Fε in terms of the positions and masses of the atoms of µ.
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Incompressible Euler equation
Euler equations for incompressible fluids ∂tv + (v · ∇)v = ∇p,∇ · v = 0
are known to represent geodesics among measure-preserving diffeomor-
phism. In the Brenier’s variational interpretation, they can be obtained via

min
∫

C
K(ω)dQ(ω) : (et )#Q = dx, (e0, e1)#Q = γ ∈ P(Ω × Ω),

where C is the space of curves ω : [0, 1]→ Ω and K(ω) :=
∫
|ω′(t)|2/2dt .

The condition (et )#Q = dx can be replaced, as a variational approxima-
tion, by adding Fε((et )#Q) where F (ρ) = 0 if ρ=dx,+∞ if not.

Y. Brenier The least action principle and the related concept of generalized flows for incom-
pressible perfect fluids, J. Amer. Math. Soc. 1989.
Q. Mérigot, J.-M. Mirebeau Minimal geodesics along volume preserving maps, through semi-
discrete optimal transport SINUM 2016.
T. Galloüet, Q. Mérigot A Lagrangian scheme à la Brenier for the incompressible Euler equa-
tions Foundation of Computational Mathematics, to appear
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Variational MFG with local congestion costs - 1

In a population of agents everybody chooses its own trajectory, solving

min
∫ T

0

(
|x′(t)|2

2
+ g(ρt (x(t)))

)
dt + Ψ(x(T)),

with given initial point x(0); suppose that g is increasing, i.e. agents try to
avoid overcrowded regions. Yet, ρ depends on their overall choices, and
hence we look for a Nash equilibrum. If ϕ is their value function we have

−∂tϕ + |∇ϕ|2

2 = g(ρ),

∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. (I & II) C. R. Math. Acad. Sci. Paris, 2006,
Mean-Field Games, Japan. J. Math. 2007.
M. Huang, R.P. Malhamé, P.E. Caines, Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle, Comm. Info.
Syst. 2006
P.-L. Lions, courses at Collège de France, 2006/12, videos available on the web
P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/

Filippo Santambrogio Semi-discrete approaches to many things



Variational MFG with local congestion costs - 2
It happens that an equilibrium can be found by minimizing the (global)
energy

A(ρ, v) :=

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + f(ρt )

)
+

∫
Ω

ΨρT

where f ′ = g under the constraint ∂tρ + ∇ · (ρv) = 0.
This can also be written in Lagrangian terms as

min
{∫

C
KdQ +

∫ T

0
F ((et )#Q) +

∫
Ω

Ψd(eT )#Q , Q ∈ P(C), (e0)#Q = ρ0

}
.

or, for curves valued in the Wasserstein space, as

min
{∫ T

0

(
1
2
|ρ′|(t)2 + F (ρ(t))

)
dt +

∫
Ω

ΨdρT : ρ(0) = ρ0

}
.

P. Cardaliaguet, P.J. Graber. Mean field games systems of first order. ESAIM: COCV, 2015.
J.-D. Benamou, G. Carlier Augmented Lagrangian methods for transport optimization, Mean-
Field Games and degenerate PDEs, JOTA, 2015.
J.-D.Benamou,G.Carlier,F.Santambrogio,VariationalMeanFieldGames,ActiveParticles I, 2016
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Lagrangian approximation of variational MFG

We can consider atomic measures on C, i.e. Q =
∑

j ajδωj where, for
simplicity, aj = 1/N (but different choices could model major players).
Yet (et )#Q =

∑
j ajδωj(t) is atomic and F = +∞.

Idea: replacing F with Fε the problem is perfectly posed on atomic mea-
sures, and Γ-converges (non-trivial details) to the problem with F .
The corresponding optimization problem is non-convex, but provides La-
grangian trajectories for a MFG with an approximate congestion cost.

Computations are easy for f(s) = s log s (i.e. g(s) = log s), where den-
sities are Gaussians on each cells, and for the particular case f(s) = 0
for s ∈ [0, 1], = +∞ if not (density-costrained MFG: here densities are
uniform on cells, and vanish outside, as in partial transport problems).

P. Cardaliaguet, A. Mészáros, F. Santambrogio, First order Mean Field Games with density
constraints: Pressure equals Price, SIAM J. Contr. Opt., 2016
Work in progress with Q. Mérigot and C. Sarrazin; Master and PhD thesis of C. Sarrazin.
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Lagrangian approximation of gradient flows with diffusion
The same idea (replacing F with Fε ) can be used in gradient flows

∂tρ − ∇ ·

(
ρ∇

(
δF

δρ

))
− ∇ · (ρ∇V) = 0,

in particular for local functionals F (ρ) =
∫

f(ρ(x))dx which give raise to
diffusion and would not be well-defined on atomic measures (note that we
added a potential energy

∫
Vdρ).

For instance, the Fokker-Planck equation ∂tρ−∆ρ−∇·(ρ∇V) uses F = E
and lets Gaussian appear in the Moreau-Yosida regularization.

The idea is looking for µ(t) =
∑

j ajδωj(t), with

ω′j (t) = −∇V(ωj(t)) − ∇jFε(µ(t)).

Convergence proofs cannot only be based on Γ-convergence and are not
trivial (or require extra assumptions), as usual when dealing with gradient
flows (a control on the slope is needed).

E. Sandier, S. Serfaty Gamma-convergence of gradient flows with applications to Ginzburg-
Landau, Comm. PDE, 2004

Filippo Santambrogio Semi-discrete approaches to many things



Numerical approximation of crowd motion

Using F (ρ) = 0 if ρ ≤ 1, +∞ otherwise we obtain a crowd motion model
of gradient-flow type.∂tρ − ∇ · (ρ(∇V + ∇p))

p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0.

The Moreau-Yosida compu-
tation for the constraint part
consists in partial transport.
The gradient ∇jFε w.r.t. to the
positions of the atoms equals
xj−βj

ε
, where βj is the barycen-

ter of the cell corresponding
to xj .

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gra-
dient flow type, Math. Mod. Meth. Appl. Sci., 2010
Work in progress with Q. Mérigot and F. Stra
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The End

Thanks for your attention

Few images have been stolen from various sources on the internet. I thank their authors.
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