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Network models
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The idea

Suppose two very different roads connect two cities: a straight-line high-
way and a longer country path.
If everybody chooses the former, it will become congested and less per-
formant than the latter. Hence everybody will change his mind and take
the other one. And it will be even worse !

Is there an equilibrium?
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The objects

A finite graph with edges e, a set of sources S and destinations D,

the set C(s, d) = {ω from s to d} of possible paths from s to d,

a demand input γ(s, d) denoting the quantity of commuters going
from s ∈ S to d ∈ D,

an unknown repartition strategy (to be looked for) q = (qω)ω such
that

∑
ω∈C(s,d) qω = γ(s, d),

a consequent traffic intensity (depending on q) iq = (iq(e))e given by
iq(e) =

∑
e∈ω qω,

an increasing function g : R+ → R+ such that g(iq(e)) represents
the congestioned cost (per unit length) of the edge e,

the cost for each path ω, given by cq(ω) =
∑

e∈ω g(iq(e)) length(e),

the induced distance on sources-destination pairs:
dq(s, d) := min{cq(ω) : ω ∈ C(s, d)}.
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Wardrop equilibria

The global strategy q represents the overall distribution of choices of com-
muters’ paths. Imposing a Nash equilibrium condition (no single com-
muter wants to change his mind, provided all the others keep the same
strategy) gives the following condition:

ω ∈ C(s, d), qω > 0⇒ cq(ω) = dq(s, d) (= min{cq(ω̃) : ω̃ ∈ C(s, d)}).

This condition is well-known among economists and engineers as Wardrop
equilibrium.
The existence of at least an equilibrium comes from the following varia-
tional principle.

J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1952.
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Variational principle

Optimizing an overall congestion cost means minimizing a quantity∑
e

H(iq(e)) length(e)

(H : R+ → R+ being an increasing function) among all possible strategies
q (i.e. under the constraint γq = γ, where γq(s, d) :=

∑
ω∈C(s,d) qω).

Optimality conditions: if q is optimal for a cost function H, then it is a
Wardrop equilibrium for g = H′. Hence, to get a Wardrop equilibrium it
is sufficient to solve a convex optimization problem (where H will be the
primitive of g).

This problem does not amount to minimizing the total cost of all com-
muters! indeed, the total cost is obtained by using H(t) = tg(t) (only
when g(t) = tp the two problems are equivalent). Hence, there is a cost
of anarchy.

M. Beckmann, C. McGuire, C. Winsten Studies in the Economics of Transportation, 1956.
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Short- and Long-term problems

Instead of fixing γ, we can admit, in the minimization, all strategies q com-
patible with any γ ∈ Γ, where

Γ =

γ :
∑

d

γ(s, d) = µ(s),
∑

s

γ(s, d) = ν(d)

 ,
µ(s) being the quantity of commuters starting from the source s and ν(d)
the number of those arriving at d.
In a short-term problem it is more natural to consider γ as given. On the
contrary, in a long-term problem we can consider that µ and ν (typically
residential and working areas) are more stable over time, and leave γ as
an unknown.
When we minimize under the constraint γq ∈ Γ, we obtain as optimality
conditions

q is a Wardrop equlibrium for g = H′,

γq solves minγ∈Γ
∑

s,d dq(s, d)γ(s, d), which is an optimal transport
problem from µ to ν for the cost given by dq.
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Continuous models
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Continuous formulation with measures

In a domain Ω ⊂ Rn the demand is represented by measures γ ∈ P(Ω×Ω).
We are given a set Γ ⊂ P(Ω×Ω), the set of admissible demand couplings:
either Γ = {γ} (short-term) or

Γ = Π(µ, ν) = {γ ∈ P(Ω × Ω) : (πX )#γ = µ, (πY )#γ = ν}

(long term). Let us also set

C = {Lipschitz paths ω : [0, 1]→ Ω}

C(s, d) = {ω ∈ C : ω(0) = s,, ω(1) = d}.

We look for a probability Q ∈ P(C) such that (π0,1)#Q ∈ Γ (πt : C → Ω is
given by πt (ω) = ω(t) and πt ,s(ω) = (ω(t), ω(s))): it can be expressed as
Q = Qs,d ⊗ γ with Qs,d ∈ P(C(s, d)) and γ ∈ Γ.
We want to define a traffic intensity iQ ∈ M+(Ω) such that

iQ(A) = “how much ” the movement takes place in A . . .
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Traffic intensity and overall congestion

For φ ∈ C0(Ω) and ω ∈ C set

Lφ(ω) =

∫ 1

0
φ(ω(t))|ω′(t)|dt .

Define iQ by

< iQ , φ >=

∫
C

Lφ(ω)dQ(ω).

Optimization: we minimize the convex functional

F(iQ) =


∫

H(iq(x))dx if iq � Ln,

+∞ otherwise

among all admissible strategies Q , H being a convex, increasing and su-
perlinear function. Typically H(t) = tp or H(t) ≈ tp .
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Optimality conditions

Let Q be a minimizer and set κ = H′(iQ). For κ ≥ 0 set

dκ(s, d) = inf
ω∈C(s,d)

Lκ(ω)

(it is the conformal Riemannian distance induced by κ; we will call it weighted
distance).

γ minimizes
∫

dκdγ among γ ∈ Γ,

Q−a.e. Lκ(ω) = dκ(ω(0), ω(1)).

Hence γ solves a Kantorovich transport problem and almost any path
is geodesic for a cost κ depending on Q (i.e. Wardrop equilibrium with
respect to H′).

G. Carlier, C. Jimenez and F. Santambrogio, Optimal transportation with traffic congestion and
Wardrop equilibria, SIAM J. Control Optim. 2008.
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Why a continuous model?

Where to use a continuous model instead of a network one?
In crowd and pedestrian motion, for instance.
Or, as a large scale limit of car vehicle traffic models (if we avoid to
simulate a very dense network traffic problem, we avoid the curse of di-
mensionality and wan have a rough idea of the most congested areas).

These problemas share the same flavor of Mean Field Games, with the
only difference that the model is not really dynamic (time is only fictitious,
and traffic intensity is considered as a function of x, not of (t , x)).

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007
P.-L. Lions, courses at Collège de France, 2006/12, videos available online
P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/

. . . for the variational case, also see

J.-D. Benamou, G. Carlier, F. Santambrogio, Variational Mean Field Games, 2016
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Some other remarks

If H(t) = tp , p > 1, then g(0) = H′(0) = 0: moving on a road with no
traffic would cost zero (infinite speed, no fuel comsumption. . . ). One
should rather take g(0) > 0, for instance H(t) = t + 1

p tp with p > 1.

If we want min F(iQ) < +∞, we need to find Q with iQ ∈ Lp .
if Γ = Π(µ, ν), we can use Lp estimates on the transport density
which work for µ, ν ∈ Lp (but the sharp assumption is µ − ν ∈ W−1,p)
if Γ = {γ} and µ = ν = Ln Brenier’s construction for Incompressible
Euler gives iQ ∈ L∞ (for general µ, ν, compose with diffeomorphisms);
if Γ = {γ} and µ and ν are discrete one can construct by hand a Q such
that iQ (x) ≈ |x − xi |

−1 near the atoms xi , which implies iQ ∈ Lp for p < n.

In general, κ is just measurable (Lp′ ) and Lκ(ω) not well-defined.
Solutions: work hard to define Lκ and dκ (use C0 bounds on dκ
when κ ∈ Ln+ε, or other ideas from Incompressible Euler in order to
choose a special representative κ̂), or prove smoothness (via PDEs).

L. De Pascale, L. C. Evans, A. Pratelli, Integral estimates for transport densities, BLMS, 2004
Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solu-
tions of the Euler equations, Comm. Pure Appl. Math., 1999.
L. Ambrosio, A. Figalli, Geodesics in the space of measure-preserving maps and plans, Arch.
Rati. Mech. Anal., 2009.
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The short-term problem
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Short term – duality and numerics

(P) = min
Q

∫
Ω

H(iQ); (D) = max
κ≥0
−

∫
H∗(κ) +

∫
dκdγ.

Duality: (P) = (D).

In the network case, the dual problem is usually used instead of the primal
one for numerical purposes (simpler constraints, smaller dimension. . . ).

We do the same in the continuous case. Then, from an optimal κ one can
retrieve the corresponding traffic density by H′(iQ) = κ.
This dual problem involves computing geodesic distances according to κ,
i.e. viscosity solutions of the Eikonal equation |∇U| = κ. We will solve

(DD) = min J(κ) =
∑

i

H∗(κi) −
∑
j,k

γ(j, k)Uxj ;κ(xk )

where Ux;κ(y) is a discretized solution of |∇U| = κ with U(x) = 0, com-
puted at y and we will computeU via the FMM algorithm.
F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, Numerical Approximation of Continuous
Traffic Congestion Equilibria, Net. Het. Media, 2009.
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Fast marching methods for weighted distances

Take κ ≥ 0 defined on a square grid of size h. SetU(x0) = 0. Look for

(DxU)2
i,j + (DyU)2

i,j = h2(κi,j)
2,

where we denote

(DxU)i,j := max{(Ui,j −Ui−1,j), (Ui,j −Ui+1,j), 0}/h,

(DyU)i,j := max{(Ui,j −Ui,j−1), (Ui,j −Ui,j+1), 0}/h.

The Fast Marching Method (FMM) is a numerical method introduced by
Sethian for efficiently solving this system (whose solution converges to
cκ(·, x0), which is itself a solution of |∇U| = κ). The numerical complexity
of the FMM is O(N log(N)) operations for a grid with N points.

E. Rouy, A. Tourin A viscosity solution approach to shape from shading. SINUM 1992.

J. A. Sethian Level Set Methods and Fast Marching Methods., 1999.

Filippo Santambrogio Continuous Wardrop Equilibria



Subgradients

The problem (DD) is convex (κ 7→ Ux,κ(y) is concave) and we can solve it
by a gradient method. We use a variant of the FMM which also computes,
besides the value ofU, its derivatives w.r.t. perturbations in κ (essentially
based on automatic differentiation) and costs O(N2 log(N)).
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Figure: Examples of the subgradient computation. On the left, an element of
∂−κU(κ) when κ is a constant metric; in the middle, a non constant (gaussian)
metric κ ; on the right, an element of ∂−κU(κ) for this κ.

F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio, Derivatives with Respect to Metrics and
Applications: Subgradient Marching Algorithm, Num. Math., 2010.
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Traffic equilibria - 1
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Figure: Two sources and two targets, with a river and a bridge on a symmetric
configuration and an asymmetric traffic weights.
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Traffic equilibria- 2

Figure: Running of the subgradient algorithm
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Long-term problem: prescribed divergence,
very degenerate PDEs,

Augmented Lagrangian methods
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Minimal flow problem

Let’s define sort of a vector traffic density: let vQ ∈ M
n(Ω) be given by

< vQ , ~φ >=

∫
C

(∫ 1

0

~φ(ω(t)) · ω′(t) dt
)

dQ(ω)

for all ~φ ∈ C0(Ω;Rn).
We can check ∇ · vQ = (π0)#Q − (π1)#Q = µ − ν. Moreover, |vQ | ≤ iQ .

Question: can we replace iQ with |vQ |? can we minimize among all v ∈
Mn(Ω) with ∇ · v = µ − ν?

Take H(z) = H(|z|): let us consider

(VP) : min
∫
H(v) : ∇ · v = µ − ν.

This problem (only for Γ = Π(µ, ν)) is a congested variant of the Beck-
mann’s formulation for the linear Monge problem: min

∫
|v | : ∇·v = µ−ν.

M. Beckmann, A continuous model of transportation, Econometrica, 1952.
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Equivalence

Obviously we have (VP) ≤ (P). Take a minimizer v for (VP) and build a
Q such that iQ ≤ |v |. This is possible, but we need to follow, in the spirit of
Dacorogna-Moser’s techniques, the integral curves of a vector field built
from v: ω′x(t) =

v(ωx (t)),
µt (ωx (t)) µt (y) = (1 − t)µ(y) + tν(y),

ωx(0) = x.

Everything would be nice if v/µt was Lipschitz. Anyway, by approximation,
it is possible to obtain the following Smirnov-like result: for every v with
∇ · v = µ − ν there exists Q with (π0)#Q = µ, (π1)#Q = ν and iQ ≤ |v |.

B. Dacorogna, J. Moser, On a partial differential equation involving the Jacobian determinant.
Ann. Inst. H. Poincaré Anal. Non Lin., 1990
S. K. Smirnov, Decomposition of solenoidal vector charges into elementary solenoids, and
the structure of normal one-dimensional flows, Algebra i Analiz, 1993.
F. Santambrogio, A Dacorogna-Moser approach to flow decomposition and minimal flow prob-
lems, Proc. SMAI 2013.
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Need for regularity

Anyway, if we want a uniquely defined flow of curves Q , it would be desir-
able to have better regularity of v. Less than Lipschitz could be enough, if
weuse the DiPerna-Lions theory. We will suppose µ, ν ≥ c > 0 and µ, ν
Lipschitz; we need v ∈ W1,1 ∩ L∞.
v satisfies ∇H(v) = ∇u (divergence-free perturbations).

v = ∇H∗(∇u); ∇ · ∇H∗(∇u) = µ − ν.

If H(t) = t2: standard elliptic regularity
If H(t) = tp : p′−Laplacian
And what if H(t) = t + 1

p tp? in this case we have a very degenerate elliptic
equation, since H∗(z) = 0 for all z ∈ B1.

R. J. DiPerna, P. L. Lions, Ordinary differential equations, transport theory and Sobolev
spaces, Inv. Math. 1989.
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Regularity: here we are!

Regularity for a very degenerate elliptic equation:

∇ · G(∇u) = f

with G(z) = (|z| − 1)p′−1
+

z
|z| and f ∈ W1,p : ⇒ G(∇u)p/2 ∈ H1.

For the proof: translation methods for the p−Laplacian, (similar to results
about stress regularity by Carstensen-Müller, Fonseca-Fusco-Marcellini. . . ).
For global estimates, higher regularity of ∂Ω is required (C3,1).

Also:
∇ · G(∇u) = f

with G =∇H , D2H(z)≥cIn outside B2(0), f ∈Ln+ε ⇒ ∇u ∈ L∞.
The proof is based on Moser’s iteration, and only large values of the gra-
dient really matter. Once ∇u ∈ L∞, the H1 result is true also for f ∈ BV .
L. Brasco, G. Carlier, F. Santambrogio, Congested traffic dynamics, weak flows and very
degenerate elliptic equations, J. Math. Pures et Appl., 2010.

The H1 regularity can also be obtained via duality methods:
F. Santambrogio, Regularity via duality in calculus of variations and degenerate elliptic PDEs,
preprint
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Even more: continuity!

Consider
∇ · G(∇u) = f

with G =∇H , H ∈ C2(Rn), D2H(z)≥cδIn outside B1+δ, f∈L2+ε.

Then, in dimension n = 2: G(∇u)∈W1,2∩L∞ ⇒ g(∇u) ∈ C0 for all g ∈
C0(R2) with g = 0 sur B1. In particular G(∇u) ∈ C0.

F. Santambrogio, V. Vespri, Continuity in two dimensions for a very degenerate elliptic equation,
Nonlinear Analysis, 2010.

Later, this result has been (much) improved by Colombo and Figalli, who
proved C0 regularity in any dimension without apriori summability assump-
tions on G(∇u), by proving C1,α results on u outside {|∇u| < 1 + δ} (and
generalizing to functions H degenerate on more general convex sets).

M. Colombo, A. Figalli, Regularity results for very degenerate elliptic equations, J. Math.
Pures Appl. 2012.
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Augmented Lagrangian

The formulation with prescribed divergence allows for easy duality results
and for a numerical treatment in terms of Saddle Points: to solve

min
∫

H(v) : ∇ · v = f

we look for a saddle point of

L(v , (w, φ)) :=

∫
v · (∇φ + w) − H∗(w) + fφ.

The saddle points are the same as those of

L̃(v , (w, φ)) :=

∫
v · (∇φ + w) − H∗(w) + fφ −

τ

2
|∇φ + w |2.

L̃ (the so-called Augmented Lagrangian) can be treated via alternate max-
imization in φ (solving τ∆φ = ∇ · v − f − τ∇ · w), in w (a strictly convex
pointwise problem) and then a gradient update on v (v 7→ v − τ(∇φ+ w)),
according to what is often called the ALG2 method.

M. Fortin, R. Glowinski Augmented Lagrangian methods, 1983.
J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge- Kantorovich
mass transfer problem, Numer. Math., 2000.
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Congested flows via Augmented Lagrangian

Figure: Congested flows with an obstacle, for H(t) = t + 1
p tp , for different values

of p.

J.-D. Benamou, G. Carlier Augmented Lagrangian methods for transport optimization, Mean-
Field Games and degenerate PDEs, JOTA, 2015
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A variant: capacity constraints
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Continuous Wardrop equilibria with capacity constraints
How to define an equilibrium if instead of penalizing traffic congestion via
g(iQ) we want to impose a constraint iQ ≤ 1?
Naive idea: when iQ is given, every agent minimizes his own cost paying
attention to the constraint iQ ≤ 1. But if iQ already satisfies iQ ≤ 1, one
extra agent will not violate the constraint (it’s a non-atomic game). Hence
the constraint becomes empty.

Let us start, instead, from the variational formuation

min
{∫

iQ dx : iQ ≤ 1
}

or

min
{∫
|v(x)| dx : ∇ · v = ρ0 − ρ1, |v | ≤ 1

}
.

The constraint can be dualized, thus obtaining

min
Q

sup
p≥0

∫
iQ dx +

∫
p iQ dx −

∫
p dx.

This introduces an extra term p ≥ 0 in the optimality condition.
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Pressure and Price
Open Problem Given γ ∈ P(Ω × Ω) (or - which is easier - given µ, ν ∈
P(Ω)), find Q ∈ P(C) and p smooth enough such that

(e0, e1)#Q = γ (or (e0)#Q = µ, (e1)#Q = ν)
p ≥ 0, iQ ≤ 1, p(1 − iQ) = 0
Q-a.e. curve γ is geodesic for the distance dκ with κ = 1 + p

The new term p plays the role of a pressure associated with the incom-
pressibility constraint iQ ≤ 1, but is also a price to be paid to pass through
saturated regions where iQ = 1. One can see that p = (∇u − 1)+ where
u solves (in the long-term case)

min
∫

(∇u − 1)+dx +

∫
u d(µ − ν).

Difficulty: the length Lκ is not well-defined, and here p will only be L1 (or,
even, worse, a positive measure). The Ambrosio-Figalli theory required
some assumptions on the maximal function of κ, hence some regularity
must be prove. The situation is similar to MFG with density constraints
(but is not yet solved).
P. Cardaliaguet, A. Mészáros, F. Santambrogio, First order Mean Field Games with density
constraints: Pressure equals Price, SICON, 2016
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The End

Thanks for your attention
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