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Do we really need here a long introduction about MFG?

Mean Field Games (introduced by Lasry and Lions, and at the same time
by Huang, Malhamé and Caines) describe the evolution of a population,
where each agent has to choose the strategy (i.e., a path) which best fits
his preferences, but is affected by the others through a global mean field
effect.
It is a differential game, with a continuum of players, all indistinguishable
and all negligible. It is a typical congestion game (agents try to avoid
the regions with high concentrations) and we look for a Nash equilibrium,
which can be translated into a system of PDEs.

J.-M. Lasry, P.-L. Lions, Jeux à champ moyen. (I & II) C. R. Math. Acad. Sci. Paris, 2006 +
Mean-Field Games, Japan. J. Math. 2007
M. Huang, R.P. Malhamé, P.E. Caines, Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle, Comm. Info.
Syst. 2006
P.-L. Lions, courses at Collège de France, 2006/12, videos available on the web
P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
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MFG with density penalization- 1

In a population of agents everybody chooses its own trajectory, solving

min
∫ T

0

(
|x′(t)|2

2
+ g(x, ρt (x(t)))

)
dt + Ψ(x(T)),

with given initial point x(0); here g(x, ·) is a given increasing function of the
density ρt at time t . The agent hence tries to avoid overcrowded regions.

Input: the evolution of the density ρt .

A crucial tool is the value function ϕ for this problem, defined as

ϕ(t0, x0) := min
{∫ T

t0

(
|x′(t)|2

2
+ g(x, ρt (x(t)))

)
dt + Ψ(x(T)), x(t0) = x0

}
.
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MFG with density penalization- 2
Optimal control theory tells us that ϕ solves

(HJ) − ∂tϕ(t , x) +
1
2
|∇ϕ(t , x)|2 = g(x, ρt (x)), ϕ(T , x) = Ψ(x).

Moreover, the optimal trajectories x(t) follow x′(t) = −∇ϕ(t , x(t)).

Hence, given the initial ρ0, we can find the density at time t by solving

(CE) ∂tρ − ∇ · (ρ∇ϕ) = 0,

which give as Output: the evolution of the density ρt .
We have an equilibrium if Input = Output.
This requires to solve a coupled system (HJ)+(CE):

−∂tϕ + |∇ϕ|2

2 = g(x, ρ),

∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

Stochastic case : we can also insert random effects dX = αdt + dB,
obtaining −∂tϕ−∆ϕ + |∇ϕ|2

2 − g(x, ρ) = 0 ; ∂tρ−∆ρ − ∇ · (ρ∇ϕ) = 0.
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Variational principle
It happens that an equilibrium is found by minimizing the (global) energy

A(ρ, v) :=

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + G(x, ρt )

)
+

∫
Ω

ΨρT

among pairs (ρ, v) such that ∂tρ + ∇ · (ρv) = 0, with given ρ0, where
G(x, ·) is the anti-derivative of g(x, ·), i.e. G(x, ·)′ = g(x, ·). This problem
is convex in the variables (ρ,w := ρv) and admits a dual problem:

sup
{
−B(φ, p) :=

∫
Ω
φ0ρ0−

∫ T

0

∫
Ω

G∗(x, p) : φT ≤ Ψ, −∂tφ+
1
2
|∇φ|2 = p

}
,

where G∗ is the Legendre transform of G (w.r.t. p).

Formally, if (ρ, v) solves the primal problem and (ϕ, p) the dual, then we
have v = −∇φ and p = g(x, ρ), i.e. we solve the MFG system.
Warning: the existence of a dual solution (in a suitable weak functional
space) is only proven under some growth conditions on G. Also, for non-
smooth functions, this is not the same of having optimal trajectories. . .
P. Cardaliaguet, P.J. Graber. Mean field games systems of first order. ESAIM: COCV, 2015.
J.-D. Benamou, G. Carlier Augmented Lagrangian methods for transport optimization, Mean-
Field Games and degenerate PDEs, JOTA, 2015.
J.-D.Benamou,G.Carlier,F.Santambrogio,VariationalMeanFieldGames,ActiveParticles I, 2016
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Measures on the space of trajectories
The same variational problem can also be written in the following way: let
C = H1([0,T ]; Ω) be the space of curves valued in Ω and et : C → Ω the
evaluation map, et (γ) = γ(t). Solve

min
{∫
C

KdQ +

∫ T

0
G((et )#Q) +

∫
Ω

Ψd(eT )#Q , Q ∈ P(C), (e0)#Q = ρ0

}
,

where K : C → R and G : P(Ω) → R are given by K(γ) = 1
2

∫ T
0 |γ

′|2 and
G(ρ) =

∫
G(x, ρ(x))dx. (# denotes image measure, or push-forward).

Existence: by semicontinuity in the space P(C).

Optimality conditions: take Q optimal, Q̃ another competitor, and Qε =
(1 − ε)Q + εQ̃ . Setting ρt = (et )#Q and p(t , x) = g(x, ρt (x)), differenti-
ating w.r.t. ε gives

Jp(Q̃) ≥ Jp(Q),

where Jp is the linear functional

Jp(Q) =

∫
KdQ +

∫ T

0

∫
Ω

p(t , x)d(et )#Q dt +

∫
Ω

Ψd(eT )#Q .
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Back to an equilibrium

Look at Jp . It is well-defined for p ≥ 0 measurable. Yet, if p ∈ C0 we

can also write
∫ T

0

∫
Ω

p(t , x)d(et )#Q dt =
∫
C

dQ
∫ T

0 p(t , γ(t))dt (in genera
we have problems in the definition a.e.) and hence we get that

Q 7→
∫
C

dQ(γ)

(
K(γ) +

∫ T

0
p(t , γ(t))dt + Ψ(γ(T))

)
is minimal for Q = Q . Hence Q is concentrated on curves minimizing
Lp,Ψ(γ) := K(γ) +

∫ T
0 p(t , γ(t))dt + Ψ(γ(T)). This means Input=Output.

A rigorous proof can also be done even for p < C0 but one has to choose
a precise representative. Techniques from incompressible fluid mecha-
nics (incompressible Euler à la Brenier) allow to handle some inte-
resting cases using p̂(x) := lim supr→0

>
B(x,r)

p(t , y)dy (maximal function
Mp needed to justify some convergences. . . ).

L. Ambrosio, A. Figalli, On the regularity of the pressure field of Brenier’s weak solutions to
incompressible Euler equations, Calc. Var. PDE, 2008.
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Precise equilibrium statements and need for summability
An adaptation of Ambrosio-Figalli’s statement is

Theorem

If Q is optimal, then Q-a.e. curve γ is an optimal trajectory in the
following sense:

Lp̂,Ψ(γ) ≤ Lp̂,Ψ(γ̃)

on every interval [t0,T ] and for every curve γ̃ such that∫ T
t0

M(p+)(γ̃) < +∞.

How many curves do satisfy
∫ T

t0
M(p+)(γ̃) < +∞? If G(x, ρ) ≈ ρq, M|p| ∈

Lq′ then for every Q̃ with finite cost, Q̃-a.e. curves do it, since∫ ∫ T

t0
M|p|(γ̃(t))dt dQ̃(γ̃) =

∫ T

t0

∫
Ω

M|p| dρt dt .

Need for estimates: we should prove ρ ∈ Lq and M|p| ∈ Lq′ (for q′ > 1,
equivalent to p ∈ Lq′): this is easy for G growing as ρq, difficult for more
exotic G (G(ρ) = exp(ρ), (1 − ρ)−1). . . ).
Should we prove ρ ∈ L∞ and in particular p+ = (g(x, ρ)+) ∈ L∞, then the
optimality would be among all curves, and we should not care about Mp.
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Trajectories on the space of measures, time-discretization

The very same variational problem can also be written in a third way. Use
the space of probabilities W2(Ω) endowed with the Wasserstein distance
W2 (enduced by optimal transport) and look for a curve (ρ(t))t∈[0,T ] solving

min
{∫ T

0

(
1
2
|ρ′|(t)2 + G(ρ(t))

)
dt +

∫
Ω

ΨdρT : ρ(0) = ρ0

}
,

(here |ρ′|(t) := lims→t
W2(ρ(s),ρ(t))

|s−t | is the metric derivative of the curve ρ).

Existence is also easy by semicontinuity and by Ascoli-Arzelà applied in
the space of curves from [0,T ] to the compact metric spaceW2(Ω).

A useful approximation can be obtained via time-discretization: fix τ =
T/N and look for a sequence ρ0, ρ1, . . . , ρN solving

min

N−1∑
k=0

W2
2 (ρk , ρk+1)

2τ
+ τG(ρk )

 +

∫
Ω

ΨdρN

 .
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Optimality conditions in a JKO-like scheme

If ρ0, ρ1, . . . , ρN solves

min

N−1∑
k=0

W2
2 (ρk , ρk+1)

2τ
+ τG(ρk )

 +

∫
Ω

ΨdρN


then, for each 0 < k < N, the measure ρk solves

min
W2

2 (ρ, ρk−1)

2τ
+

W2
2 (ρ, ρk+1)

2τ
+ τG(ρ)

 ,
i.e. it solves a minimization problem similar to what we see in the JKO
scheme for gradient flows:

min
W2

2 (ρ, ρk−1)

2τ
+ G(ρ)

 .
For k = N, we have a true JKO-style problem with one only Wasserstein
distance.

R. Jordan, D. Kinderlehrer, F. Otto. The variational formulation of the Fokker-Planck equation.
SIAM J. Math. An., 1998.
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The flow-interchange estimates
Let ρs be the gradient flow of a functional F (ρ) :=

∫
F (ρ(x))dx, i.e. a

solution of ∂sρ − ∇ · (ρ∇(F ′ (ρ))) = 0, with initial datum at s = 0 equal to
the optimal ρ at step k . We suppose Ω to be convex and we choose F so
that F is geodesically convex functional onW2(Ω). This provides

d
ds

W2
2 (ρs , ν)

2
≤ F (ν) − F (ρs)

We also have
d
ds
G(ρs) =

∫
∇(g(x, ρs)) · ∇(F ′ (ρs)) dρs .

the optimality of ρk hence gives∫
∇(g(x, ρk )) · ∇(F ′ (ρk )) dρk ≤

F (ρk+1) − 2F (ρk ) + F (ρk−1)

τ2 .

R.J. McCann A convexity principle for interacting gases. Adv. Math. 1997.
L. Ambrosio, N. Gigli, G. Savaré Gradient flows in metric spaces and in the space of probability
measures, 2005.
D. Matthes, R.J. McCann, G. Savaré. A family of nonlinear fourth order equations of gradient
flow type. Comm. PDE, 2009.
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The flow-interchange estimates
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R.J. McCann A convexity principle for interacting gases. Adv. Math. 1997.
L. Ambrosio, N. Gigli, G. Savaré Gradient flows in metric spaces and in the space of probability
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Lm and L∞ estimates

Suppose g(x, ρ) = V(x) + g(ρ). We start from V = 0:

0 ≤
∫

g′(ρk )F ′′m(ρk )ρk |∇ρk |
2 ≤

Fm(ρk+1) − 2Fm(ρk ) + Fm(ρk−1)

τ2

k 7→ Fm(ρk ) is discretely convex. If ρ0 ∈ Lm, and we suppose ρT ∈ Lm, so
is ρt , uniformly in t .
With a final penalization Ψ, if Ψ ∈ C1,1, then we also obtain

Fm(ρN) ≤ (1 + Cτm)Fm(ρN−1),

hence, not only k 7→ Fm(ρk ) is convex, but we control its final derivative,
which also implies boundedness of Fm.

H. Lavenant, F. Santambrogio Optimal density evolution with congestion: L∞ bounds via flow
interchange techniques and applications to variational Mean Field Games, preprint.
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Lm and L∞ estimates

Suppose g(x, ρ) = V(x) + g(ρ). We start from V = 0:

? ≤

∫
g′(ρk )F ′′m(ρk )ρk |∇ρk |

2 ≤
Fm(ρk+1) − 2Fm(ρk ) + Fm(ρk−1)

τ2

k 7→ Fm(ρk ) is discretely convex. Don’t suppose anything on ρ0, ρT and/or
Ψ: we can obtain local estimates. Suppose g′(s) ≥ sα. We use∫

g′(ρk )F ′′m(ρk )ρk |∇ρk |
2 ≥ c

∫
ρm−1+α

k |∇ρk |
2 = c ||∇(ρ

(m+1+α)/2
k )||2L2

≥ c ||(ρ(m+1+α)/2
k )||2Lβ ,

for β∈(2, 2∗)>2 and we use Moser’s iteration on exponents mj ≈ (β/2)j .

H. Lavenant, F. Santambrogio Optimal density evolution with congestion: L∞ bounds via flow
interchange techniques and applications to variational Mean Field Games, preprint.
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Lm and L∞ estimates

Suppose g(x, ρ) = V(x) + g(ρ). Do not suppose anymore V = 0:

? ≤

∫
g′(ρk )F ′′m(ρk )ρk |∇ρk |

2 ≤
Fm(ρk+1) − 2Fm(ρk ) + Fm(ρk−1)

τ2

−

∫
(∇V · ∇ρk )F ′′m(ρk )ρk .

The new term needs to be estimated in terms of V and Fm. k 7→ Fm(ρk )
is no more convex (but rather it satisfies u′′+C(m)u≥0). We can go on. . .∫

g′(ρk )F ′′m(ρk )ρk |∇ρk |
2 ≥ c

∫
ρm−1+α

k |∇ρk |
2 = c ||∇(ρ

(m+1+α)/2
k )||2L2

≥ c ||(ρ(m+1+α)/2
k )||2Lβ ,

for β∈(2, 2∗)>2 and we use Moser’s iteration on exponents mj ≈ (β/2)j .

H. Lavenant, F. Santambrogio Optimal density evolution with congestion: L∞ bounds via flow
interchange techniques and applications to variational Mean Field Games, preprint.
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Lm and L∞ estimates - summary

Theorem

Suppose g(x, ρ) = V(x) + g(ρ). Suppose g′(s) ≥ sα for s ≥ s0.

If V is Lipschitz, α ≥ −1, and s0 = 0 then ρ ∈ L∞loc((0,T) × Ω).

Same result if s0 > 0 but V ∈ C1,1 and ∂V/∂n ≥ 0.

These results extend to (0,T ] is Ψ ∈ C1,1 and ∂Ψ/∂n ≥ 0.

If α < −1, then the same results, for V ,Ψ ∈ C1,1, ∂V/∂n ≥ 0 and
∂Ψ/∂n ≥ 0, are true if we already know ρ ∈ Lm0 ((0,T) × Ω) for
m0 > d|α + 1|/2. This is true in particular if ρ0 ∈ Lm0 and T is small
enough.

If g is a convex function finite on R+, then we also obtain upper bounds
on p = V(x) + g(ρ(x)).

Generalizations: If the Hamiltonian is not quadratic (agents minimize∫
H(x′) + g(x, ρ)) we can replace W2

2 with the transport cost H(x − y);
if we have x-dependance in the Hamiltonian then geodesic convexity in
the Wasserstein space on a manifold is involved (Ricci bounds. . . ).
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The case of density constraints - 1

Consider g(x, ρ) = V(x) + ρ(x)m, and the limit m → ∞. In the variational
problem this gives G = 1

m+1 Fm+1 and, at the limit, the density constraint
ρ ≤ 1. In this case p is a priori only a measure satisfying

p = p̃ + V , p̃ ≥ 0, p̃(1 − ρ) = 0.

The term p̃ is just the limit of the terms ρm, and its regularity is crucial to
prove M|p| ∈ L1.

Results inspired by Incompressible fluid mechanics and based on convex
duality gave

V ∈ C1,1 ⇒ p ∈ L2
loc((0,T); BVloc(Ω)).

P. Cardaliaguet, A. Mészáros, F. Santambrogio, First order Mean Field Games with density
constraints: Pressure equals Price, SIAM J. Contr. Opt., 2016
Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solu-
tions of the Euler equations, Comm. Pure Appl. Math., 1999.
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The case of density constraints - 2

Applying the flow interchange technique to the case G = 1
m+1 Fm+1 we get

∫ F ′′m+1(ρk )

m + 1
F ′′m(ρk )ρk |∇ρk |

2 ≤
Fm(ρk+1) − 2Fm(ρk ) + Fm(ρk−1)

τ2

−

∫
(∇V · ∇ρk )F ′′m(ρk )ρk .

This means, for p̃ = ρm,∫
|∇p̃|2 ≤

Fm(ρk+1) − 2Fm(ρk ) + Fm(ρk−1)

(m − 1)τ2 +

∫
|∇V ||∇p̃|.

Using Fm(ρ) ≤ Fm+1(ρ) and the bound on
∫

1
m+1Fm+1(ρ) coming from op-

timality, this allows to conclude a bound on p̃ in L2
loc((0,T); H1(Ω)) under

the only assumption V ∈ H1.
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The End

Thanks for your attention
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