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Modeling
Existence and approximation

Uniqueness
Numerics

1 Micro and macro models for crowd motions with constraints

Disks with no overlapping
Density ρ ≤ 1
Continuity equation, nonlinear diffusion, Hele-Shaw

2 Existence and approximation : the role of optimal transport

A splitting method
Few words about optimal transport and Wasserstein distance
Diffusive variants
The projection operator
Gradient flows and the JKO scheme

3 Uniqueness

Contractivity in W2

Contractivity in L1

Very rough vector fields

4 Numerical methods

Augmented Lagrangian for the JKO scheme
Optimization among convex functions
Stochastic approximation of the projection

Filippo Santambrogio Foules et contraintes de densité
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Micro and macro models with constraints
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Non-overlapping disks

A particle population moves, and each particle - if alone - would follow its
own velocity u (depending on time, position. . . a typical case is : u = −∇V ,
where V (x) = dist(x , Γ), Γ being an exit).
Yet, particles are (modeled by) rigid disks that cannot overlap, hence, the
actual velocity v will not be u if u is too concentrating.
If q is the particle configuration, we define adm(q) the set of velocities
that do not induce overlapping : if every particle is a disk with radius R,
located at qi , we have

q ∈ K := {q = (qi )i ∈ ΩN : |qi − qj | ≥ 2R}
adm(q) =

{
v = (vi )i : (vi − vj) · (qi − qj) ≥ 0 ∀(i , j) : |qi − qj | = 2R

}
. vi vj

•
qi

•
qj

NOT ADMISSIBLE

vi vj

•
qi

•
qj

ADMISSIBLE
Filippo Santambrogio Foules et contraintes de densité
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A general model

How to handle v ≈ u and q ∈ K at the same time ?
We will assume v = Padm(q)[u] and solve q′(t) = Padm(q(t))[ut ] (with q(0)
given). This can be discretized (catching-up algorithm) as follows

q̃τn+1 = qτn + τunτ , qτn+1 = PK [q̃τn+1]

(for a small time step τ > 0) and is the same as the differential inclusion

q′(t) ∈ ut − NK (q(t))

where NK is the normal cone to the set K

NK (q0) = {v : q1 ∈ K ⇒ v · (q1 − q0) ≤ o(|q1 − q0|)}.

It is important here that K , even if not convex in ΩN , is as at least prox-regular

(the projection on K is well defined on a neighborhood of K).

B. Maury, J. Venel, Handling of contacts in crowd motion simulations, Traffic and
Granular Flow, 2007.
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From the RER to the escalator

(numerical simulation by J. Venel)
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Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},
u : Ω→ Rd will be a vector field, possibly depending on time or ρ,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1}},
P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt +∇ ·
(
ρt
(
Padm(ρt)ut

))
= 0.

Difficulty : v = Padm(ρt)ut is not regular, neither depends regularly on ρ.
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Modeling
Existence and approximation

Uniqueness
Numerics

Pressures and duality

The set adm(ρ) may be better described by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p : p ≥ 0, p(1− ρ) = 0

}
.

We can characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0}

This function p plays the role of a pressure affecting the movement.
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u
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v
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∂tρt +∇ ·
(
ρt(ut −∇pt)

)
= 0

ρt ∈ K , pt ∈ press(ρt)
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Pressures and duality

The set adm(ρ) may be better described by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p : p ≥ 0, p(1− ρ) = 0

}
.

We can characterize v = Padm(ρ)(u) through

u = v +∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0}

This function p plays the role of a pressure affecting the movement.

�
�
�
�
�

@
@
@@

@@�
�

�� adm(ρ)

∇press(ρ)

u

∇p

v

�
�
���

@@I
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. . . very similar to the Hele-Shaw flow

The Hele-Shaw flow in few words :

∂tρt −∆pt = G (= reaction terms)

where pt ∈ H(ρt) and H is a monotone graph. When H(s) = sm we have a
porous-medium equation (non-linear diffusion), when H = ∂I[0,1] (hence
H(s) = [0,+∞[ for s = 1, H(s) = {0} for 0 < s < 1), the pressure p ≥ 0
is arbitrary, but satisfies p(1− ρ) = 0. (density dynamics)
When G ≥ 0 and ρ0 = 1Ω0 is a patch, the evolution is ρt = 1Ωt with Ωt

evolving with normal velocity (free boundary geometric evolution)

vt = −∂pt/∂n, −∆pt = G in Ωt , pt = 0 on ∂Ωt .

Our equation has the same form, but with an advection term instead of
reactions.
M.G. Crandall, An introduction to evolution governed by accretive operators, 1976
Ph. Bénilan, L. Boccardo, M. Herrero, On the limit of solution of ut = ∆um as
m → ∞, 1989
B. Perthame, F. Quirós, J.-L. Vázquez, The Hele-Shaw Asymptotics for Mechani-
cal Models of Tumor Growth, ARMA, 2014.
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An example

Closed door (no-flux boundary conditions on ∂Ω)

Open door (free flux on the bottom, i.e. mixed Dirichlet-Neumann for p)
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Existence and approximation

The role of optimal transport
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A splitting (catching-up) scheme for the PDE

Fix a time step τ > 0. We look for a sequence (ρτn)n where ρτn stands for
ρ at time nτ . We first define

ρ̃τn+1 = (id + τunτ )#ρ
τ
n ; ρτn+1 = PK (ρ̃τn+1)

where the projection PK is in the sense of the Wasserstein distance, induced
by optimal transport.
The key point is actually using the W2 projection (instead of L2 or other
projections). It corresponds to the L2 projection of velocity fields and of
(Lagrangian) positions.

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd
motion model of gradient flow type, Math. Mod. Meth. Appl. Sci., 2010

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling
congestion in crowd motion modeling Net. Het. Media, 2011
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Optimal transport and Wasserstein distances

If two probabilities µ, ν ∈ P(Ω) are given on a compact domain, the
Monge-Kantorovitch problem reads

W 2
2 (µ, ν) = inf

{∫
|x − T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}
= inf

{∫
|x − y |2dγ : γ ∈ P(Ω2), (πx)#γ = µ, (πy )#γ = ν

}
= 2 sup

{∫
φ dµ+

∫
ψ dν : φ(x) + ψ(y) ≤ 1

2
|x − y |2

}
.

Under suitable assumptions, there exist an optimal transport T and an
optimal φ, called Kantorovich potential, which is Lipschitz continuous.
They are linked by T (x) = x − ∇φ(x) (also, T = ∇u with u(x) =
|x |2/2 − φ(x) convex). Moreover, W2(µ, ν) is a distance on P(Ω) which
metrizes the weak-* convergence of probabilities (on compact domains).
G. Monge, Mémoire sur la théorie des déblais et des remblais, 1781
L. Kantorovich, On the transfer of masses, Dokl. Acad. Nauk. USSR, 1942.
Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vec-
teurs, CRAS, 1987.
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Projections and pressures

Fix a measure ν ∈ P(Ω) and solve

min

{
1

2
W 2

2 (ρ, ν) : ρ ∈ K

}
= min

ρ≤1
sup
φ,ψ

∫
φ dρ+

∫
ψ dν.

1

ν

ρ = 1

ρ = ν

By duality and inf-sup exchange, the op-
timal ρ must also solve

min

∫
φ dρ : ρ ≤ 1,

where φ is the Kantorovich potential in
the transport from ρ to ν. This implies

∃` : ρ =


1 on φ < `,

0 on φ > `,

∈ [0, 1] on φ = `

⇒ p := (`− φ)+ ≥ 0, p(1− ρ) = 0.

Hence, p ∈ press(ρ) and, passing to gradients, we have

ρ− a.e. ∇p = −∇φ = T (x)− x .
Filippo Santambrogio Foules et contraintes de densité
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Getting back to the PDE

T (x) = x +∇p(x) is the optimal transport from ρτn+1 to ρ̃τn+1. Notice

||∇p||L2(ρτn+1) = W2(ρτn+1, ρ̃
τ
n+1) ≤W2(ρτn , ρ̃

τ
n+1) ≤ τ ||unτ ||L2(ρτn ).

This suggest to scale the pressure (we call it now τp) and get the following
situation

•
ρτn

id
+
τu

nτ

•
ρ̃τn+1

id +
τ∇p

•
ρτn+1(id + τunτ )−1(id + τ∇p)

Formally, we have (id +τunτ )−1(id +τ∇p) = id−τ(u(n+1)τ −∇p) +o(τ)
provided u is regular enough. This allows to get, in the limit τ → 0, the
vector field vt = Padm(ρt)[ut ] and get a solution of the PDE.
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Diffusive variants, different splitting methods

Taking ρ̃τn+1 = (id + τunτ )#ρ
τ
n is just a possible choice. When u is not

regular enough or depends on ρ there are better options. Consider

∂tρt +∇ · (ρtut)− σ∆ρt −∆pt = 0

where σ ≥ 0 is a volatility. Take the solution of the Fokker-Planck equation{
∂sρs +∇ · (usρs)− σ∆ρs = 0,

ρ0 = ρτn ;

then, define ρ̃τn+1 = ρτ .
The method works and converges under the same assumptions for the FP
equation to be well-posed : u ∈ L∞ if σ > 0, u satisfying DiPerna-Lions
(or Ambrosio) theory for σ = 0 (u ∈W 1,1 or u ∈ BV + bounds on ∇·u).

R. J. DiPerna, P. L. Lions, Ordinary differential equations, transport theory and
Sobolev spaces, Inv. Math., 1989
L.AmbrosioTransportequationandCauchyproblemforBVvector fields, Inv.Math.2003
A. R. Mészáros, F. Santambrogio Advection-diffusion equations with density con-
straints, An. PDEs, 2016.

Filippo Santambrogio Foules et contraintes de densité
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The projection operator

A key tool is the projection operator PK(f ) (even if we mainly use it for
f = 1) : PK(f )[ν] := argmin{W 2

2 (ρ, ν), ρ ≤ f }. Its properties are essential
for proving convergence. What we know :

W 2
2 (·, ν) is strictly convex as soon as ν � Ld . This provides

uniqueness and hence continuity in this case.
Uniqueness actually holds for every ν, in the case f � Ld .
For f = 1, the geodesic convexity of {ρ : ρ ≤ 1} (w.r.t. Wasserstein
geodesics) also gives uniqueness, and Hölder continuity w.r.t. W2.
(1-)Lipschitz continuity of PK(f ) is an open question !
The projection preserves ordering and decreases the L1 distance
between densities.
Estimates (order 0) : for every convex U, ρ 7→

∫
U(ρ(x))dx

decreases under projection.
Estimates (order 1) : the BV norm decreases under projection.

A. Roudneff-Chupin, Modélisation macroscopique de mouvements de foule, PhD
thesis, Orsay, 2011
G. De Philippis, A. R. Mészáros, F. Santambrogio, B. Velichkov BV estimates
in optimal transportation and applications, ARMA, 2016.
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Gradient flows

When u has a suitable gradient structure, it is possible to do the two steps
of the splitting algorithm at once, thanks to the theory of gradient flows.
Gradient flows in few words : consider an evolution equation of the kind

x ′(t) = −∇F (x(t))

(we follow the steepest descent lines of a function F : Rn → R). We can
discretize in time such an equation by solving

xτk+1 ∈ argminx F (x) +
1

2τ
|x − xτk |2, τ > 0 fixed.

The optimal xτk+1 satisfies

xτk+1 − xτk
τ

+∇F (xτk+1) = 0

which corresponds to an implicit Euler scheme for x ′ = −∇F (x), the
solution being found as a limit τ → 0.
This formulation may easily be adapted to a general metric space. . .
E. De Giorgi, New problems on minimizing movements, Boundary Value Problems for
PDE and Applications, 1993
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Gradient flows in W2

Let F be a functional over (P(Ω),W2), and let us follow the so-called JKO
scheme

ρτk+1 ∈ argminρ F (ρ) +
W 2

2 (ρ, ρτk )

2τ

Discrete optimality conditions :
δF

δρ
(ρτk+1) +

φ

τ
= const

which implies

v(x) :=
x − T (x)

τ
=
∇φ(x)

τ
= −∇

(δF
δρ

(ρ)
)

and, since v represents the discrete velocity (displacement / time step), at
the limit τ → 0 the continuity equation ∂tρ+∇ · (ρv) = 0 gives

∂tρ−∇ ·
(
ρ∇
(δF
δρ

(ρ)
))

= 0.

R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-
Planck equation, SIAM J. Math. Anal., 1998.
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Modeling
Existence and approximation

Uniqueness
Numerics

Examples

Take F (ρ) =
∫
U(ρ(x))dx . Then δF

δρ (ρ) = U ′(ρ). The equation becomes

∂tρ−∇ ·
(
ρ∇U ′(ρ)

)
= 0.

For instance, for U(t) = t log t we get ∇f ′(ρ) = ∇ρ
ρ , which gives the heat

equation ∂tρ−∆ρ = 0.

For F (ρ) =
∫
V (x)dρ we get δF

δρ (ρ) = V . We can obtain the Fokker-

Planck equation in the case F (ρ) =
∫
V (x)dρ+

∫
ρ log ρ. . .

The equation ∂tρ − ∇ · (ρ∇V ) − ∆p = 0 (with p(1 − ρ) = 0) is the
gradient flow of the functional

F (ρ) =

{∫
V (x)dρ if ρ ∈ K ,

+∞ if not,

which is the limit as m→∞ of the functional
∫

( 1
mρ(x)m +V (x)ρ(x))dx .

For the diffusive variant, just add σ
∫
ρ(x) log ρ(x)dx .

L. Ambrosio, N. Gigli, G. Savaré Gradient Flows, Birkäuser, 2005
F. Santambrogio {Euclidean, Metric, and Wasserstein} Gradient Flows : an overview,
Bull. Math. Sci., 2017.
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Uniqueness

Much harder than existence
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λ-convexity

The general theory of gradient flows ensures uniqueness whenever the func-
tional F is geodesically semi-convex, i.e. for some λ ∈ R the function
s 7→ g(s) := F (ρs) satisfies g ′′ ≥ λW 2

2 (ρ0, ρ1) whenever ρs is a constant-
speed geodesic connecting ρ0 to ρ1 (in W2, these curves have the form
ρs = (id − s∇φ)#ρ0 = ((1− s)id + sT )#ρ0).

In this case whenever ρit are two gradient flows of F we also have

∂tW
2
2 (ρ1

t , ρ
2
t ) ≤ −2λW 2

2 (ρ1
t , ρ

2
t ).

The constraint ρ ∈ K is geodesically convex, but this only allows to deal
with the case u = −∇V with D2V ≥ λI .
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Techniques for contractivity – W2

Take two solutions (ρit , p
i
t) and let φ and ψ be the Kantorovich potentials

between ρ1
t and ρ2

t , with T (x) = x −∇φ(x). We can compute

∂t
1

2
W 2

2 (ρ1
t , ρ

2
t ) =

∫
ρ1
t∇φ · (u −∇p1

t ) +

∫
ρ2
t∇ψ · (u −∇p2

t )

=

∫
(x − T (x))·(u(x)−u(T (x))dρ1

t +

∫
p1
t ∆φ+p2

t ∆ψ.

If u satisfies (u(x) − u(y)) · (x − y) ≤ −λ|x − y |2, the first term gives
−λW 2

2 (ρ1
t , ρ

2
t ) ; for the second, we have

p1
t > 0⇒ ρ1

t = 1, ρ2
t ≤ 1⇒ det(I−D2φ) = det(DT ) ≥ 1⇒ ∆φ ≤ 0

and this rest is negative.
Again, the pressure term (or the density constraint) only improves the
contractivity that we would have with u only.
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Techniques for contractivity – L1

Question Can we say that we have uniqueness as soon as u is such to
guarantee uniqueness for ∂tρ+∇ · (ρu) = 0 ?
For non-smooth u, the technique with no pressure is the DiPerna-Lions
one, not based on W2. It recalls much more an estimate for

∫
|ρ1

t − ρ2
t |. . .

How to combine the two ? What can we say about L1 contraction ?
Following standard methods for Hele-Shaw, uniqueness comes from exis-
tence and estimates results on the adjoint equation. . .
In the diffusive case (σ > 0) : the solution of

∂tρ−∇ · (ρu)− σ∆ρ−∆p = 0

is unique as soon as u ∈ L∞, and we also have ∂t
∫
|ρ1

t − ρ2
t | ≤ 0.

Without diffusion this is open, even if the discrete JKO steps are indeed
an L1 contraction (but, to pass this to the limit on arbitrary solutions, one
already needs uniqueness).

S. Di Marino, A. R. Mészáros, Uniqueness issues for evolution equations with density
constraints, Math. Models Methods Appl. Sci., 2016.
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Numerics
Optimal transport methods for JKO or splitting
schemes
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Optimization of transport costs

In a splitting method, we first have to com-
pute (id + τu)#ρn (or to solve a PDE wi-
thout density constraints), then to compute
a projection, i.e. minimize a transport cost
with a constraint on the final density ; in
the JKO scheme, we directly minimize with
a constraint and a penalization on the final
density.

Yet, given ν, how to solve

min{W 2
2 (ρ, ν), ρ ≤ 1}

or, more generally

min{W 2
2 (ρ, ν) + F (ρ)} ?
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Optimization methods for JKO - Augmented Lagrangian

Use the so-called Benamou-Brenier formula

W 2
2 (ν, µ) = min

{∫ ∫
ρ|v |2 : ∂tρ+∇ · (ρv) = 0, ρ0 = ν, ρ1 = µ

}
.

Write E =ρv , so that ρ|v |2 = |E |2/ρ which is convex in (ρ,E ). The mini-
mization can be written (by duality) as a saddle point for a Lagrangian

L(m, (A, φ)) := m · (A−∇t,xφ)− K∗(A) + G (φ),

where m := (ρ,E ), A is the dual variable to m, and ∇t,xφ := (∂tφ,∇φ)
involves the test function for the constraint.
Augmented Lagrangian : use L̃(m, (A, φ)) :=L(m, (A, φ))−r

2 ||A−∇t,xφ||2
(same saddle points as L, but more strictly convex). Saddle points can be
approximated by alternate minimization.
When F is convex in µ, this can be adapted to solve min{W 2

2 (ρ, ν)+F (ρ)}.
Example 1 — Example 2 — Example 3

J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem, Numer. Math., 2000.
J.-D. Benamou, G. Carlier, M. Laborde An augmented Lagrangian approach to
Wasserstein gradient flows and applications, ESAIM : Proc., 2016.
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Optimization methods for JKO - discrete convex functions

We can rewrite the problem as

min
u convex : ∇u∈Ω

1

2

∫
Ω

|∇u(x)− x |2dν + F ((∇u)#ν).

This problem is convex in u essentially when F is geodesically convex.
Suppose that ν is discrete, ν =

∑
j ajδxj . A convex function defined on

{xj}j is a function u : S → R such that for every x ∈ S we have

∂u(x) := {p ∈ Rd : u(x) + p · (y − x) ≤ u(y) for all y ∈ S} 6= ∅.

When F has the form F (ρ) =
∫
U(ρ(x))dx we need to associate with

(∇u)#ν a diffuse measure : let us spread the mass aj uniformly on ∂u(xj).
Then, it is possible to optimize, using a Newton algorithm, the functional by
means of computational geometry tools which compute and differentiate
the volumes of the subdifferential cells. The new measure ρ can be defined
as ρ =

∑
j ajδyj where yj is the barycenter of ∂u(xj). Example1 Example2

J.-D. Benamou, G. Carlier, Q. Mérigot and É. Oudet Discretization of functio-
nals involving the Monge-Ampère operator, Num. Math., 2016.
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A stochastic approach to the projection operator

Remember that ρ = PK (ν) means ν = (id+∇p)#ρ,
with p ∈ press(ρ), and ρ = 1 on {ρ 6= ν}.
Hence, infinitesimally (i.e. when (ν − 1)+ is small),
setting A := {ν > 1}, we can find ρ just by letting A
evolve into A′ with normal velocity equal to −∂p/∂n
(with −∆p = ν − 1 on A and p = 0 on ∂A) and
setting ρ = 1 on A′ and ρ = ν elsewhere.

A useful probabilistic fact : The law of the first exit point through ∂A of
(X + Bt), with X ∼ µ on A and (Bt) a Brownian motion, is the measure
(−∂p/∂n) · H1

|∂A, where −∆p = µ on A and p = 0 on ∂A.

Algorithm : pick a random pixel among sorted according to (ν − 1)+ and
start a random walk from there ; as soon as it meets a pixel with ν < 1,
leave there as much mass as you can and go on. Repeat till there is some
excess. Use the obtained measure as ρ.
Warning : it works well in practice, but nothing is proven on the conver-
gence of this approximation.
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Micro vs Macro

5 obstacles, micro — 5 obstacles, macro

Filippo Santambrogio Foules et contraintes de densité
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The End

Thanks for your attention
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