
Microscopic and macroscopic modeling of
passive and active crowds

Filippo Santambrogio
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Macroscopic modeling

Part I

Passive Crowds: spontaneous velocity
and density constraints
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Non-overlapping disks
A particle population needs to move, and each particle - if alone - would
follow its own velocity u (depending on time, position. . . a typical case is:
u = −∇D, where D(x) = dist(x, Γ)).

Yet, particles are (modeled by) rigid disks that cannot overlap, hence, the
actual velocity v will not be u if u is too concentrating.
If q is the particle configuration, we define adm(q) the set of velocities that
do not induce overlapping: if every particle is a disk with radius R, located
at qi , we have

q ∈ K := {q = (qi)i ∈ ΩN : |qi − qj | ≥ 2R}

adm(q) =
{
v = (vi)i : (vi − vj) · (qi − qj) ≥ 0 ∀(i, j) : |qi − qj | = 2R

}
. vi vj

•
qi

•
qj

NOT ADMISSIBLE

vi vj

•
qi

•
qj

ADMISSIBLE
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A general model

How to handle v ≈ u and q ∈ K at the same time?

We will assume v = Padm(q)[u] and solve q′(t) = Padm(q(t))[u(t)] (with q(0)
given). This can be discretized (catching-up algorithm) as follows

q̃τn+1 = qτn + τu(nτ), qτn+1 = PK [q̃τn+1]

(for a small time step τ > 0) and is the same as the differential inclusion

q′(t) ∈ u(t) − NK (q(t))

where NK is the normal cone to the set K

NK (q0) = {v : q1 ∈ K ⇒ v · (q1 − q0) ≤ o(|q1 − q0|)}.

It is important here that K , even if not convex in ΩN , is as at least prox-regular (the
projection on K is well defined on a neighborhood of K ).
B. Maury, J. Venel, Handling of contacts in crowd motion simulations, Traffic and
Granular Flow, 2007.
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From the RER to the escalator

(numerical simulation by J. Venel)
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A Continuous formulation

The particles population will be described by a density ρ ∈ P(Ω),

the constraint by K = {ρ ∈ P(Ω) : ρ ≤ 1},

u : Ω→ Rd will be a vector field, possibly depending on time,

adm(ρ) = {v : Ω→ Rd : ∇ · v ≥ 0 on ρ = 1},

P is the projection in L2(dx) or (which is the same) in L2(ρ),

we’ll solve ∂tρt + ∇ · (ρtvt ) = 0, with vt = Padm(ρt )[ut ].

Difficulty : vt = Padm(ρt )[ut ] is not regular (remember that the equation
x′(t) = vt (x(t)) is well-posed for vt ∈ Lip), neither depends regularly on ρ.
Extra tools than the standard PDE methods are needed. . .
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Pressures and duality

The set adm(ρ) may be better described by duality :

adm(ρ) =

{
v ∈ L2(ρ) :

∫
v · ∇p ≤ 0 ∀p : p ≥ 0, p(1 − ρ) = 0

}
.

In this way we can characterize v = Padm(ρ)[u] through

u = v + ∇p, v ∈ adm(ρ),

∫
v · ∇p = 0,

p ∈ press(ρ) := {p ∈ H1(Ω), p ≥ 0, p(1 − ρ) = 0}

This function p plays the role of the pressure affecting the movement.

�
�
�
�
��

@
@
@
@

@@�
�

�
� adm(ρ)

∇press(ρ)

u

∇p

v

�
�
�
��

@@I

∂tρt + ∇ ·
(
ρt (ut − ∇pt )

)
= 0

ρt ∈ K , pt ∈ press(ρt )
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A catching-up scheme for the PDE

Fix a time step τ > 0. We look for a sequence (ρτn)n where ρτn stands for ρ
at time nτ. We first define

ρ̃τn+1 = (id + τunτ)#ρ
τ
n ; ρτn+1 = PK (ρ̃τn+1)

where the projection PK is in the sense of the Wasserstein distance, in-
duced by optimal transport.

The key point is actually using the W2 projection (instead of L2 or other
projections). It corresponds to the L2 projection of velocity fields.

B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion
model of gradient flow type, Math. Mod. Meth. Appl. Sci.

B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in
crowd motion modeling Net. Het. Media
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Optimal transport and Wasserstein distances - 1

If two distributions of mass
µ, ν ∈ P(Ω) are given on a
compact domain, the Monge-
Kantorovitch problem reads:

W2
2 (µ, ν) = inf

{ ∫
|x − T(x)|2dµ : T : Ω→ Ω, T#µ = ν

}
= inf

{ ∫
|x − y |2dγ : γ ∈ P(Ω2), (πx)#γ = µ, (πy)#γ = ν

}

Under suitable assumptions, there exist an optimal transport T = ∇u,
which is the gradient of a convex function (Brenier’s theorem).
W2(µ, ν), the square root of the minimal value, is a distance onP(Ω) which
metrizes the weak-* convergence of probabilities (on compact domains).
G. Monge, Mémoire sur la théorie des déblais et des remblais, 1781
L. Kantorovich, On the transfer of masses, 1942.
Y. Brenier, Décomposition polaire et réarrangement monotone des champs de
vecteurs, CRAS, 1987.
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Optimal transport and Wasserstein distances - 2

There is also a dynamical formulation

W2
2 (µ, ν) = inf

{ ∫ 1

0

∫
ρt |vt |

2 dxdt : ∂tρ + ∇ · (ρv) = 0, ρ0 = µ, ρ1 = ν
}

= inf
{ ∫ 1

0

∫
|wt |

2

ρt
dxdt : ∂tρ + ∇ · w = 0, ρ0 = µ, ρ1 = ν

}
This kinetic energy minimization is the so-called Benamou-Brenier formu-
lation, which amounts to a convex optimization problem, solvable by Aug-
mented Lagrangian methods.
J.-D. Benamou, Y. Brenier A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem, Numer. Math., 2000.
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Projections and pressures
Fix a measure ν ∈ P(Ω) and solve

min
{
W2

2 (ρ, ν) : ρ ∈ K
}

= min
{ ∫
|T(x) − x |2 dν : T#ν ≤ 1

}
.

1

ν

ρ = 1

ρ = ν

Let S be the optimal transport
from ρ to ν.
If ρ(x0) < 1, then S(x0) = x0.
More generally, S(x) = x+∇p(x),
with p ≥ 0 and p(1 − ρ) = 0
(hence, p is a pressure).

To prove this optimality condition, consider Tε := (id + εv) ◦ T , with ∇ · v > 0 on
A = {ρ = 1}. Then (Tε)#ν ≤ 1 and the optimality provides

d
dε

∫
|Tε(x) − x |2dν

(
=

∫
|y +εv(y)−S(y)|2dρ

)
|ε=0

=

∫
v(y) · (y − S(y))ρ(y) ≥ 0.

Using S(y) = ∇u(y) = y + ∇p(y), formally, on A this gives
∫

A
(∇ · v)p ≥ 0, hence

p ≥ 0 on A .
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∫

A
(∇ · v)p ≥ 0, hence

p ≥ 0 on A .
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Getting back to the PDE

S(x) = x + ∇p(x) is the optimal transport from ρτn+1 to ρ̃τn+1. Notice

||∇p||L2(ρτn+1) = W2(ρτn+1, ρ̃
τ
n+1) ≤ W2(ρτn, ρ̃

τ
n+1) ≤ τ||unτ||L2(ρτn).

Let us scale the pressure (we call it τp) and get the following situation

•
ρτn

id
+
τu nτ

•
ρ̃τn+1

id +
τ∇p

•
ρτn+1(id + τunτ)

−1(id + τ∇p)

Notice that (id + τunτ)
−1(id + τ∇p) = id − τ(u(n+1)τ −∇p) + o(τ) provided

u is regular enough. This allows to get, in the limit τ → 0, the vector field
vt = Padm(ρt )[ut ] and get a solution of the PDE.
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An explicit example
u(x) = −∇dist(x, Γ), where the exit Γ is the bottom of the cone.
Closed door

Open door
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Micro vs Macro
5 obstacles, micro — 5 obstacles, macro
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Micro vs Macro
5 obstacles, micro — 5 obstacles, macro
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Part II

Active Crowds: game theory and
control problems
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What are MFG?

The theory of Mean Field Games has been introduced by Lasry and Lions
to describe the evolution of a population, where each agent has to choose
the strategy (i.e., a path) which best fits his preferences, but is affected by
the others through a global mean field.
It is a differential game, with a continuum of players, all indistinguishable
and all negligible, and we look for a Nash equilibrium, which can be trans-
lated into a system of PDEs.

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007
P.-L. Lions, courses at Collège de France, 2006/12, videos available at
http://www.college-de-france.fr/site/pierre-louis-lions/ course.htm

P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
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the others through a global mean field.
It is a differential game, with a continuum of players, all indistinguishable
and all negligible, and we look for a Nash equilibrium, which can be trans-
lated into a system of PDEs.

Nash equilibrium. In a finite game,
each player i chooses a strategy si ∈

Si and gets a payoff fi(si , s−i), where
s−i = (sj)j,i . A configuration of
choices is an equilibrium is for every
i si optimizes fi(·, s−i).

J.-M. Lasry, P.-L. Lions, Mean-Field Games, Japan. J. Math. 2007
P.-L. Lions, courses at Collège de France, 2006/12, videos available at
http://www.college-de-france.fr/site/pierre-louis-lions/ course.htm

P. Cardaliaguet, lecture notes, www.ceremade.dauphine.fr/∼cardalia/
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Limit of finite games

The goal behind the theory is to study the limit as N → ∞ of games of N
player, each one choosing a trajectory xi(t) and optimizing a quantity∫ T

0

 |x′i (t)|2

2
+ gi(x1(t), . . . , xN(t)))

 dt + Ψi(xi(T)).

In particular, we are interested in the case where gi penalizes points close
to too many other players xj , j , i.

We will suppose that gi only depends on the position xi and on the distri-
bution of the other player, and that all players have the same preferences.
And we will not study the discrete case and pass to the limit, but di-
rectly study the continuous case.
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MFG with density penalization- 1

In a population of agents everybody chooses its own trajectory, solving

min
∫ T

0

(
|x′(t)|2

2
+ g(ρt (x(t)))

)
dt + Ψ(x(T)),

with given initial point x(0); here g is a given increasing function of the
density ρt at time t (we take g(0) = 0 and g ≥ 0). The agent hence tries
to avoid overcrowded regions.

Input: the evolution of the density ρt .

A crucial tool is the value function ϕ for this problem, defined as

ϕ(t0, x0) := min
{∫ T

t0

(
|x′(t)|2

2
+ g(ρt (x(t)))

)
dt + Ψ(x(T)), x(t0) = x0

}
.
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MFG with density penalization- 2
Optimal control theory tells us that ϕ solves

(HJ) − ∂tϕ(t , x) +
1
2
|∇ϕ(t , x)|2 = g(ρt (x)), ϕ(T , x) = Ψ(x).

Moreover, the optimal trajectories x(t) follow x′(t) = −∇ϕ(t , x(t)).
Hence, given the initial ρ0, we can find the density at time t by solving

(CE) ∂tρ − ∇ · (ρ∇ϕ) = 0,

which give as Output: the evolution of the density ρt .
We have an equilibrium if Input = Output.
This requires to solve a coupled system (HJ)+(CE):

−∂tϕ + |∇ϕ|2

2 = g(ρ),

∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).

Stochastic case : we can also insert random effects dX = αdt + dB,
obtaining −∂tϕ−∆ϕ + |∇ϕ|2

2 − g(ρ) = 0 : ∂tρ−∆ρ − ∇ · (ρ∇ϕ) = 0.
Filippo Santambrogio Microscopic and macroscopic modeling of passive and active crowds
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Variational principle

It happens that an equilibrium is found by minimizing the (global) energy

A(ρ, v) :=

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + G(ρt )

)
+

∫
Ω

ΨρT

among pairs (ρ, v) such that ∂tρ + ∇ · (ρv) = 0, with given ρ0, where G is
the anti-derivative of g, i.e. G′ = g (in particular, G is convex).

Important: this problem is convex in the variables (ρ,w := ρv) and it
recalls Benamou-Brenier formulation for optimal transport.
This formulation can be used to do numerics!!

Warning: this is not the total cost for all the agents, as we put G(ρ) in-
stead of ρg(ρ). The equilibrium minimizes an overall energy (it’s a poten-
tial game), but not the total cost: there is a price of anarchy, and interesting
questions about regulation and tolls.
J.-D. Benamou, G. Carlier Augmented Lagrangian methods for transport optimiza-
tion, Mean-Field Games and degenerate PDEs, preprint.
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Measures on possible trajectories
The same variational problem can also be written in the following way: let
C = W1,2([0,T ]; Ω) be the space of curves valued in Ω and et : C → Ω
the evaluation map, et (γ) = γ(t). Solve

min
{∫
C

KdQ +

∫ T

0
G((et )#Q) +

∫
Ω

Ψd(eT )#Q , Q ∈ P(C), (e0)#Q = ρ0

}
,

where K : C → R and G : P(Ω) → R are given by K(γ) = 1
2

∫ T
0 |γ

′|2 and
G(ρ) =

∫
G(ρ(x))dx.

Existence: by semicontinuity in the space P(C).
Optimality conditions: take Q optimal, Q̃ another competitor, and Qε =
(1− ε)Q + εQ̃ . Setting ρt = (et )#Q and h(t , x) = g(ρt (x)), differentiating
w.r.t. ε gives

Jh(Q̃) ≥ Jh(Q),

where Jh is the linear functional

Jh(Q) =

∫
KdQ +

∫ T

0

∫
Ω

h(t , x) d(et )#Q +

∫
Ω

Ψ d(eT )#Q .
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Back to an equilibrium

Look at Jh . If everything goes well (ignoring regularity issues) we can also
write

∫ T
0

∫
Ω

h(t , x) d(et )#Q =
∫
C

dQ
∫ T

0 h(t , γ(t))dt and hence we get that

Q 7→
∫
C

dQ(γ)

(
K(γ) +

∫ T

0
h(t , γ(t))dt + Ψ(γ(T))

)
is minimal for Q = Q . Hence Q is concentrated on curves minimizing
K(γ) +

∫ T
0 h(t , γ(t))dt + Ψ(γ(T)). This means Input=Output.

Indeed, Q-almost all the curves γminimize the above functional, hence they MUST
satisfy γ′(t) = −∇ϕ(t , γ(t)). But then ρt = (et )#Q evolves according to (CE), and
conversely ϕ solves (HJ) with h = g(ρt ). . .
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Back to an equilibrium

Look at Jh . If everything goes well (ignoring regularity issues) we can also
write

∫ T
0

∫
Ω

h(t , x) d(et )#Q =
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C
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∫ T

0 h(t , γ(t))dt and hence we get that

Q 7→
∫
C

dQ(γ)

(
K(γ) +

∫ T

0
h(t , γ(t))dt + Ψ(γ(T))

)
is minimal for Q = Q . Hence Q is concentrated on curves minimizing
K(γ) +

∫ T
0 h(t , γ(t))dt + Ψ(γ(T)). This means Input=Output.

Continuous Nash equilibria. In a
non-atomic game with indistinguish-
able players, given a set of strategy S
consider measures Q ∈ P(S); each
Q induces a payoff fQ : S → R and
we look for Q such that Q-a.e. s opti-
mizes fQ .

Indeed, Q-almost all the curves γminimize the above functional, hence they MUST
satisfy γ′(t) = −∇ϕ(t , γ(t)). But then ρt = (et )#Q evolves according to (CE), and
conversely ϕ solves (HJ) with h = g(ρt ). . .
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An example - simulations by convex optimization
IsoValue
-1.91092
-1.65596
-1.48599
-1.31601
-1.14604
-0.976068
-0.806094
-0.636121
-0.466147
-0.296174
-0.1262
0.0437735
0.213747
0.383721
0.553694
0.723668
0.893641
1.06361
1.23359
1.65852

IsoValue
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1
1.05
1.1

Left top: final potential Ψ,
left bottom: initial density ρ0,
right: evolution

J.-D. Benamou, G. Carlier, F. Santambrogio, Variational Mean Field Games (to ap-
pear a book chapter in Active Particles Volume 1, Theory, Methods, and Applica-
tions)
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MFG with density constraints - 1
How to define a mean field game if we want to replace the penalization
+g(ρ) with the constraint ρ ≤ 1 ?

Naı̈ve idea: when (ρt )t is given, every agent minimizes his own cost
paying attention to the constraint ρt (x(t)) ≤ 1. But if ρ already satis-
fies ρ ≤ 1, one extra agent will not violate the constraint (it’a non-atomic
game). Hence the constraint becomes empty.
Instead, let’s look at the variational problem

min
{∫ T

0

∫
Ω

1
2
ρt |vt |

2 +

∫
Ω

ΨρT : ρ ≤ 1
}
.

This problem is also obtained as the limit m → ∞ of gm(ρ) = ρm. Indeed
in this case we have Gm(ρ) = 1

m+1ρ
m+1 and

lim
m→∞

1
m + 1

ρm+1 =

 0 if ρ ≤ 1,
+∞ if ρ > 1

.

F. Santambrogio, A Modest Proposal for MFG with Density Constraints, NHM, 2012.
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MFG with density constraints - 2
The system with density penalization was

−∂tϕ + |∇ϕ|2

2 = ρm,

∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x).
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MFG with density constraints - 2
The system with density constraints is

−∂tϕ + |∇ϕ|2

2 = p,
∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T , x) = Ψ(x), ρ(0, x) = ρ0(x),

p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,

since ρm ≥ 0 and ρm(1 − ρ)→ 0 if ρ ≤ 1.

From this system, we come back to a control problem: each agent solves

min
∫ T

0

(
|x′(t)|2

2 + p(t , x(t))
)

dt + Ψ(x(T)).

Here p is a pressure arising from the incompressibility constraint ρ ≤ 1
but finally acts as a price (only acting on saturated regions). Of course, in
order to give a meaning to the above problem we need a bit of regularity,
but this is another kettle of fish. . .
P. Cardaliaguet, A. Mészáros, F. Santambrogio, First order Mean Field Games with
density constraints: Pressure equals Price, preprint
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The End

Thanks for your attention

Filippo Santambrogio Microscopic and macroscopic modeling of passive and active crowds
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