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This document presents the proof of the main results we proved on Wasserstein distances them-
selves (and not on curves in the Wasserstein space). In particular, triangle inequality and charac-
terization of the topology. These proof are not easy to be found in the same terms.

Definition of the distances and triangle inequality

First, for Ω ⊂ Rn and p ≥ 1, let us set

Pp(Ω) := {µ ∈ P(Ω) :

∫
|x|pdµ < +∞}.

This subset of P(Ω) will be the space where we define our distances. Obviously, if Ω is bounded
then Pp(Ω) = P(Ω).

For µ, ν ∈ Pp(Ω), let us define

Wp(µ, ν) := inf

{∫
|x− y|pdγ γ ∈ Π(µ, ν)

}1/p

,

i.e. the p−th root of the minimal transport cost for the cost |x− y|p. The assumption µ, ν ∈ Pp(Ω)
guarantees finiteness of this value, since |x−y|p ≤ C(|x|p+ |y|p) and hence Wp(µ, ν)p ≤ C(

∫
|x|pdµ+∫

|x|pdν).
Notice that, due to Jensen inequality, since for any γ ∈ Π(µ, ν) we have γ(Ω×Ω) = 1, for p ≤ q

we can infer (∫
|x− y|pdγ

)1/p

= ||x− y||Lp(γ) ≤ ||x− y||Lq(γ) =

(∫
|x− y|qdγ

)1/q

,

which implies Wp(µ, ν) ≤ Wq(µ, ν). In particular W1(µ, ν) ≤ Wp(µ, ν) for every p ≥ 1. We will not
define here W∞ (as a limit for p→∞, or, which is the same, as the minimal value of the supremal
problem minγ∈Π(µ,ν) ||x− y||L∞(γ)).

On the other hand, for bounded Ω an opposite inequality holds, since(∫
|x− y|pdγ

)1/p

≤ diam(Ω)
p

p−1

(∫
|x− y| dγ

)1/p

,

which implies Wp(µ, ν) ≤ CW1(µ, ν)1/p, for C = diam(Ω)p
′

and p′ = p
p−1 .
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Proposition 0.1. The quantity Wp defined above is actually a distance over Pp(Ω).

Proof. First, let us notice that Wp ≥ 0. Then, we also notice that Wp(µ, ν) = 0 implies, as a
consequence that the minimum in the definition of Wp is attained, that there exists γ ∈ π(µ, ν) such
that

∫
|x− y|pdγ = 0, which means that γ is concentrated on {x = y}. This implies µ = ν since, for

any test function φ we have ∫
φdµ =

∫
φ(x)dγ =

∫
φ(y)dγ =

∫
φdν.

We need now to prove the triangle inequality. For that, let us take µ, ρ and ν ∈ Pp(Ω), γ+ ∈
Π(µ, ρ) and γ− ∈ Π(µ, ρ). We can also choose γ± to be optimal. Let us use the Lemma 0.2 below
to say that there exists a measure σP(Ω × Ω × Ω) such that (πx,y)#σ = γ+ and (πy,z)#σ = γ−,
where πx,y and πy,z denote the projections on the two first and two last variables, respectively. Let
us take γ := (πx,z)#σ. By composition of the projections, it is easy to see that (πx)#γ = (πx)#σ =
(πx)#γ

+ = µ and, analogously, (πz)#γ = ν. This means γ ∈ Π(µ, ν) and

Wp(µ, ν) ≤
(∫
|x− z|pdγ

)1/p

=

(∫
|x− z|pdσ

)1/p

= ||x− z||Lp(σ)

≤ ||x− y||Lp(σ) + ||y − z||Lp(σ) =

(∫
|x− z|pdσ

)1/p

+

(∫
|x− z|pdσ

)1/p

=

(∫
|x− z|pdγ+

)1/p

+

(∫
|x− z|pdγ−

)1/p

= Wp(µ, ρ) +Wp(ρ, ν).

Lemma 0.2. Given two measures γ+ ∈ Π(µ, ρ) and γ− ∈ Π(µ, ρ) there exists at least a measure
σP(Ω × Ω × Ω) such that (πx,y)#σ = γ+ and (πy,z)#σ = γ−, where πx,y and πy,z denote the
projections on the two first and two last variables, respectively.

Proof. Start by taking γ+ and disintegrate it w.r.t. the projection πy. We get a family of measures
γ+
y ∈ P(Ω) (we can think of them as measures over Ω, instead of viewing them as measures over

Ω× {y} ⊂ Ω× Ω)/ They satisfy (and they are defined by)∫
Ω×Ω

φ(x, y)dγ+(x, y) =

∫
Ω
dρ(y)

∫
Ω
φ(x, y) dγ+

y (x),

for every measurable function φ of two variables. In the same way, one has a family of measures
γ−y ∈ P(Ω) such that for every ψ we have∫

Ω×Ω
ψ(y, z)dγ−(y, z) =

∫
Ω
dρ(y)

∫
Ω
ψ(y, z) dγ−y (z).

For every y take now γ+
y ⊗ γ−y , which is a measure over Ω× Ω. Define σ through∫

Ω3

ζ(x, y, z)dσ(x, y, z) :=

∫
Ω
dρ(y)

∫
Ω×Ω

ζ(x, y, z) d
(
γ+
y ⊗ γ−y

)
(x, z).
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It is easy to check that, for φ depending only on x and y, we have∫
Ω3

φ(x, y)dσ =

∫
Ω
dρ(y)

∫
Ω×Ω

φ(x, y) d
(
γ+
y ⊗ γ−y

)
(x, z) =

∫
Ω
dρ(y)

∫
Ω
φ(x, y) dγ+

y (x) =

∫
φdγ+.

This proves (πx,y)#σ = γ+ and the proof of (πy,z)#σ = γ− is completely analogous.

For the sake of completeness, we also give a proof of the triangle inequality which avoids using
disintegrations. We first need the following lemma.

Lemma 0.3. Given µ, ν ∈ Pp(Rn) and χε any usual regularizing kernel in L1 with
∫
χε = 1 and

spt(χε) ⊂ B(0, ε), we have
lim
ε→0

Wp(µ ∗ χε, ν) = Wp(µ, ν).

Proof. Take an optimal transport plan γ ∈ Π(µ, ν) and define a measure γε ∈ Π(µ ∗ χε, ν) through∫
Rn×Rn

ψ(x, y)dγε :=

∫
Rn×Rn

∫
Rn

ψ(x− z, y)χε(z)dz dγ(x, y).

We need to check that its marginals are actually µ ∗ χε and ν. For that just consider∫
Rn×Rn

ψ(x)dγε =

∫
Rn×Rn

∫
Rn

ψ(x− z)χε(z)dz dγ(x, y) =

∫
Rn

dz

∫
Rn×Rn

ψ(x− z)dγ(x, y)

=

∫
Rn

dz

∫
Rn

∫
Rn

ψ(x− z)dµ(x) =

∫
ψ dµ ∗ χε

and, more easily∫
Rn×Rn

ψ(y)dγε =

∫
Rn×Rn

∫
Rn

ψ(y)χε(z)dz dγ(x, y) =

∫
Rn×Rn

ψ(y)dγ(x, y) =

∫
ψ dν.

It is then easy to show that
∫
|x− y|pdγε →

∫
|x− y|pdγ, since∣∣∣∣∫ |x− y|pdγε−∫ |x− y|pdγ∣∣∣∣≤∫ dγ(x, y)

∣∣∣∣|x−y|p−∫ |x− y− z|pχε(z)dz∣∣∣∣≤pε∫ dγ(x, y)(|x−y|+1)p−1

(we use the fact that |z| ≤ ε on spt(χε) and we roughly estimate (a + ε)p−ap ≤ εp(a + 1)p−1

thanks to the mean value theorem (for a ≥ 0 and 0 ≤ ε ≤ 1). The last integral being finite since∫
|x− y|pdγ < +∞, letting ε→ 0 we get

lim sup
ε→0

Wp(µ ∗ χε, ν)p ≤ lim sup
ε→0

∫
|x− y|pdγε =

∫
|x− y|pdγ.

This shows lim supε→0Wp(µ ∗ χε, ν) ≤Wp(µ, ν).
One cans also obtain the opposite inequality with the liminf in the following way. First fix a

sequence εk → 0 such that limkWp(µ∗χεk , ν) = lim infε→0Wp(µ∗χε, ν). Then extract a subsequence

3



εkj so as to guarantee that the optimal transport plans γ
εkj sending µ ∗ χεkj to ν have a weak limit

γ0 (see next section for disambiguations on the meaning of weak convergence). This weak limit
must belong to Π(µ, ν) (the fact that the marginals of γ0 are µ and ν follows by the properties of
composition with continuous functions of the weak convergence). Then we have

Wp(µ, ν)p ≤
∫
|x−y|pdγ0 ≤ lim inf

j

∫
|x−y|pdγεkj = lim inf

j
Wp(µ∗χεkj , ν)p = lim inf

ε→0
Wp(µ∗χε, ν),

where the first inequality follows from the fact that γ0 is not necessarily optimal but is admissible
and the second by semicontinuity (since |x− y|p is a positive and continuous function, which is the
increasing limit of positive, continuous and bounded functions).

Then, we can perform a proof of the triangle inequality based on the use of optimal transport
maps.

Proposition 0.4. Even if we refuse to use disintegrations, the triangle inequality is true for Wp.

Proof. First consider the case where µ and ρ are absolutely continuous and ν is arbitrary. Let T be
the optimal transport from µ to ρ and S from ρ to ν. Then S ◦ T is an admissible transport from
µ to ν, since (S ◦ T )#µ = S#(T#µ) = S#ρ = ν. Then we have

Wp(µ, ν) ≤
(∫
|S(T (x))− x|pdµ

)1/p

= ||S ◦ T − id||Lp(µ) ≤ ||S ◦ T − T ||Lp(µ) + ||T − id||Lp(µ).

Yet,

||S ◦ T − T ||Lp(µ) =

(∫
|S(T (x))− T (x)|pdµ

)1/p

=

(∫
|S(y)− y|pdρ

)1/p

= Wp(ρ, ν)

and ||T − id||Lp(µ) = Wp(µ, ρ), hence

Wp(µ, ν) ≤Wp(µ, ρ) +Wp(ρ, ν).

This gives the proof when µ, ρ << Ld. If ρ is arbitrary, take now ρ ∗ χε instead, thus obtaining
Wp(µ, ν) ≤ Wp(µ, ρ ∗ χε) + Wp(ρ ∗ χε, ν). By passing to the limit as ε → 0 and using Lemma 0.3
the inequality follows for arbitrary ρ. Finally, µ may be taken arbitrary as well by considering now
µ ∗ χε, with arbitrary ρ and ν and letting ε→ 0.

Topology induced by Wp

First of all, let us clarify that we often use the term “weak convergence”, when speaking of probability
measures, to denote the convergence in the duality with bounded continuous functions (which is often
referred to as narrow convergence), and write µn ⇀ µ to say that µn converges in such a sense to µ.
Notice also that, when both µn and µ are probability measures, this convergence coincides with the
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convergence in the duality with functions φ ∈ C0(Ω), vanishing at infinity. To convince of such a
fact, we only need to show that if we take φ ∈ Cb(Ω), µn, µ ∈ P(Ω) and we suppose

∫
ψdµn →

∫
ψdµ

for every ψ ∈ C0(Ω), then we also have
∫
φdµn →

∫
φdµ. If all the measures are probability, we

can add for free a constant C to φ and, since φ is bounded, we can choose C so that φ + C ≥ 0.
Hence φ + C is the sup of an increasing family of functions in C0 (take (φ + C)χn, χn being an
increasing family of cut-off functions with χn = 1 on B(0, n). Hence, by semicontinuity we have∫

(φ + C)dµ ≤ lim infn
∫

(φ + C)dµn, which implies
∫
φdµ ≤ lim infn

∫
φdµn. If the same argument

is performed with −φ we have te desired convergence of the integrals.
Once the weak convergence is understood, we can start from the following result.

Theorem 0.5. If Ω is compact, then µn ⇀ µ if and only if W1(µn, µ)→ 0.

Proof. Let us recall the duality formula, which gives for arbitrary µ, ν ∈ P(Ω)

W1(µ, ν) = min

{∫
|x− y| dγ, γ ∈ Π(µ, ν)

}
= max

{∫
φd(µ− ν) : φ ∈ Lip1

}
.

Let us start from a sequence µn such that W1(µn, µ)→ 0. Thanks to the duality formula, for every
φ ∈ Lip1(Ω) we have

∫
φd(µn − µ) → 0. By linearity, the same will be true for any Lipschitz

function. By density, for any function in Cb(Ω). This shows that the Wasserstein convergence
implies the weak convergence.

To prove the opposite implication, let us first fix a subsequence µnk
such that limkW1(µnk

, µ) =
lim supnW1(µn, µ). For every k, pick a function φnk

∈ Lip1(Ω) such that
∫
φnk

d(µnk
− µ) =

W1(µnk
, µ). Up to adding a constant, which does not affect the integral, we can suppose that φnk

all vanish on a same point, and they are hence uniformly bounded and equicontinuous. By Ascoli’s
theorem we can extract a sub-subsequence uniformly converging to a certain φ ∈ Lip1(Ω). By
replacing the original subsequence with this new one we can avoid relabeling. We have now

W1(µnk
, µ) =

∫
φnk

d(µnk
− µ) ≤

∫
|φnk

− φ| d(µnk
+ µ) +

∫
φd(µnk

− µ)

≤ 2||φnk
− φ||L∞ +

∫
φd(µnk

− µ)→ 0,

where the first term goes to 0 by uniform convergence and the second by weak convergence. This
shows that lim supnW1(µn, µ) ≤ 0 and concludes the proof.

Theorem 0.6. If Ω is compact and p ≥ 1, then µn ⇀ µ if and only if Wp(µn, µ)→ 0.

Proof. We have already proved this equivalence for p = 1. For the other values of p, just use the
inequalities

W1(µ, ν) ≤Wp(µ, ν) ≤ CW1(µ, ν)1/p,

that give the equivalence between the convergence for Wp and for W1.

We can now pass to the case of unbounded domains.
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Theorem 0.7. Consider any Ω ⊂ Rd and p ≥ 1, then Wp(µn, µ) → 0 if and only if µn ⇀ µ and∫
|x|pdµn →

∫
|x|pdµ.

Proof. Consider first a sequence µn ∈ Pp(Ω) which is converging to µ for the Wp distance. It is still
true in this case that

sup

{∫
φd(µn − µ) : φ ∈ Lip1

}
→ 0,

which gives the weak convergence testing against any Lipschitz function. Notice that Lipschitz
functions are dense (for the uniform convergence) in the space C0(Ω) (while it is not necessarily the
case for Cb(Ω)) and that this is enough to prove µn → µ.

To obtain the other condition, namely
∫
|x|pdµn →

∫
|x|pdµ (which is not a consequence of the

weak convergence, since |x|p is not bounded), it is sufficient to notice that∫
|x|pdµn = W p

p (µn, δ0)→W p
p (µ, δ0) =

∫
|x|pdµ.

We need now to prove the opposite implication. Consider a sequence a µn ⇀ µ satisfying also∫
|x|pdµn →

∫
|x|pdµ. Fix R > 0 and consider the function φ(x) := (|x| ∧ R)p, which is continuous

and bounded. We have∫
(|x|p − (|x| ∧R)p) dµn =

∫
|x|pdµn −

∫
φdµn →

∫
|x|pdµ−

∫
φdµ =

∫
(|x|p − (|x| ∧R)p) dµ.

Since
∫

(|x|p − (|x| ∧R)p) dµ ≤
∫
B(0,R)c |x|

pdµ it is possible to choose R so that∫
(|x|p − (|x| ∧R)p) dµ < ε/2

and hence one can also guarantee that
∫

(|x|p − (|x| ∧R)p) dµn < ε for all n large enough.
We use now the inequality (|x| − R)p ≤ |x|p − Rp = |x|p − (|x| ∧ R)p which is valid for |x| ≥ R

(see Lemma 0.8 below) to get∫
(|x| −R)pdµn < ε for n large enough and

∫
(|x| −R)pdµ < ε.

Consider now πR : Rd → B(0, R) defined as the projection over B(0, R). This map is well
defined and continuous and is the identity on B(0, R). Moreover, for every x /∈ B(0, R) we have
|x− πR(x)| = |x| −R. We can deduce

Wp(µ, (πR)#µ) ≤
(∫

(|x| −R)pdµ

)1/p

≤ ε1/p, Wp(µn, (πR)#µn) ≤
(∫

(|x| −R)pdµn

)1/p

≤ ε1/p.

Notice also that, due to the usual composition of the weak convergence with continuous functions,
from µn ⇀ µ we also infer (πR)#µn ⇀ (πR)#µ. Yet, these measures are all concentrated on
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the compact set B(0, R) and here we can use the equivalence between weak convergence and Wp

convergence. Hence, we get

lim sup
n

Wp(µn, µ) ≤ lim sup
n

(Wp(µn, (πR)#µn) +Wp((πR)#µn, (πR)#µ) +Wp(µ, (πR)#µ))

≤ 2ε1/p + lim
n
Wp((πR)#µn, (πR)#µ) = 2ε1/p.

The parameter ε > 0 being arbitrary, we get lim supnWp(µn, µ) = 0 and the proof is concluded.

Lemma 0.8. For a, b ∈ R+ and p ≥ 1 we have ap + bp ≤ (a+ b)p.

Proof. Suppose without loss of generality that a ≥ b. Then we can write (a+ b)p = ap + pξp−1b, for
a point ξ ∈ [a, a+ b]. Use now p ≥ 1 and ξ ≥ a ≥ b to get (a+ b)p ≥ ap + bp.
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