
ERRATUM FOR SECTION 5.4.3

There was a mistake in this section: it is not true that if u is a solution then h(u) is
a subsolution, differently from the case F = 0. Yet, this is not a problem, as one can
directly prove that the properties that were stated for positive subsolutions are actually
ture for solutions, paying attention to some signs. Here below we correct this, and also
simplify some arguments. In red are the main differences.

Section 5.4.3

For completeness, we want to study what happens for solutions of∇·(A(x)∇u) = ∇·F .
We will first start with the case of solutions u ∈ H1

0 (Ω) (i.e. with homogeneous
Dirichlet boundary conditions) and define the notion of solution in this same case.
Definition 5.22 A function u is said to be a solution of the Dirichlet problem ∇ ·
(A(x)∇u) = ∇ ·F in Ω if it belongs to H1

0 (Ω) and
∫

ΩA(x)∇u · ∇ϕ=
∫

Ω F · ∇ϕ for every

function ϕ ∈ H1
0 (Ω).

We have the following result.

Proposition 5.23

(1) If u is a solution and h : R→ R+ is a positive bounded function, then we have

Λ2
min

∫
Ω
h(u)|∇u|2 dx ≤

∫
Ω
|F |2h(u) dx.

(2) If u is a solution and F ∈ Ld(Ω) then u ∈ Lp(Ω) for all p <∞.
(3) If u is a solution and F ∈ Ld(Ω) then |u|p ∈ H1

0 (Ω) for all p ∈ [1,∞).
(4) If u is a solution then for every p ∈ [0,∞) we have

Λ2
min

∫
Ω
|u|p|∇u|2 dx ≤

∫
Ω
|F |2|u|p dx. (5.6)

(5) If u is a solution and F ∈ Lq(Ω) for some q > d, then u ∈ L∞(Ω) and ||u||L∞ is
bounded by a constant only depending on d, q,Λmin ,Ω and ||F ||Lq .

Proof. (1) Let us use ϕ = g(u), with g(0) = 0 and g′ = h. Since g is Lipschitz
continuous, we have g(u) is in H1

0 . We then obtain∫
Ω
A(x)∇u · ∇uh(u) dx ≤

∫
Ω
F · ∇uh(u) dx.

This implies

Λmin

∫
Ω
h(u)|∇u|2dx ≤

∫
Ω
|F ||∇u|h(u)dx ≤

(∫
Ω
|F |2h(u)dx

) 1
2
(∫

Ω
|∇u|2h(u)dx

) 1
2

which provides the claim.
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(2) If d = 2 then we have u ∈ Lp(Ω) for all p <∞ because this is true for every H1

function. If d > 2, then we have |F |2 ∈ Ld/2 and (d2)′ = d
d−2 = 2∗

2 . Assume now

u ∈ Lp for a certain p and take h(s) = |s|m withm2∗/2 = p. This function cannot
be used in the estimate that we just proved since it is not globally bounded but
can be approximated by a sequence of bounded functions hn such that hn ≤ h
(take, for instance, hn(s) = min{h(s), n}) for which we have

Λ2
min

∫
Ω
hn(u)|∇u|2 dx ≤

∫
Ω
|F |2hn(u) dx ≤

∫
Ω
|F |2h(u) dx <∞,

where the finiteness of the last integral comes from |F |2 ∈ Ld/2 and h(u) =

|u|m ∈ L(d/2)′ . Passing to the limit this implies∫
Ω
|u|m|∇u|2 dx <∞ ⇒ |u|

m
2

+1 ∈ H1 ⇒ |u|
m
2

+1 ∈ L2∗ ,

which means u ∈ Lp+2∗ . This proves that the integrability of u can be improved
by induction and u ∈ Lp(Ω) for all p <∞.

(3) Now that we know u ∈ Lp(Ω) for all p <∞ the same argument as before provides

u
m
2

+1 ∈ H1 for all m = 2p/2∗. Note that we can also use p < 1 and even p = 0.
(4) Given p ∈ [0,∞[ we define h(s) = |s|p. This allows us to obtain the desired

estimate as in the first point of the proof.
(5) Let us start from the case |Ω| = 1. In this case the Lm norm of u is increasing

in m. Set m0 := inf{m ≥ 1 : ||u||Lm > 1}. If m0 = +∞ then ||u||Lm ≤ 1 for
all m and ||u||L∞ ≤ 1. In this case there is nothing to prove. If m0 > 1 then
||u||Lm ≤ 1 for all m < m0 and, by Fatou’s lemma, we also have ||u||Lm0 ≤ 1.
If m0 = 1 we then have ||u||Lm0 = ||u||L1 ≤ C||u||L2 ≤ C||∇u||L2 and we know
from Lemma 5.9 that u is bounded in H1 in terms of ||F ||L2 , and hence of
||F ||Lq . In any case, we obtain that ||u||Lm0 is bounded in terms of ||F ||Lq , and
for m > m0 we have ||u||Lm ≥ 1, an inequality which we will use to simplify the
computations.

Using (5.6) we have

4

(p+ 2)2

∫
Ω
|∇(|u|

p
2

+1)|2 dx ≤ C
∫

Ω
|F |2|u|p dx ≤ C

(∫
Ω
|u|

pq
q−2 dx

) q−2
q

,

where the constant C depends on Λmin and ||F ||Lq(Ω). Let us fix an exponent β

such that β < 2∗

2 but β > q
q−2 . This is possible because q > d. We then use the

Sobolev injection of H1
0 into L2β and obtain(∫

Ω
|u|(p+2)β

) 1
β

≤ C(p+ 2)2

(∫
Ω
|u|

pq
q−2

) q−2
q

.

We now raise to the power 1/(p+2) and assume pq/(q−2) ≥ m0. We then have

||u||Lpβ ≤ ||u||L(p+2)β ≤ C(p+ 2)
2
p+2 ||u||

p
p+2

L
pq
q−2
≤ C(p+ 2)

2
p+2 ||u||

L
pq
q−2

,
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where we used ||u||
L
pq
q−2
≥ 1. Setting r = β(q − 2)/q > 1 and mk = m0r

k we

then have

||u||Lmk+1 ≤ C(pk + 2)
2

pk+2 ||u||Lmk ,
where pk = mk

q−2
q . Passing to the logarithms and using the exponential behavior

of pk as in the proof of Theorem 5.18 we then obtain

||u||Lmk ≤ C||u||Lm0 ≤ C,
where all constants depend on d, q,Λmin ,Ω and ||F ||Lq .

For the case where |Ω| 6= 1, we simply perform a scaling: if u is a subsolution
in Ω with the matrix field A(x) and the datum F (x) then we define uR, AR and
FR as uR(x) = u(Rx), AR(x) = A(Rx) and FR(x) = F (Rx), and we obtain
∇ · (AR∇uR) ≥ R∇ ·FR in 1

RΩ. Indeed, for every non-negative test function we
have

∫
ΩA(x)∇u · ∇ϕ = −

∫
Ω F · ∇ϕ and the change of variable x = Ry gives∫

1
R

Ω
AR(y)∇u(Ry) · ∇ϕ(Ry) dy = −

∫
Ω
FR(y) · ∇ϕ(Ry) dy,

which gives the desired condition using ∇u(Ry) = 1
R∇uR(y) and ∇ϕ(Ry) =

1
R∇ϕR(y). Choosing R such that | 1RΩ| = 1 provides the desired estimate on
||uR||L∞ = ||u||L∞ .

�

We can now obtain a precise result on solutions.

Theorem 5.24

If u ∈ H1
0 (Ω) is a solution of ∇ · (A(x)∇u) = ∇ · F in Ω with F ∈ Lq(Ω) for some

q > d, then u ∈ L∞(Ω) and ||u||L∞ ≤ C(d, q,Λmin ,Ω)||F ||Lq . Moreover, if Ω = B(x0, R)

we have C(d, q,Λmin ,Ω) = R
1− d

qC(d, q,Λmin).

Proof. We already proved that ||u||L∞ can be bounded in terms of ||F ||Lq , without being
precise about the exact dependence of the bound on this norm.

We now need to investigate more precisely the dependence of the bound. The map
F 7→ u is well-defined (thanks to an easy variant of Lemma 5.9 from L2 to H1 but we
proved that it maps Lq into L∞ and that it is bounded on the unit ball of Lq. It is linear,
so we necessarily have ||u||L∞ ≤ C||F ||Lq . The constant C depends here on all the data,
including the domain. When Ω = BR := B(x0, R) we perform the same scaling as in
the last part of the proof of Proposition 5.23, and we obtain

||u||L∞ = ||uR||L∞ ≤ C||RFR||Lq(B1)

= CR

(∫
B1

|F (Ry)|q dy

)1/q

= CR
1− d

q

(∫
BR

|F (y)|q dy

)1/q

.

�

The rest of the section can be kept unchanged
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