
Local H2 regularity

This document aims at clarifying the proof of the local H2 regularity for the equation∇·(A∇u) =
f , which allows to differentiate the equation and get a PDE for u′.

Notations:

Given a function g defined over Ω and valued in R or RN we define its incremental ratio τh[g]
through

τh[g](x) :=
g(x+ h~e)− g(x)

h
.

Here ~e is a fixed unit vector. We omit the dependence of τh on ~e to ease the notation. Warning:
τh[g] is only defined for x ∈ Ω∩ (Ω−h~e), i.e. far from a part of the boundary of Ω. We will only use
τh[g] when it is multiplied times a cut-off function which guarantees that its value near the boundary
does not matter.

Properties:

Characterization of the H1 functions: it is well known that, whenever K ⊂ Ω, d(K, ∂Ω) ≥ h
and g ∈ H1(Ω), we have ||τh[g]||L2(K) ≤ ||∇g||L2(Ω) (in order to prove it, just write the incremental
ration as an integral of the derivative, use Jensen and change the order of the integrals). Also, it is
well known that, whenever K ⊂ Ω with d(K, ∂Ω) > 0, if g ∈ L2(Ω) is such that ||τh[g]||L2(K) ≤ C

for all h < d(K, ∂Ω) and all ~e ∈ SN−1, then g ∈ H1(K) and ||∇g||L2(K) ≤ C.

Change-of-variables – Discrete Integration buy Parts (DIP): for any g and φ we have∫
gτ−h[φ] = −

∫
τh[g]φ

(this comes from a simple change of variable y = x− h~e).

Commutation with the gradient: for any g ∈ H1(Ω) we have ∇
(
τh[g]

)
= τh[∇g].

Product: it holds τh[fg] = f̃ τh[g] + gτh[f ], where f̃(x) = f(x+ h~e).
Now, suppose u ∈ H1(Ω) is a solution of ∇ · (A∇u) = f , where f ∈ L2(Ω) and A : Ω→MN×N

is a function valued in the symmetric positive-definite matrices with λI ≤ A(x) ≤ ΛI for all x, and
we suppose A to be Lischitz continuous.

Theorem 0.1. Under the above assumptions u ∈ H2
loc(Ω).

Proof. Let us a fix a cut-off function η ∈ C∞c (Ω) with η = 1 on a given open set K ⊂ Ω with
d(K, ∂Ω) > 0 and η = 0 on the points x such that d(x, ∂Ω) ≤ 1

2d(K, ∂Ω). Let us also fix 0 < h <
1
2d(K, ∂Ω).

We want to give a bound on ||τh[∇u]η||L2(Ω), which implies an L2 bound on τh[∇u] on K and
hence ∇u ∈ H1(K) and u ∈ H2(K). This means u ∈ H2

loc(Ω).
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From the equation we have
∫
A∇u · ∇φ = −

∫
fφ for any φ ∈ C∞c (Ω). If we use τ−h[φ] as a test

function we get, for any φ ∈ C∞c (Ω) (but also for any φ ∈ H1
0 (Ω), by density)∫

τh
[
A∇u

]
· ∇φ = −

∫
τh[f ]φ.

Let us take φ = τh[u]η2, which is meaningful and admissible thanks to the presence of the cut-off
function. Computing ∇φ = 2ητh[u]∇η + τh[∇u]η2 we get∫

τh
[
A∇u

]
· τh[∇u] η2 = −

∫
τh[f ]τh[u]η2 − 2

∫
τh
[
A∇u

]
· ∇η τh[u]η.

We develop τh
[
A∇u

]
= Ã τh[∇u] +∇u τh[A], where Ã(x) = A(x+ h~e).

Hence we get∫
Ã τh[∇u] · τh[∇u] η2 = −

∫
τh[f ]τh[u]η2 − 2

∫
τh
[
A∇u

]
· ∇η τh[u]η −

∫
∇u τh[A] · τh[∇u]η2.

Let us set

X := ||τh[∇u] η||L2 ,

Y1 := −
∫
τh[f ]τh[u]η2,

Y2 :=

∫
τh
[
A∇u

]
· ∇η τh[u]η,

Y3 :=

∫
∇u τh[A] · τh[∇u]η2.

The quantity X is the term that we want to estimate. From Ã ≥ λI, we have λX2 ≤ Y2−2Y2+Y3.
Our goal is to estimate the terms Yi with terms which are independent of h, or with terms which
are linear in X. In this way, having a square at the left-hand side and linear terms at the right-hand
side, we get a bound on ||τh[∇u] η||L2 .

We start from Y1. We first perform a DIP, so that we get

Y1 = −
∫
τh[f ]τh[u]η2 =

∫
f τh

[
τh[u]η2

]
≤ ||f ||L2 ||τh

[
τh[u]η2

]
||L2 .

Now, we estimate ||τh
[
τh[u]η2

]
||L2 with ||∇

(
τh[u]η2

)
||L2 and we compute the gradient:

||∇
(
τh[u] η2

)
||L2 ≤ ||(∇τh[u])η2||L2 + ||τh[u]∇η2||L2 ≤ ||(∇τh[u])η||L2 +C||τh[u]||L2 ≤ X+C||∇u||L2 ,

where we used the inequality η2 ≤ η, |∇η2| ≤ C (where the constant depends on K and Ω and
degenerates if K approaches ∂Ω) and ||τh[u]||L2 ≤ ||∇u||L2 . Hence, Y1 is bounded by something
linear in X.
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Let’s pass to the second term. We have

Y2 =

∫
τh
[
A∇u

]
· ∇η τh[u]η =

∫
Ã τh

[
∇u
]
· ∇η τh[u]η +

∫
τh[A]∇u · ∇η τh[u]η.

In this sum, the first term may be estimated by using |Ã| ≤ C and |∇η2| ≤ C by a quantity of
the form C||(∇τh[u])η||L2 ||τh[u]||L2 ≤ ||∇u||L2X. For the second we use |τh[A]| ≤ C (since A is
Lipschitz) and |η∇η| ≤ C and we bound it with ||τh[u]||L2 ||∇u||L2 ≤ ||∇u||2L2 . Hence, the first term
is linear in X and the last is bounded: we have |Y2| ≤ ||∇u||L2X + ||∇u||2L2 .

Finally, we look at Y3, for which we write

Y3 =

∫
∇u τh[A] · τh[∇u]η2 ≤ C||η∇u||L2X,

by using again |τh[A]| ≤ C. We have Y3 ≤ C||∇u||L2X.
Globally we got

λX2 ≤ ||f ||L2X + CX||∇u||L2 + C||∇u||2L2 .

This implies X ≤ C(||f ||L2 + ||∇u||L2), with a constant C depending on the cut-off function η (i.e.
on d(K, ∂Ω)), on λ,Λ and on the Lipschitz constant of A.
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