
logo

Monotone transports
Convergence

Semi-discrete evolution
Continuous evolution

From Brenier to Kntohe and from Knothe to
Brenier: convergence, PDE and numerical ideas

Filippo Santambrogio
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Very briefly, something you all know about the optimal
transport problem

Monge Problem : min
∫
c(x ,T (x))µ(dx) : T#µ = ν

proposed by G. Monge in 1781, for c(x , y) = |x − y |.

Kantorovich Problem : (1942) min
∫
c(x , y)dγ : γ ∈ Π(µ, ν)

where Π(µ, ν) := {γ : (πx)]γ = µ, (πy )]γ = ν}.
This gives again Monge’s framework when γ = (id × T )#µ.

Advantages of Kantorovich’s formulation

it’s a convex problem

it always has a solution (if c is l.s.c.)

il has a dual formulation :

min

∫
c dγ = sup

∫
φdµ+

∫
ψdν : φ(x) + ψ(y) ≤ c(x , y).
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The monotone transport in 1D

Given µ, ν ∈ P(R), if µ has no atoms, there exists unique an increasing
map T : R→ R such that T#µ = ν.

If F and G are the cumulative distribution functions of µ and ν, respec-
tively, and if G is strictly increasing on spt ν (i.e. if spt ν is an interval),
we can compute it through T = G−1 ◦ F (if ν has not full support a
generalized inverse of G should be used).

This map turns out to be optimal for all the costs of the form c(x , y) =
h(x − y) with h convex (and it is the unique optimizer if h is strictly
convex). In particular, this covers the quadratic case c(x , y) = |x − y |2.

It is very easy to compute, but only works in 1D.
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The quadratic cost in Rd

If d > 1 and µ, ν are measures on Ω ⊂ Rd the situation is trickier but
Brenier proved the following : if µ is nice (for instance µ� Ld), then there
exists unique an optimal map, and it given by T = ∇φ, with φ convex.

It has some monotonicity property (for instance, DT is a symmetric and
positive definite matrix). But it is trickier to compute. The change-of-
variable-formula, if µ = f (x)dx and ν = g(y)dy , gives the Jacobian
condition detDT = f

g◦T , which reads here

det(D2φ) =
f

g ◦ ∇φ
, with φ convex,

(Monge-Ampère equation). Its “boundary” condition is given by ∇φ(x) ∈
Ω for all x ∈ Ω. This PDE is nonlinear and difficult to solve, both nume-
rically and theoretically.

Some regularity theorems exist giving φ ∈ C k+2,α if f , g are bounded from
below and belong to C k,α and spt ν is convex.. In this case T is C k+1,α.
Y. Brenier, Polar factorization and monotone rearrangement of vector-valued

functions, CPAM, 1991.
Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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The Knothe-Rosenblatt rearrangement

Here is another reasonable transport (increasing for the lexicographic or-
der) : there exists unique a map TK of the form

TK (x1, x2, . . . , xd) := (T 1(x1),T 2(x1, x2), . . . ,T d(x1, x2, . . . , xd))

where all the T i (x1, x2, . . . , xi−1, ·) are increasing, sending µ onto ν.

Recursive construction : If d = 1 just take the monotone map. If d > 1,
let µ1 and ν1 be the projections on of µ and ν on the first variable and T 1

be the monotone map between them. Then, disintegrate µ and ν according
to the first variable, and define (T 2,T 3, . . . ,T d)(x1, ·, . . . , ·) as the Knothe
transport in dimension (d − 1) between µx1 and νT 1(x1).

TK is much easier to compute than the Brenier map. Yet, it is not optimal,
and its definition is anisotropic.
Regularity : TK has the same regularity of the densities, not more. Its
Jacobian DTK is triangular, with positive coefficients on the diagonal.

H. Knothe, Contributions to the theory of convex bodies, MI Math. J. 1957

M. Rosenblatt, Remarks on a multivariate transformation, Ann. Math. Stat.,

1952.
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Convergence of quadratic costs to Knothe

The cost |x1 − y1|2 + t|x2 − y2|2 as t → 0
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A reasonable conjecture

Let us consider the weighted quadratic cost

ct(x , y) :=
d∑

i=1

t i−1|xi − yi |2.

If µ � Ld , the corresponding optimal transportation problem admits a
unique solution Tt . According to a conjecture by Y. Brenier, it is natural
to expect the convergence of Tt to the Knothe transport TK .

Why ? because as t → 0 the main criterion becomes the minimization of
the cost |x1−y1|2. This selects T 1 but gives nothing on the other variables.
We pass to the second most important criterion : minimizing |x2 − y2|2,
and this provides T 2. And we go on.

This is in the same spirit of a Γ−convergence development ct =
c1 + tc2 + t2c3 + . . . . If c1 has not a unique minimizer, we select the
one that also minimizes c2 among minimizers of c1. And if it has not
uniqueness neither, we look at c3. . .

Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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An example

Let’s see a case where explicit solutions are available. Take d = 2, and µ
and ν two Gaussian measures where

µ = N (0, Id) and ν = N

(
0,

(
a b
b c

))
(with ac > b2, a > 0). We can check that Tt is linear with matrix

Tt =
1√

a + ct2 + 2t
√
ac − b2

(
a + t

√
ac − b2 bt

b ct +
√
ac − b2

)
which converges as t → 0 to( √

a 0

b/
√
a
√
c − b2/a

)
which is precisely the matrix of the Knothe transport from µ to ν.

Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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A theorem

Assumption (H-source) : the measure µ1, as well as µ1−almost all the
measures µ2

x1
, and the measures µ3

x1,x2
. . .up to almost all the measures

µd
x1,x2,...,xd−1

, which are all measures on the real line, have no atoms.

Assumption (H-target) : the measure ν1, as well as ν1−almost all the
measures ν2

x1
, and the measures ν3

x1,x2
. . .up to almost all the measures

νd−1
x1,x2,...,xd−2

, have no atoms neither.

Theorem

Let µ and ν satisfy (H-source) and (H-target), γt be an optimal plan for
the costs ct(x , y), TK the Knothe-Rosenblatt map between µ and ν and
γK the associated transport plan. Then γt ⇀ γK as t → 0.
Moreover, should the plans γt be induced by transport maps Tt , then
these maps would converge to TK in L2(µ) as t → 0.

G. Carlier, A. Galichon , F. Santambrogio, From Knothe’s transport to

Brenier’s map and a continuation method for optimal transport,SIAM J. Math.

An., 2010
Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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Atoms

Counter-example. Surprisingly, the absence of atoms in ν is really neces-
sary. Look at this example in [−1, 1]× [−1, 1] ⊂ R2 where

µ =
1

2
1{x1x2<0}dx and ν =

1

2
H1
|S with S = {0} × [−1, 1].

The Knothe-Rosenblatt map is TK (x) := (0, 2x1 + sgn(x2))). The optimal
transport for each cost ct is Tt(x) := (0, x1) (no transport may do better
than this one, which projects on the support of ν). The reason for the lack
of convergence is the atom in the measure ν1 = δ0.

Don’t despair ! This means that we cannot apply the result if ν itself
is purely atomic. . .yet, looking at the proof we can also deal with the
following case. Keep (H-source) on µ but suppose that ν is concentrated
on a set S with the property

y , z ∈ S , y 6= z ⇒ y1 6= z1.

This allows to deal with almost all finite atomic measures ν.
Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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An ODE for the potential
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From Knothe to Brenier

The Knothe transport TK is easy to compute because it is essentially
1D ; the Brenier map is the optimal map for c1 ; the optimal maps for ct
converge to TK as t → 0.
Idea : can we start from TK and let t improve from 0 to 1 in order to
compute T1 ?

Let us start from the semidiscrete case, i.e. µ is a smooth density on Ω
and ν is a finite atomic measure with N atoms, say µ uniform on some
convex polyhedron Ω ⊂ R2 and ν = 1

N

∑N
i=1 δyi (where all the points yi

have a different first coordinate y
(2)
i ).

The transport map, piecewise constant on some unknown Voronoi-type
cells, can be computed from the potential in the dual problem.

The dual problem reads

sup
p

Φ(p, t) :=
1

N

N∑
i=1

pi +

∫
Ω

p∗t (x)dx ,

where p∗t (x) = mini{ct(x , yi )−pi} and we set p1 = 0. For each t, there is
a unique maximizer p(t). It belongs to RN and we look for its evolution.

Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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The ODE

For each (p, t), set C (p, t)i = {x ∈ Ω : inf j ct(x , yj)−pj = ct(x , yi )−pi}.
The function Φ(., t) is concave differentiable and its gradient is given by

∂Φt

∂pi
(p, t) =

1

N
− |C (p, t)i |.

By concavity, the maximizer p(t) is characterized by ∇Φt(p(t), t) = 0.
Differentiating, we obtain a differential equation for the evolution of p(t) :

∂

∂t
∇pΦ(p(t), t) + D2

p,pΦ(p(t), t) · dp
dt

(t) = 0.

All the quantities we are interested in depend on the position of the vertices
of the cells C (p, t)i , which are all polygons.
Result : The positions of these vertices depend in a Lipschitz way on p
and t ; the matrix D2

p,pΦ(p(t), t) is invertible in a suitable domain ; we can
apply Cauchy-Lipschitz theorem to the ODE

dp

dt
(t) = −D2

p,pΦ(p(t), t)−1

(
∂

∂t
∇pΦ(p(t), t)

)
Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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The function Φ(., t) is concave differentiable and its gradient is given by

∂Φt

∂pi
(p, t) =

1

N
− |C (p, t)i |.

By concavity, the maximizer p(t) is characterized by ∇Φt(p(t), t) = 0.
Differentiating, we obtain a differential equation for the evolution of p(t) :

∂

∂t
∇pΦ(p(t), t) + D2

p,pΦ(p(t), t) · dp
dt

(t) = 0.

All the quantities we are interested in depend on the position of the vertices
of the cells C (p, t)i , which are all polygons.
Result : The positions of these vertices depend in a Lipschitz way on p
and t ; the matrix D2

p,pΦ(p(t), t) is invertible in a suitable domain ; we can
apply Cauchy-Lipschitz theorem to the ODE

dp

dt
(t) = −D2

p,pΦ(p(t), t)−1

(
∂

∂t
∇pΦ(p(t), t)

)
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Cells evolution

Different shapes of the cells in a simple semi-discrete case for t ∈ [0,+∞[.
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Continuous evolution
A PDE for the potential
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Monge-Ampère equation

In Rd , take the matrix

At =

(
1 0
0 t

)
and the cost ct(x , y) = 1

2At(x−y) ·(x−y). The optimal transport is given

by Tt(x) = x − A−1
t ∇φt . The MA equation gives

det(Id− A−1
t D2φt) =

f

g(x − A−1
t ∇φt(x))

.

Let us take the easiest case, i.e. g = 1 and let’s differentiate w.r.t. t :

trace
[
(At − D2φt)

−1D2φ′t
]

= −trace
[

(Id− A−1
t D2φt)

−1

(
d

dt
(At)

−1

)
D2φt

]
.

The equation is therefore

∂φt
∂t

= χ with trace
[
(Id− A−1

t D2φt)
−1D2χ

]
= h(t,D2φt).
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Initial condition

What about limt→0 φt ? Unfortunately, the limit potential is that associated
to the cost 1

2 |x1 − y1|2, i.e. it only depends on the measures µ1 and ν1. In
particular, there is no hope for a uniqueness result.
Good idea Write φt = ut(x1) + tvt(x1, x2) (in higher dimension we put
+t2wt(x1, x2, x3) . . . ). This allows to

give initial conditions : u0 is the potential between µ1 and ν1 and,
for each x1, the function v0(x1, ·) is the potential between µx1 and
νy1 with y1 = T 1(x1) ;

de-singularize the equation, since

A−1
t D2φ =

(
1 0
0 t−1

)
·
(
∂11u + t∂11v t∂12v

t∂11v t∂22v

)
=

(
∂11u + t∂11v t∂12v

∂11v ∂22v

)

N. Bonnotte, From Knothe’s Rearrangement to Brenier’s Optimal Transport

map, SIAM J. Math. An., 2013 ; + cotutelle PhD thesis at Orsay and SNS Pisa,

to be defended soon
Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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Well-posedness

For t > 0, an implicit function theorem in the space R × C 2,α(x1) ×
C 2,α(x1, x2) applied to the function (t, u, v) 7→ det(I − A−1

t D2(u + tv))
allows to prove well-posedness of the equation.

Problem : for t = 0 there is a loss of regularity : ut , vt have two extra
derivatives w.r.t. f , while v0 has the same regularity in x1 as f . No space
C kα is suitable for this IFT.
Solution : we must choose the space C∞ and use the IFT by Nash-Moser.
Nicolas worked hard on that, and proved (on the torus, to avoid boundary
issues) that it works !

Notice that, besides the theoretical speculations, the equation is not so
bad, and suggests that an explicit method can be used to solve it.

Filippo Santambrogio From Brenier to Knothe, from Knothe to Brenier
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Some numerical pictures – Knothe

Figure: The Knothe–Rosenblatt rearrangement.
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Some numerical pictures – Knothe 2

Figure: The black arrows represent the Knothe–Rosenblatt rearrangement,
and the gray ones its symmetric. The discrepancy comes from the fact that the
rearrangement’ is anisotropic.
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Some numerical pictures – computation of the optimal map

Figure: Computation of Brenier’s optimal map by the evolution ut + tvt .
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Some numerical pictures – comparison Knothe-Brenier

Figure: The black arrows represent Brenier’s optimal transport map, and the
gray ones the Knothe–Rosenblatt rearrangement.
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Here it is,

Thanks for your attention
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