Feuille d'exercices nº 2: Fonctions différentiables

Exercice 1. On rappelle que, pour tout naturel $p \ge 1$, la norme L^p d'un vecteur $X = (X_1, ..., X_n) \in \mathbb{R}^n$ est donnée par $\|X\|_p = (|X_1|^p + \cdots + |X_n|^p)^{\frac{1}{p}}$. L'application $X \in \mathbb{R}^n \mapsto \|X\|_p \in \mathbb{R}^+$ est-elle différentiable en 0? Même question pour $X \in \mathbb{R}^n \mapsto \|X\|_p^p$? Calculer la différentielle quand elle existe.

Exercice 2. Calculer les dérivés partielles en tout point de \mathbb{R}^2 de la fonction suivante : $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \min(x,y^2)$.

Exercice 3. Soit $B \in M_n(\mathbb{R})$ et soit $f: M_n(\mathbb{R}) \to \mathbb{R}$ définie par $f(A) = \operatorname{tr}(AB)$. Calculer la différentielle de f en tout point. À quelle condition Df est-elle surjective?

Exercice 4. Soit $B \in M_n(\mathbb{R})$ et soit f l'application $f : A \in M_n(\mathbb{R}) \mapsto AB$. Calculer la différentielle de f en tout point. A quelle condition sur B la différentielle Df(A) est surjective / injective?

Exercice 5. Soit f l'application $f: A \in M_n(\mathbb{R}) \mapsto \operatorname{tr}({}^t AA)$. Calculer la différentielle de f en tout point.

Exercice 6. On note det et tr le déterminant et la trace d'une matrice de $M_n(\mathbb{R})$. Montrer que la différentielle de det en $X \in M_n(\mathbb{R})$ est l'application $H \mapsto \operatorname{tr}({}^t\overline{X}H)$ où \overline{X} est la comatrice de X.