Feuille d'exercices n° 3: Fonctions différentiables (suite)

Exercice 1. Soit $f: GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ définie par $f(M) = M^{-1}$. Déterminer la différentielle de f, d'abord en $M = I_n$ puis en un point M quelconque.

Exercice 2. Soit (E, \langle , \rangle) un espace euclidien et soit u un endomorphisme symétrique de E (i.e. $\forall x, y \in E, \langle u(x), y \rangle = \langle x, u(y) \rangle$).

- 1. On définit $f: E \to \mathbb{R}$ par $f(x) = \langle u(x), x \rangle$. Montrer que f est différentiable sur E et déterminer sa différentiable en tout point.
- 2. Soit $g: E \setminus \{0\} \to \mathbb{R}$ définie par

$$g(x) = \frac{f(x)}{\langle x, x \rangle}.$$

Montrer que g est différentiable en tout point.

Montrer que pour tout $a \in E \setminus \{0\}$, on a :

 $Dg(a) = 0 \iff a \text{ est un vecteur propre de } u.$

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction différentiable.

Pour $\alpha \in \mathbb{R}$, on dit que f est homogène de degré α si

$$\forall t > 0, \ \forall (x, y) \in \mathbb{R}^2, \ f(t(x, y)) = t^{\alpha} f(x, y).$$

Montrer que f est homogène de degré α si et seulement si

$$\forall (x,y) \in \mathbb{R}^2, x \frac{\partial f}{\partial x}(x,y) + y \frac{\partial f}{\partial y}(x,y) = \alpha f(x,y).$$

Pour l'implication "\(\infty\), on pourra considérer l'application $g:t\mapsto f(tx,ty)-t^{\alpha}f(x,y)$ sur $\mathbb{R}_{>0}$ et montrer que g est solution d'une équation différentielle.

Exercice 4. On note $C^0([0,1])$ l'ensemble des fonctions continues sur [0,1], muni de la norme $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$. Soit $f: \varphi \in C^0([0,1]) \mapsto \int_0^1 \varphi^4(t) dt \in \mathbb{R}$. Calculer la différentielle de f.

Exercice 5. On munit $C^2([0,1])$ de la norme $||f|| = ||f||_{\infty} + ||f'||_{\infty} + ||f''||_{\infty}$. Soit $f : \varphi \in C^2([0,1]) \mapsto \int_0^1 \left((\varphi')^2(t) - \varphi^2(t) \right) dt \in \mathbb{R}$. Calculer la différentielle de f. Caractériser les éléments $\varphi \in C^2([0,1])$ tels que la différentielle Df s'annule en φ .

Exercice 6. Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ une application différentiable. On suppose que $\lim_{\|v\| \to +\infty} \|f(v)\| = +\infty$ et que pour tout $v \in \mathbb{R}^2$, Df(v) est injective. Le but de l'exercice est de montrer que f est surjective. Soit $a \in \mathbb{R}^2$, on définit $g: \mathbb{R}^2 \to \mathbb{R}, \ v \mapsto \|f(v) - a\|^2$.

- 1. Déterminer Dg(v) en tout point v.
- 2. Montrer que g atteint sa borne inférieure en un certain point v_0 et que $Dg(v_0) = 0$ puis conclure.