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It is well known in biology that ants are able to find shortest paths be-
tween their nest and the food by successive random explorations, without any
mean of communication other than the pheromones they leave behind them.
This striking phenomenon has been observed experimentally and modelled
by different mean-field reinforcement-learning models in the biology litera-
ture.

In this paper, we introduce the first probabilistic reinforcement-learning
model for this phenomenon. In this model, the ants explore a finite graph in
which two nodes are distinguished as the nest and the source of food. The
ants perform successive random walks on this graph, starting from the nest
and stopping when they first reach the food; the transition probabilities of
each random walk depend on the realizations of all previous walks through
some dynamic weighting of the graph. We discuss different variants of this
model based on different reinforcement rules and show that slight changes in
this reinforcement rule can lead to drastically different outcomes.

We prove that the ants indeed eventually find the shortest path(s) between
their nest and the food in two variants of this model and when the underlying
graph is, respectively, any series-parallel graph and a five-edge nonseries-
parallel losange graph. Both proofs rely on the electrical network method for
random walks on weighted graphs and on Rubin’s embedding in continuous
time. The proof in the series-parallel cases uses the recursive nature of this
family of graphs, while the proof in the seemingly simpler losange case turns
out to be quite intricate: it relies on a fine analysis of some stochastic ap-
proximation, and on various couplings with standard and generalised Pdlya
urns.

1. Introduction and main results.

1.1. Context and motivation. In this paper, we introduce and analyse two variants of
a stochastic, unsupervised, reinforcement-learning algorithm. Given a graph in which two
nodes are marked, this algorithm outputs the shortest path(s) between the two marked nodes.
This algorithm is inspired by mean-field models introduced in the biology literature as models
for the behavior of foraging ants (see, e.g., [2, 15]). It has been widely observed empirically
(see, e.g., [5, 15] for experiments) that a colony of ants is able to find shortest paths between
their nest and the food, and unsupervised reinforcement learning is widely proposed as a
model for this phenomenon in the biology literature. The contribution of this paper is to
introduce a new probabilistic reinforcement-learning model for this phenomenon and prove
that, in this model, the ants indeed find the shortest path between their nest and the food.

We consider a sequence of random walkers on a finite graph G = (V, £) with two distin-
guished nodes N and F (for “nest” and “food”, when the walkers are interpreted as ants). At
time zero, all edges of G are given weight 1. The idea is that the walkers explore the graph
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from N to F one after each other, and the weights of the edges are updated after each walker
reaches F. More precisely, for all n > 1, the nth walker starts a random walk from N and
walks randomly on the graph until it reaches F. At every step, the walker chooses one of the
neighboring edges with probability proportional to their weights and crosses the chosen edge
to the next vertex. Once the nth walker has reached F', we update the weights of the edges
by adding 1 to a subset of the trace of this walker. In this paper, we look at two possible rules
for the choice of this subset of edges to reinforce:

e In the loop-erased version of the model, we reinforce the loop-erased time-reversed trace
of walker n. This corresponds to how a hiker without a map would go back from F to N
by walking backwards on their own trace, but avoiding unnecessary loops: when facing a
choice between several edges they crossed on their way to F', they choose the edge that
they crossed the earliest on their way forward.

e In the geodesic version of the model, we reinforce the shortest path from N to F inside the
trace of the walker (i.e., we only look at the subgraph of all edges that were crossed by this
specific walker). The case when there are several shortest paths presents some subtleties,
on which we will come back when we will define more formally the model in Section 1.2
and when discussing our main results (see Section 1.3).

We call this stochastic process the loop-erased or geodesic ant process.

The interpretation of the model in terms of ants is as follows: (1) the ants only lay
pheromones behind them on their way back from the food to the nest, (2) each ant goes
back to the nest either following the loop-erasure of their forward trajectory reversed in time
(for the loop-erased ant process), or following the shortest path in the subgraph that they
have explored on the way forward (for the geodesic ant process) and (3) each ant can sense
from the amount of pheromones how many of its predecessors have crossed an edge on their
way back to the nest, and crosses each neighboring edge with probability proportional to this
number. We conjecture that, following this simple unsupervised reinforcement-learning algo-
rithm, the colony of ants eventually finds the shortest path(s) between the nest and the food.
More precisely, asymptotically when time goes to infinity, a proportion 1 of all ants goes
from the nest to the food only crossing edges that belong to a union of geodesics between the
nest and the source of food.

The difficulty of our analysis comes from different factors: (i) This is a linear reinforce-
ment model: indeed, each ant chooses the next edge to cross with probability proportional
to the number of previous ants that laid pheromones on it on their way back to the nest. In-
terestingly, the assumption that ants react linearly to pheromones is supported in the biology
literature (see, e.g., [18, 23]). In fact, one can easily find counter-examples that show that the
same algorithm with super- or sub-linear reinforcement would not find the shortest path (see
Section 1.3). (ii) The algorithm is a sequence of interacting reinforced random walks, and the
reinforcement of the nth random walk depends from the realisations of all previous ones.

Our main contribution is to prove that, as conjectured, the ants indeed find the shortest
path if we assume that the underlying graph is either a series-parallel graph (as in [6]) whose
“source” is the nest and whose “sink” is the source of food, or the five-edge losange graph
of Figure 4. Surprisingly, the proof for the five-edge losange graph is more intricate than the
proof for the whole class of series-parallel graphs; we therefore expect that finding a proof
that would hold for any underlying graph is a very challenging and interesting problem. Both
our proofs rely heavily on the electric network method for random walks on graphs (see,
e.g., [14] for an introduction to this method), and Rubin’s embedding in continuous time
(first introduced in [1]). The proof for series-parallel graphs also uses the inductive nature of
this family of graphs; the proof for the losange graph relies on the fine analysis of different
stochastic approximations (see, e.g., [3, 16]). Interestingly, we show that the losange case can
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be seen as an intricate coupling between two types of Pélya urns (see, e.g., [16] for a survey);
a fact that is reminiscent of the proof of Pemantle and Volkov [17] of the localisation on five
sites with positive probability of the vertex-reinforced random walk (see also [20, 21]).

1.2. Mathematical description of the model and statement of the main results. Let G =
(V, E) be a finite graph with vertex set V and edge set E. Let N (the nest) and F (the food)
be two distinct vertices in V. In this paper we consider two versions of the same model, which
differ by their reinforcement rules.

We define the sequence (W(n) = (W, (n): e € E)),>0 recursively as follows: W,(0) =1
forall e € E, and, for all n > 1:

e We sample a random walk X = (X i(n))iZO on G that starts at N, is killed when first
reaching F', and whose transition probabilities are: for all i > 1, forall u,v e V,

BX™ =y | X, =4, Win — 1)) = el Dy
2w Winwy(n = 1)
where {u, v} is the (unoriented) edge between u and v, and u ~ v if and only if the edge
{u,v}isin E.
e Let G™ be the trace of X ™, that is the subgraph of G obtained when removing from G all
edges that the random walk X did not cross, and choose a path of edges y, as follows:
— For the loop-erased ant process, we imagine that the walker goes back from F to N by
following its trajectory X ™ backwards and avoiding loops as follows: when the walker
is at a vertex that was visited several times on the way forward, possibly coming from
different edges at different times, it chooses to cross the edge that was crossed the earliest
on the way forward. We define y " as the set of edges crossed by the walker on its way
back to the nest.

REMARK. Note that this construction selects a self-avoiding path between F and
N, which is in fact the loop-erased version of the backward trajectory. Indeed, if we
assume that X™ = (X(()") = N,XE"),...,X%) = F), for some K, > 1, and define the
time-reversed trajectory Y(H) =X %n)—i’ 0 <i < K,), then, by definition, we have that
Vi(”) = YE?) for 0 <i <k, for some 1 <k, < K,, where jo =0 and Vk(:) = F, for
0<i<k,—1, jiz1 =max{j + 1 :Yﬁn) = 75-7)}. This corresponds to the loop-erasure

of X as defined in [12].

— In the uniform-geodesic version of the model, we define ™ as the shortest path from
N to F in G™ (see Figure 1); if there are several shortest path, we choose one of them
uniformly at random (see Figure 2).

e Foralle € E, set We(n + 1) = We(n) + 1oy,

We conjecture that:

CONJECTURE 1.1. Let G = (V, E) be any finite graph in which two distinct nodes have
been marked as N and F. Almost surely when n — 00, forall e € E,

We(n)

- X€7

where (X.)ecE 1S a random vector such that:

(1) For the loop-erased ant process, x. # 0 almost surely if and only if the edge e belongs
to at least one of the geodesics from N to F.
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F1G. 1. First visual aid for the definition of the uniform-geodesic ant process. On the left is pictured a graph G.
In the middle is a possible realization of a graph G M) the trace of the nth random walk, and on the right is y(")
the unique geodesic from N to F in g,

(2) For the uniform-geodesic ant process, x. # 0 almost surely only if the edge e belongs
to at least one of the geodesics from N to F. Moreover, the set {e € E: x. # 0} is almost
surely a union of geodesics from N to F.

Thus, if there is a unique geodesic y from N to F in G, then almost surely x. = l.¢y, for all
e € E, in the two versions of the model.

This indeed means that the ants eventually find the shortest paths between their nest and the
source of food, because the set {e € E: x, # 0}, which can be interpreted as the output of the
algorithm, is a union of geodesics. The difference between (1) and (2) is that, in the uniform-
geodesic ant process, edges that belong to a geodesic may have limiting normalised weights
Xe that equal zero with positive probability: the ants find at least one of the geodesics, but
maybe not all of them. In Proposition 1.6, we provide an example of a series-parallel graph
where, in the uniform-geodesic ant process, the set {e € E: x. # 0} does not contain all
geodesics between N and F.

Our first main contribution is to prove that Conjecture 1.1 is true for all series-parallel
graphs for the loop-erased ant process. As their name suggests, series-parallel graphs are
classical in electricity; in probability theory, they are the object of a famous and and still-
open conjecture of Hambly and Jordan [6]. They have two distinguished nodes called the
“source” and the “sink”, which we can naturally see as the the nest N and the source of food
F in our context.

DEFINITION 1.2 (See Figure 3). We define series-parallel (SP) graphs recursively as
follows: a series-parallel graph is:

e cither the single-edge graph (graph made of two vertices joined by one edge) with one
node marked as the source and the other as the sink,

®

FIG. 2. Second visual aid for the definition of the uniform-geodesic ant process. On the left is pictured a graph
G. In the middle is a possible realization of a graph G ) the trace of the nth random walk. On the right, in orange
and purple, are the two geodesics from N to F in G™ | and thus the two possible choices for y(”).
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(a) (b) () (d)

FI1G. 3. The definition of series-parallel graphs: a SP graph is either (a) the base case, or (b) two SP graphs in
parallel, or (c) two SP graphs in series. (d) is an example.

e or two series-parallel graphs in series (i.e., we merge the sink of the first graph and the
source of the second),
e or two series-parallel graphs in parallel (i.e., we merge the two sources and the two sinks).

THEOREM 1.3. For any SP graph whose source and sink are respectively marked as N
and F, and for the loop-erased ant process, Conjecture 1.1 is true, that is, almost surely when
n— +oo, foralle € E,

We(n)
n

where (Xe¢)eck IS a random vector, such that x. 7% 0 almost surely if and only if the edge e
belongs to at least one of the geodesics from N to F.

- Xe,

Interestingly, the analysis of the loop-erased ant process outside the family of series-
parallel graphs turns out to be very challenging. To illustrate this, we consider one of the
simplest nonseries-parallel graph one could think of, which is the five-edge losange of Fig-
ure 4, which we call “the losange graph”: even on this simple graph, we are not able to prove
convergence of the loop-erased ant process. However, we are able to prove convergence of
the uniform-geodesic ant process, which turns out to be simpler in this setting (see the remark
before Lemma 3.6).

We number the edges of the losange graph from 1 to 5 as in Figure 4. Our second main
result is the following.

THEOREM 1.4. Foralll <i <5andn >0, we denote by W;(n) (V1 <i <5) the weight
of edge number i after the nth walker has reached the food in the uniform-geodesic ant
process on the losange graph. (Recall that W;(0) = 1, by definition.) Almost surely as n —
00,

Wi(n)

— xi foralll <i <5,

FI1G. 4. The losange graph.
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where (x;)1<i<5 is a random vector such that almost surely xy1 =2 =1— x4 =1— x5 €
(0, 1) and x3=0.

To conclude, we note that one can prove Conjecture 1.1 in the simple situation when the
distance from N to F is one.

PROPOSITION 1.5. Consider an ant process on any finite graph with two marked ver-
tices, where at each step one reinforces only a simple path between the nest and the food
within the range of each walk. Then if there exists an edge (say simple) between the nest and
the food, almost surely the renormalized weights of all the edges of the graph, except this one
converge to 0.

PROOF. By Rayleigh’s monotonicity principle (see [14]), the conductance of the sub-
graph from N to F which is in parallel to the single edge from N to F, is at most k/2, if it
has been reinforced k times. (This can be seen by gluing all vertices except N and F into a
single vertex, say /. The sum of the weights between N and [ is k by hypothesis, and the
same for the sum of the weights between F and /. So the effective conductance of this new
subgraph is exactly k/2.) Thus the ant process is dominated by an urn process, with diagonal
replacement matrix, with coefficients 1 and 1/2. O

1.3. Discussion.

Discussion on the loop-erased vs. uniform-geodesic reinforcement rules. While we be-
lieve the result on the losange graph is also true for the loop-erased ant process, we think the
proof would be more involved than with the uniform-geodesic ant process.

The first of three steps in the proof in the uniform-geodesic case is to show that the nor-
malised weight of the middle edge (edge number 3) converges to zero, and then use this
convergence to zero to prove that the speed of convergence to zero is polynomial. Although
proving convergence of the normalised weight of edge 3 would be similar (and in fact almost
identical) in the loop-erased case, proving that the speed of convergence is polynomial is, we
believe, much harder, and could in fact be wrong. Intuitively, it should not be surprising that
the weight of edge 3 could be bigger in the loop-erased than in the uniform-geodesic version
of the model: this comes from the fact that reinforcing the edge 3 is more likely at every
step in the loop-erased version of the model. Since the proof in the uniform-geodesic case is
already quite involved, we leave the case of the loop-erased ant process on the losange open.

Conversely, the analysis of the uniform-geodesic ant process (and all its variants—see
discussion below) on series-parallel graphs seems to be a challenging problem, which we
also leave for further work. In summary, it seems that neither of the two versions of the
process is easier to analyse than the other in general, but that this depends on the underlying
(family of) graph(s).

Discussion on the (uniform-)geodesic version of the model. First note that on the losange
graph, the trace of a walker can contain at most one geodesic, and thus the rule of choosing
the subset of edges to reinforce uniformly among all geodesics in the trace is irrelevant in this
case. In fact, we believe that the way we choose which shortest path to reinforce when there
are several in the trace can have a significant impact on the behaviour of the system.

Indeed, we first observe that, in the uniform-geodesic version of the model, there could ex-
ist an edge that belongs to a geodesic between N and F whose normalised weight converges
to zero.
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L edges

FIG. 5. Graphs used in the discussions of Section 1.3.

PROPOSITION 1.6. If G is the graph on the left-hand side of Figure 5, then the uniform-
geodesic version of the model satisfies: there exists e € E such that e lies on a geodesic
between N and F (in fact, all edges lie on such a geodesic in this graph) and, for all L large
enough (see Figure 5 for the definition of L),

P(W,(n)/n — 0) > 0.

This proposition also holds (with an almost identical proof) when the choice of the
geodesic is not uniform as long as any geodesic within the trace is chosen with a probability
bounded away from O.

Another rule for the choice of y(”) when there are several shortest paths in G is the
following: Consider gé”) the subgraph of G obtained by removing all the edges and vertices
that do not belong to any of the shortest paths from N to F in G™. As in the loop-erased
version of the model, imagine that the walker walks back from F to N, by only crossing
edges from g(()”), and, when faced with a choice, choosing the edge it crossed the earliest on
the way forward. Define y " as the set of edges crossed by the walker on its way back to the
nest. We believe that the same conjecture as for the loop-erased version of the model should
be true for this version of geodesic ant process.

Other possible reinforcement rules. An alternative reinforcement rule could be to rein-
force all edges that the nth walker crossed, that is, all edges in G ™) instead of only reinforce
the edges of y ™. Intuitively, this would mean that ants lay pheromones on their way to the
food instead of laying them on their way back to the nest. A mean-field version of this alter-
native model is also considered in the biology literature (see, e.g., [15]). Preliminary work on
this alternative reinforcement rule suggests that it could lead to surprisingly different results
and that the ants may not always find the shortest path, we leave this for further work.

In this alternative reinforcement rule where ants lay pheromones on their way to the food,
one could consider that ants cannot sense from the pheromones laid on an edge how many
different ants have crossed this edge, but rather how many times this edge has been crossed by
an ant. This would mean that if the nth ant crossed an edge k times the weight of this edge is
increased by k when updating the weights after the nth ant has reached the food. Finally, one
could wonder how the results are impacted if the ants are sensitive to their own pheromones,
that is, if the weights are updated during the random walks after every steps of the ants, and
not after each ant reaches the food. Each ant would then perform a (self-)reinforced random
walk that starts on an already-weighted graph. We believe that these variants could lead to
different asymptotic behaviours and raise various interesting mathematical challenges.

Discussion on linear vs. sub- or super-linear reinforcement. As mentioned in the in-
troduction, Conjecture 1.1 would no longer be true if we considered super- or sub-linear
reinforcement instead of linear reinforcement. Indeed, consider the graph in the middle of
Figure 5, and imagine that all the ants perform weighted random walks on the graph G,
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but according to the weights W,(n)* (Ve € E), for some « > 0. One can check that if
o > 1 (i.e., in the super-linear case), then, almost surely, the subset of edges from E such
that liminf, W,(n)/n # 0 is either {N, F} or E \ {{N, F}}, each with positive probabil-
ity. Also, if @ < 1 (i.e., in the sub-linear case), the subset of all edges from E such that
liminf, W,(n)/n # 0 is almost surely equal to FE itself.

Discussion on the underlying graph. Theorems 1.3 and 1.4 confirm Conjecture 1.1 in the
cases when @ is a series-parallel graph or when G is the losange graph, which is the simplest
nonseries parallel graph. In the proof for series-parallel graph the iterative nature of this
family of graph allows us to reason by induction. An iterative family of graphs that builds on
the losange example is the “double Sierpiniski gasket” graph, which consists of two Sierpiniski
gaskets of the same fractal depth whose bases have been merged (see the right-hand side of
Figure 5 where a double Sierpinski gasket graph of depth 3 is represented). Interestingly, a
version of this graph has been considered in the biology literature under the name “tower of
Hanoi” (see [15, 19]).

Other models of path and network formation by reinforcement. Our model can be seen
as a reinforcement path formation model. The idea is that we start from a weighted graph
G where all edges have the same weight 1, and we look at the graph G® of all edges
whose normalised weight does not tend to zero when time goes to infinity. In the language
of Conjecture 1.1, G®° = (V, E®) where e € E* if and only if ¢ € E and x, > 0. The fact
that G #£ G means that some path or some network has been selected by the dynamics: in
our case, we conjecture (and prove for series parallel graphs or the losange graph) that the
dynamics selects the shortest paths between the nest and the food.

Other related models of path formation by reinforcement exist in the literature: For exam-
ple, Le Goff and Raimond [13] look at a model of nonbacktracking vertex-reinforced random
walk with super-linear reinforcement, also inspired from ant behaviour. They show that, in
this model, with positive probability, the ant eventually walks along a cycle of finitely-many
edges. Erhard, Franco and Reis [4] consider another model of path formation motivated by
the behaviour of ant colonies. Their model is a directed-edge-reinforced random walk with
super-linear reinforcement. They show that, on a finite graph with at least one cycle and on
Z% (d > 1), as in [13], the ant eventually walks along a cycle of finitely-many edges. On Z,
they show that the ant almost surely escapes to infinity. The models of [13] and [4] are very
different from ours: the reinforcement is super-linear instead of linear, there is one ant as
opposed to several ants walking successively in the graph, and there is no nest or food and
thus no geodesics involved.

Another related model of network formation is the WARM model of van der Hofstad,
Holmes, Kuznetsov and Ruszel [22], where, at every time step, an edge is chosen at ran-
dom and its weight increased by one (see also [8]). The choice of the edge to reinforce at
each step is done according to a two-step procedure that involves super-linear reinforcement.
Van der Hofstad et al. prove that the limiting graph (i.e., the graph consisting of all edges
whose normalised weight does not go to zero) is a linearly stable equilibrium with positive
probability. They conjecture that, if the reinforcement is strong enough, all linearly stable
configuration is a union of trees of diameter at most 3. They prove this conjecture in the
simple case of a triangle graph, that is, the complete graph on three vertices.

A model of network formation with linear reinforcement is the “signaling game” of [9,
11], where at every time step, “Nature” decides which pairs of neighbours are allowed to
communicate for this round, and each vertex chooses a neighbour with probability propor-
tional to the number of times they have communicated in the past, and they communicate if
they both choose each other and if Nature allows it. In [11], the authors show that the limiting
graph (consisting of edges between two vertices that communicate asymptotically a positive
proportion of rounds) is star-shaped with positive probability.
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Plan of the paper. Section 2 contains the proof of Theorem 1.3 (i.e., the series-parallel
case), and Section 3 the proof of Theorem 1.4 (i.e., the losange case). These two sections can
be read independently. Finally we prove Proposition 1.6 in Section 4.

2. The loop-erased ant process on series-parallel graphs. In this section, we only
consider the loop-erased ant process. We define the size of a graph as its number of edges.
For a series-parallel graph G, we define its height, which we denote by /iyin (G), as the length
of a shortest path from the source to the sink.

2.1. Preliminary lemmas. We start with two simple observations. The first one is a direct
consequence of the definition of series-parallel graphs:

LEMMA 2.1. Let G be a nonempty series-parallel graph. Then, either G is reduced to a
single edge (it has size one), or one can find two nonempty series-parallel subgraphs G and
Go, such that G is obtained by merging G| and G, either in series or in parallel.

The second observation is the following lemma.

LEMMA 2.2. Let ¢ : (0, 4+00)% — (0, 00) be the function defined by

1
p(x,y)=5—F Jforall (x,y) € (0,+00)".
¥ Ty

Then, for all (x, y), (x',y') € (0, +00)2, one has:

@ e(x+x",y+y) =0k, y)+ o', y), and
b) p(x+1Ly+ 1D <ex,y)+1.

PROOF. Since

x+x" y+y 1
( : y>:_"/’(x+x/vy+y’),

2 72 2
proving that ¢ is concave is enough to prove (a). A simple calculation shows that
82(,0 x.y) —2y2 82(,0 x.y) —2x? 82(,0 x.y) 2xy
— X, = T 2 — X, = T 2 — X, = 3
ax2 Y (x+y)3 dy2 Y (x +y)3 dxdy Y (x+y)3

This implies that the Hessian of ¢ is everywhere nonpositive, and thus that ¢ is concave as
claimed, which concludes the proof of (a).

To prove (b), fix x > 0and set H(y) :=14+¢(x,y) —@x+1,y+ 1) forall y > 0. Using
the definition of ¢, we can calculate

1
Y 2 y+l ’
(x+D° g +1?
implying that the function H is increasing on [0, x) and decreasing on (x, 4+00). Since

limy .o H(y) > 0, and limy_, »c H(y) =0, it follows that H(y) > 0 for all positive y, which
concludes the proof of (b). U

H'(y)=

REMARK. Item (a) has another simple proof in terms of conductances. Indeed one could
note that by Rayleigh’s monotonicity’s principle, putting first (x, x”) in parallel and (y, y’) in
parallel, and then putting the two of them in series has a better conductance than first putting
(x, y) in series and (x’, y’) in series, and then putting them in parallel (to go to the first one,
we need to add an edge with infinite conductance).
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2.2. Our main result in terms of effective conductances. The main idea to prove Theo-
rem 1.3 is to reason in terms of the “effective conductance” of the graph. We interpret the
weight of an edge as its “conductance” and let Cg (n) be the effective conductance (from the
source to the sink) after the nth walk has reached the sink, and simply write Cg for the ini-
tial effective conductance. In order to compute the effective conductance of a series parallel
graph, one can use Lemma 2.1 and the two following rules:

e If G is composed of two graphs G and G» merged in parallel, then Cg = Cg, + Cg,.
e If G is composed of two graphs G| and G, merged in series, then Cg = ¢(Cg,, Cg,)-

Our main result in terms of effective conductances reads as follows.

THEOREM 2.3. If G is a series-parallel graph, and Cg(n) is its conductance after the
nth walker has reached the sink, then, almost surely when n — +00,

Ca(n) 1
% b
n hmin (G)

where hunin(G) is the graph distance between the source and the sink in G.

2.3. Deterministic bounds for the effective conductance of a series-parallel graph after n
walks. The first step towards proving Theorems 1.3 and 2.3 is the following (deterministic)
lemma.

LEMMA 2.4. (a) Let G be a series-parallel graph with weighted edges and let Cg be
its effective conductance from the source to the sink. Consider a self-avoiding path from the
source to the sink of length L, and denote by Cy; the effective conductance of G after the
weights of all edges on this path have been increased by one. Then,

1
—<C—Cs<1.
L_G G =

(b) Let G be a series-parallel graph and consider the loop-erased ant process on G. There
exists a constant C > 0 depending only on G, such that, almost surely,

n+C

hmin(G)

Co(n) < foralln > 0.

PROOF. We first prove (a) by induction on the size of the graph. If G has size one, then
the result is immediate since C’G = Cqg + 1. Now assume that the result holds for all series-
parallel graphs with size at most N (for some integer N > 1) and consider a graph G of
size N + 1. By Lemma 2.1 we know that G is the merging of two nonempty subgraphs G
and G, either in parallel or in series. Note that G| and G, both have size at most N and thus
that the induction hypothesis applies to them.

If Gy and G are in parallel, then Cg = Cg, + Cg,. Now since the chosen path is self-
avoiding, it either lies entirely in G or in G. Assume for instance that it lies in G: using
the induction hypothesis, we get that 1 > C’G1 —Cg, > %, which concludes the proof since
C; = Cé;l +Cq,.

If G| and G are in series, then first observe that one can write L = L + Lo, with L; the
length of the restriction of the path to G;, for i =1, 2. Then,

1 - 1 1 1 Co+ l

> —+ =
1 1 — 1 1 — 1 1
+ + L+ LT L+ L L
C/Gl C/Gz CGI+L171 CG2+LL2 CGI C(;2

Co=
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using the induction hypothesis for the first inequality and Lemma 2.2(a) for the second one.
This concludes the proof of the lower bound of (a). The proof of the upper bound is entirely
similar, using this time Lemma 2.2(b) instead of Lemma 2.2(a).

Let us now prove (b) by induction on the size of the graph again. If G has only one edge
(which connects the source and the sink), then Cg(n) = 1 + n, which proves the result in this
case. Assume by induction that the upper bound holds for all graphs with at most N edges,
and assume that G has N + 1 edges. By Lemma 2.1, G consists of two nonempty graphs G
and G, which are merged either in parallel or in series, and such that both G and G, have
at most N edges. By hypothesis, there exist two constants C and C», such that for all n > 0,

n+ Cy n+Cy
< < -2
o Cam =5 LGy M e G
If Gy and G are in parallel, then Cg (n) = Cg, (n1) +Cg,(n —ny), for some (random) integer
0 < ny <n, and the result follows immediately from (1), with the constant C := C + C»,
using that hyin(G) = min(hnin(G1), hmin(G2)). If G and G, are in series, then noting that
hmin(G) = hmin(G1) + hmin(G2), we get

1 )] 1 n +max(Cy, Cp)

Con) = —; T G0 Bn(@D o (G1) + hmn(Ga)
CGI (n) CGZ (n) n+Ci n+Csp min min
_n+ max(Cp, Cp)
hmin(G) .

This proves the induction step when G and G are in series, and concludes the proof of the
lemma. [

A consequence of this lemma is that one has the deterministic bounds

n n+C
—— =Cc(n) = Cg(0) <
hmax(G) hmin(G
for some constant C > 0 and where hpax(G) is the length of the longest self-avoiding path
from the source to the sink of G. In particular, almost surely Cg(n) — oo, as n — oo. Note
also that if the ants were always choosing the shortest path, then we would have

n n+C
<Cq(n) = ;
Rmin(G) hmin (G)
for some constant C > 0, for all » > 0. While the ants usually do not make this optimal
choice, we will see that almost surely the asymptotic behavior of the effective conductance
of the graph is still of this order (with a weaker control on the error term for the lower bound).

2

foralln >0,

2.4. Bounds for a generalised version of the model. In the following, for any series-
parallel graph G, any (series-parallel) subgraph H C G, and any n > 0, we let Wg (n) denote
the set of weights on the edges of G after the nth time a path in H has been reinforced. We
also simply write Wg (n), when H = G.

In order to implement an induction argument, we need to consider a generalisation of the
loop-erased ant process. The reason for this is that we want the law of the process to be
stable under restriction to a subgraph. Unfortunately, the loop-erased ant process does not
fulfil this: for instance if G is the merging of two subgraphs G| and G5 in parallel, then when
reinforcing a path in G1, an ant on G tends to visit the source less often than an ant restricted
to G1. We now explain how we go around this problem.

In the original model on a graph G, when the nth ant starts its random walk from N, it
comes back to N a random geometric number of times, say B,, and then goes from N to F
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without returning to N. We say that the nth ant did B,, unsuccessful excursions in G (i.e.,
going from N to N without hitting F'), and one successful excursion (i.e., going from N to
F without returning to N).

In the original model, for all » > 1, B, is measurable with respect to F,,_1(G) :=
oc(Wg(0),...,Wg(n — 1)). In the generalised model, we allow B, and its law to be dif-
ferent and to depend on a larger sigma-field. More precisely, given F,_1(G) and given
some additional integer-valued random variable B,, we condition the nth ant on perform-
ing B, unsuccessful excursions before hitting F', and then reinforce a path in its range ac-
cording to the same rule as for the loop-erased ant process, that is, we increase by one the
weights of the edges along the loop-erasure of the backwards trajectory of the nth ant. The
only case of interest is when B, is measurable with respect to some sigma-field of the type
O'(Wg/(()), ey Wg/ (n — 1)), where G’ is some series-parallel graph containing G; however
the proofs of the next results work in full generality, without assuming anything on the ran-
dom variables B,,.

For a series-parallel graph G, we still let Cg(n) denote the effective conductance of graph
G after n walkers have performed their walks and updated the weights in the generalised
version of the loop-erased ant process described above. We set

hmin(G)
hmin(G) + 1 ‘
The following proposition, together with Lemma 2.4, implies Theorem 2.3.

3) a(G) ==

PROPOSITION 2.5. Consider a generalised version of the loop-erased ant process on a
series-parallel graph G, and let « = a(G). There exists a real random variable K¢, such
that almost surely K is finite, and for all n > 1:

(i) Cgn) > "=Ears

(1) after n steps, the conditional probability that the (n 4 1)th walk reinforces a geodesic

path is larger than 1 — Kg - n®~ 1.

PROOF. We reason by induction on the size of G: if G has size 1, then Ca(n) =n + 1
almost surely, implying that the result holds. Let us now assume that the result holds for all
series-parallel graphs of size at most N, and consider a graph G of size N + 1. By Lemma 2.1
we know that G is the merging of two nonempty subgraphs G| and G», either in parallel or
in series. We denote N and N5 the sources of G| and G, F| and F> their sinks.

Case 1: G and G are in series. Assume without loss of generality that G is on the top of
G- (meaning that the sink F of G| coincides with the source N, of G»). First note that each
ant performing its walk in G will reinforce one path in G| and one path in G;,. Moreover, by
definition of the loop-erasure process, the path that is reinforced in G is entirely determined
by the trajectory of the walk up to its first hitting time of F; = N,, while the path that is
reinforced in G is entirely determined by the trajectory of the ants after this hitting time of
N». As a consequence, conditionally on the number of times the walker returns to N before
first hitting N, the laws of the two paths that are reinforced in G; and G are independent.

Furthermore, for each n, the number of unsuccessful excursions in G| (resp. G») that are
made by the nth walk before first hitting N, (resp. after first hitting N») is a measurable
function of Wg(n — 1) and the number B,, of unsuccessful excursions that are prescribed
in G. Therefore, the restrictions of the process to G| and G are generalised versions of
the loop-erased ant process, as defined before Proposition 2.5. Therefore, we can use the
induction hypothesis for G and G»: there exist two random variables K1, K> € (0, 00), such
that with o1 = «(G1), and ap = a(Gy),

n— Kin%! n — Kon%?
> > <
Com = Gy M e G
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If we denote by 8 = max (o, a2), and by K = max(K, K»), then

1 1
CG(n) - 1 1 Z hmin(G1) + hmin(G2)
Co,m T Co,m)  n—Kin®T T n—Kyn®2
n— Knf _n— KnP

> - ’
- hmin(Gl) + hmin(GZ) hmin(G)

since Nmin(G) = hmin(G1) + hmin(G2); which concludes the induction argument for Part (i)
because, by definition, 8 < a(G).

For Part (i) we just observe that, by the induction hypothesis and a union bound, the con-
ditional probability that the nth walker does not reinforce a geodesic path is smaller than
Kin®1~! + K>n®~! < KnP~1, which concludes the induction argument in the case when
G1 and G, are merged in series.

Case 2: G| and G, are in parallel. We start again by showing that the restrictions of the
process on G and G, are generalised versions of the loop-erased model as defined before
Proposition 2.5. For all integers n, we denote by N;(n) the number of times a path in G; has
been reinforced after n ants have performed their walks in G: one has

4) Ci(n) =Cg,(N1(n)) + Cg,(Na(n)).

We also let (r,gi))kz 1 be the random times when the process N; increases by one, that is,
the times when an ant reinforces a path in G;. Forall n > 1, k >0, i € {1, 2}, given r,f?l,

the time to wait until another ant reinforces a path in G; (i.e., rk(i) — k(l_) 1) and the number

B,Ei) of unsuccessful excursions made by this ant (the rk(i)th ant) in G; are both measurable

functions of W(‘Ek(l_)l) and of the total number of unsuccessful excursions performed in G
by all ants between times tk(fl + 1 and r,f’) . Moreover, by definition, given this information,
the reinforced path in G; is chosen by performing B,E’) independent unsuccessful excursions,
plus one additional independent successful excursion, and using the loop-erasure rule. Thus
we can use the induction hypothesis for G and G».

In the following, we use the fact that, at any time n, the (n + 1)th walker performs its
successful excursion in G; with probability Cg, (n)/(Cg, (n) + Cg,(n)), for i =1, 2. Indeed,
this follows from the fact the law of the successful excursion of each ant walking on G is by
definition independent of the number of unsuccessful excursions performed by this ant and of
their trajectories. Moreover, for the simple random walk in G (i.e., if we were considering the
original model), the probability to reinforce a path in G; is given by the ratio of the effective
conductances, and this happens if and only if the successful excursion belongs to G;.

Case 2.1: We first assume that /iy (G1) = hnin(G2). Using the induction hypothesis, there
exist two random variables K1, K € (0, c0) such that, almost surely,

Ni(n) — KN (n)*  Nz(n) — KaNy(n)“

Cotm) z == GD Tomin(G2)
_ N+ Mol KN )%+ Na()®)
= min(G) hin(G)

with @ = «(G) (see equation (3) for the definition of «(G)) and K = K1+ K3. This concludes
the induction argument for Part (i), since by concavity of the map x > x%, we have

(5) Ni(n)* + No(n)* <217,

Concerning Part (ii), note that using the induction hypothesis, the probability for the (n 4+ 1)th
walker to make its successful excursion in G is at most C N{(n)/(n + 1), for some (possibly
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random) constant C, and similarly for G;. Furthermore, if it makes its successful excursion
in G, then the probability that its range contains a geodesic path of G is larger than 1 —
KiNi(n)*~', and similarly for G,. Considering the complement and using a union bound,
we deduce that the probability that the (n 4- 1)th walker reinforces a geodesic path of G is at
least

C
1— m(K1N1 (n)* + KaNa(n)*) > 1 — C'n® !,

for some constant C’, which concludes the proof of the induction argument in the case when
hmin(Gl) = hmin(G2)~

Case 2.2: We now assume that hmnin(G1) # hmin(G2), and without loss of generality
hmin(G1) < hmin(G2), which implies a(G) = a(G1) (see equation (3) for the definition
of a(G)). Using the induction hypothesis, we have that there exists a random variable
K1 € (0, 00), such that
. Ni(n)

hmin(Gl)
For small values of Ni(n), this lower bound can be negative (recall that, by definition, o =
o (G) < 1; see equation (3)); a better lower bound for small values of N (n) is given by

(7 Ci,(N1(n)) = Cg,(0).

By Lemma 2.4(b), there exists a constant C> > 0 (only depending on G;), such that

n—Ni(n)+C; _n —Ni(n) + C _ a(n — Ni(n) + Cr)
hmin(G2) = hmin(G1) +1 hmin(G1) ’

because, by assumption, hmin(G2) > hnin(G1) + 1, and by definition of o = a(G) (see (3)).
For all b > 0, we define the function ¢; such that, for all i > 0,

(6) Ca, (N1(n)) (1— KN (m)*7 ).

®)  Cg,(n—Ni(n) <

©) () = max( Co, (0). 5 — b )
» (1) := max , ————— |.
¢ < hmin(Gl)
We also define the function v such that, for all i > 0,
. a(i +C2)
(10) () = ——.
w hmin(Gl)

By equations (6), (7) and (8) we get that the probability p, that the (n + 1)th reinforces a
geodesic path of G, conditionally on W (n), satisfies
_ Cg,(N1(n)) - @K, (N1(n))

CG,(N1(n)) +Cg,(n — N1(n)) ~ ¢g,(N1(n)) + ¥ (n — N1(n))’
for all n > 0. We now prove that, almost surely, there exists a finite random variable K > 0,
such that

(12) Ni(n)>n— Kn* foralln>1.

(11) Pn

This is enough to conclude the proofs of the induction step for both Parts (i) and (ii). Indeed,
on the one hand, we get that, for all n > 1,

Ni(n)(1 — KiNi(m)*~") - (K + Ky)n”
hmin(Gl) - hmin(G)

which concludes the proof of the induction step of Part (i). And, on the other, using (2), we
get that the probability of not reinforcing a geodesic path in G is smaller than

KiNi(m)* '+ (1 = po) < (K1 4 hmax (G) K )n® 1,

Cc(n) = Cg,(Ni(n)) =

k)
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which concludes the proof of the induction step of Part (ii). Therefore, to conclude the proof,
it only remains to prove equation (12).

If K| was a fixed constant, the conclusion would come by simply analysing the generalised
urn process associated to ¢k, and v. But here, K is a random variable that depends on the
whole history of the process. To go around this issue, we are going to define a family of
generalised Pélya urns, and couple all of them with the process (N1(1)),>0, in such a way
that almost surely (Nj(n)),>0 will dominate at least one of those urns. To be more precise,
for all b > 0, we define the Markov process (R%),~0, by Rg =0, and for all n > 0,

@b (RY)
@p(RD) +yr(n — RD)’

where ¢ and i are defined in equations (9) and (10) respectively. We now fix some b > 0
and show that there exists an almost surely finite random variable C, such that

(14) n—Rb<Cpn® foralln > 0.

(13) g :=P(R), =R+ 1| R))=1-P(R),, =R, | R}) =

To prove equation (14), it is convenient to use Rubin’s algorithm, which was introduced in
Davis’s paper on reinforced random walks [1]. Consider {f;‘i1 }i>o0 and {51-2}120 two independent
sequences of independent mean-one exponential random variables, and define, for all n > 1,

LN 2N 8
T, :Zzwb(k)’ and 7, ::Zm.

k=0 k=0

Setalso 7} = TO2 =0 and, for all # > O (see Figure 6),
t'@):=sup{n>0:T) <t}, and 7(t):=sup{n>0:T><t}.

It follows from standard properties of independent exponential random variables that, for any
t > 0, conditionally on the fact that t!(f) = ny, and t%(t) = n», the probability q,’fl 4n, that

Ri’ \+n, INCreases by one at the next step is also equal to the probability of Tnl1 1 being smaller

than Tn2+1
As a consequence if we let ¢, = inf{r > 0: i) +12@0) > n}, then the process (7! )n>0

has the same law as (RS )n>0- Note that, since they are bounded in L2, the series

& — 1 & —
and
3 op (k) Z (k)

k=0
& /(i)
l 2 2 l
| TJ T"Z(t)w it -
0= Tl T2 /I;:l : : TEI(P) : Tlme
2 .
§7/¢(J)

FIG. 6. Rubin’s construction for the proof of Proposition 2.5 (Case 2.2 in the proof). On the top line, the intervals
between crosses are the éi] /op (i) and, similarly, on the bottom line, the intervals between crosses are the 51-2 (i),

On the middle line, we show how the Til s and Tl.2 ’s are defined as the partial sums of these interval lengths and

how ‘[,1 and 1,2 are defined for a given time t > 0.
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converge almost surely. In particular

n—1

T, =)

iz v (k)

n—1

=Y ﬁ +0(1) = llogn + O(D),
k=0

where the O(1) are almost surely bounded. Moreover, by definition, one has

+0O0)=logn+O(1), and
(15)

sup|T, . — T3 ]<supmax<i i)
nz0 ST op(n)" Y ()’

from which it follows that

T = Tezgy + O,

where O(1) stands for an almost surely finite random variable. Together with (15), this en-
tails t2(z,) < Cpn®, for all n > 0, and some almost surely finite random variable Cp, which
concludes the proof of equation (14).

To conclude the proof of equation (12), we only need to couple the family of processes
(Rg)nzo, b > 0, with (N1(n)),>0 so that, almost surely, there exists K > 0 such that N1(n) >
Rf and p, > q,{(, for all n > 0. To do this coupling, we use a sequence (U,),>;1 of i.i.d.
uniform random variables on [0, 1], independent of everything else. We start the processes

so that N1(0) =0 and Ro =0 for all » > 0. Then, at each time step n > 0, set Nj(n + 1) =
Ny (n) + 1 if and only if p, > U,41 and, similarly for all b > 0, Rb = Rb + 1 if and only

if qn > U,+1. By induction on n, we can prove that, in this coupling, for all » > K, for
alln > 1, Ny (n) > Rb Indeed, first note that, by equation (11), for all b > K, N1 (n) = Rf’l
implies p, > qn Moreover if Ni(n) > Rb and p, > qn, then Ny(n + 1) > R? +1, which
concludes the proof by induction: we get that, for all b > K, Ni(n) > Rf’l >n — Cpn®. This
concludes the proof of equation (12), thus the proof of the induction step in Case 2.2, and
thus the proof of Proposition 2.5 altogether. [

2.5. Proof of Theorem 1.3. Since the original model is a particular case of the generalised
model of Section 2.4, it is enough to prove that Theorem 1.3 holds in the generalised model.

By Proposition 2.5, for any edge e that is not contained in a geodesic path, one has
We(n)/n — 0, when n — 4-o00. Thus it only remains to show that, for every edge e that
lies on a geodesic path, W,(n)/n converges to some random variable y., which is almost
surely nonzero.

The proof is done by induction on the size of G. If G has size one, the result is straight-
forward. We now assume that the result holds for all series-parallel graphs of size at most N,
and consider a series-parallel graph G of size N + 1. Once again, by Lemma 2.1 we know
that G is the merging of two nonempty subgraphs G; and G». If G| and G, are in series,
then the result for G follows immediately from the induction hypothesis.

We now assume that G| and G, are merged in parallel. If hpin(G1) # hmin(G2), and for
instance if hmin(G1) < hmin(G2), then equation (12) applies and shows that a fraction 1 —
o(1) of the ants chooses a path in G 1. The result thus follows from the induction hypothesis.

If hmin(G1) = hmin(G2), we first show that liminf N;(n)/n > 0, almost surely for all i €
{1, 2}. To do this, we use again Rubin’s construction; the argument is very similar to the one
given in Case 2.2 of the proof of Proposition 2.5. We only briefly indicate how to adapt the
proof to show that liminf N;(n)/n > 0 in the present case. We aim at coupling the process
(N1(n))n>0 with a family of processes (Rﬁ)nzo, b > 0. We define ¢} as in equation (9) and
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set (i) = (i + C2)/ hmin(G1) for all integers i (compare with equation (10)). We then define
Rs as in equation (13). One can show that, on the one hand, for any b > 0, there exists a
random variable ¢; > 0, such that almost surely for all n > 1, Ri’ > cpn. And, on the other
hand, there exists a random b > 0 such that N{(n) > R,’i for all n > 0 almost surely. Hence,
we deduce that almost surely liminf Ny (n)/n > 0, as claimed. In other words, almost surely,
a positive fraction of the ants chooses a path in G, and by symmetry the same holds for G».

We now show that Ni(n)/n converges almost surely when n tends to infinity. To do this,
we show that X (n) := N;(n)/n is a stochastic approximation. Indeed, we have, for alln > 1,

X(n+1) = X(n) 4 DMt n
n+1

where AM,, = N{(n + 1) — N{(n) — p,, with p, as defined in (11), and h, := p,, — X (n).
Iterating the above equation, we get that, for all n > 1,

" AMy+h
X(n+1)=X(1)+Z%.
k=1

Note that, by definition, the martingale increment A My is bounded by 1 in absolute value, and
thus the martingale >} _; AMy/k, is bounded in L?, and hence almost surely convergent. Us-
ing the definition of p,, (see equation (11)), together with Lemma 2.4(b) and Proposition 2.5,
we get

Ni(n) — K, N1(n)* <y < Ni(n) + Cg,
n—Kg,Ni(n)*+Cg, ~ "~ n+Cg, —Kg,Na(n)®’

Since liminf N;(n)/n > 0, for i = 1, 2, this implies that, almost surely when » tends to in-
finity, |h,| = O@*CGV~1) where we recall that, by definition (see equation (3)), «(G1) < 1.
This implies that the sum Y y_; hx/k is almost surely convergent, and thus that X (n) con-
verges almost surely, as claimed. Together with the induction hypothesis applied to G| and
G, this allows us to conclude the induction step for that last case (G and G> merged in
parallel and min(G1) = hmin(G2)).

Altogether, this concludes the proof of Theorem 1.3.

3. The geodesic ant process on the losange graph. We prove here Theorem 1.4 con-
cerning the losange graph; in this section, we thus only consider the (uniform-)geodesic ver-
sion of the model (as discussed in Section 1.3, the rule about how to choose the geodesic to
reinforce when there are several in the trace of the walker is irrelevant here since the trace
of a walker can only contain one geodesic). The proof relies primarily on the fact that the
sequence of weights is the solution of a certain stochastic recursion formula, which we state
in Lemma 3.1 below.

Recall Figure 4 of the losange graph, and define for n > 0

W(n)
n+2’

(16)  W(n) := (Wi(n), Wa(n), W3(n), Wa(n), Ws(n)), and W(n)=

where W;(n) denotes the weight of edge i after n walkers (or ants) have reached the food.
Then for w = (wy, ..., ws) € [0, 1]°, denote by p12(w) the probability that a walker rein-
forces edges 1 and 2, when the weights of the five edges of the losange graph are respectively
w1, ..., ws. Define similarly pi35(w), p23a(w) and pss(w), and set

F(w) := pr2(w)(1,1,0,0,0) + p13s(w)(1,0, 1,0, 1)

a7)
+ p4s(w)(0,0,0, 1, 1) + p23a(w)(0, I, 1, 1, 0) — w.
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Lemma 3.1 expresses the fact that the whole study of the process (W(n))nzo takes place in
the subset of [0, 1]5, defined as

wi+wg=1,and wr + ws =1
(18)  &:=1(wy, wp, w3, wg, ws) €[0,11°: |wy — w| < w3 and |ws — wa| < w3 | .
wi + wz > w3 and wy + ws > w3

Let us briefly explain the restrictions above. Note that each walk can only reinforce one of
the following sets of edges:

(i) edge 1 and edge 2;

(i1) edge 4 and edge 5;
(iii) edge 1, edge 3 and edge 5;
(iv) edge 4, edge 3 and edge 2.

One can see above that, at each round, precisely one of edge 1 or edge 4 is reinforced and
precisely one of edge 2 or edge 5 is reinforced. Hence, we have that w1 + w4 = wy +ws =1.
Next, the only cases where edge 1 is reinforced but not edge 2, or edge 2 is reinforced but
not edge 1 are in scenarios (iii) and (iv), in which cases edge 3 is reinforced. Therefore,
lw; — wa| < w3, and by symmetry |wq — ws| < w3. Finally, again using (iii) and (iv), every
time edge 3 is reinforced edge 1 or edge 2 is reinforced. Therefore w; + wy > w3 and by
symmetry w4 + ws = ws3.

Using further the definition of the ant process, we obtain Lemma 3.1 below. We use now
the shorthand notation [E, to denote the conditional expectation with respect to the sigma-
field F,, (where (F,)n>0 is the natural filtration of the process).

LEMMA 3.1. Foralln >0, W(n) € &. Furthermore,

(19) W(n+1)=Wn) + ﬁ(F(VAV(n)) +AM(n+1)),

where AM(n+1)=Yn+1)—E,[Y(n+D],andY(n+1):=Wmn+1) — W(n).

As mentioned in the introduction, this losange case can be seen as an intricate coupling
between a biased urn (the ants that reinforce edge 3 versus all others, that is, W3(n) vs.
n — W3(n)) and a standard Pdlya urn (the ants that reinforce edges 1 and 2 vs. the ants that
reinforce edges 4 and 5). In Section 3.1 we treat the first urn by proving that W3(n)/n con-
verges to 0 almost surely, at a polynomial speed. The “Pélya” part is treated in two additional
steps: In Section 3.2 we show that W(n) converges almost surely to some limit in [0, 17°, and,
in Section 3.3, we prove that the limit is nondegenerate, in the sense that it does not charge the
extremal points (1, 1,0, 0,0) and (0,0, 0, 1, 1). In terms of the ants, this means that the ants
find both geodesics and not just one of them. Interestingly, ruling out these extremal cases is
the most delicate part of the proof.

3.1. On the convergence of W3(n)/n to 0. In this section, we prove here the following
result.

PROPOSITION 3.2. Almost surely, as n — +00, one has W3(n)/n — 0. More precisely,
there exists a € (0, 1), such that almost surely

5 W3(n)
1m =

n—oo po

0.

The first idea of the proof is to compare W3 (n) with the number of red balls in a two-colour
Friedman-like urn defined as follows.
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LEMMA 3.3. We define a Markov process (Ry)n>0 as follows: first Ry = 1, and for all
n >0, we set R,11 =R, + Apt+1, where

Rll 2 1
R, '(m) +3

R, l
n+2 n+2+2

P(Aps1 =11 R) =1-P(Ay11=0[Ry) =
Then almost surely when n — 400, we have R, /n — 0.

PROOF. Letusdefine Z, := R, /(n+2), for all n > 0. We use stochastic approximation:
by definition, we have that, for all n > 0,

Ry1 . Ry + Ant i Ry ) n+2  Auq
n+3  n+3  n+2 n+3 n+3
Forn >0, set AM,+1 = An+1 — E[A,41 | Ry]. By definition of the model, we have

1
Z,1+1 = =Z,+ m(AnJr] - Zn)-

Z2+3

Zy+ 3

E[AVH—] | Rn] = Zn .
implying that
1
Z =7 —(G(Z AM, ,
n+1 n+n+3( ( n)+ n+l)
where, for all x € [0, 1],

2 1
X +§
1

Gx)=x- X.

Note that G(x) <0 for all x € [0, 1]. Thus (Z,),>0 is a nonnegative supermartingale, and

converges almost surely. Moreover, by definition |AM,| < 1, for all n > 0, and thus the
martingale

L AM;

M”::.Z i+3°

i=1

converges almost surely, since it is bounded in L2. It follows that the series " G(Z,)/n also
converges almost surely, which implies that the limit of (Z,),>¢ is necessarily a zero of G,
that is either O or 1. To see that Z,, — 0 almost surely, we couple (Z,),>0 with a Pdlya urn:

this coupling is based on the fact that, by definition and because ’;:“_Lll <1 forall x € [0, 1],
we have

IED(An-i-l =1 | Zn) =< Zn-
Thus if we define a process (Uy),>0 such that Uy = Z and, for all n > 0,
P(Un—i-l =U,+ 1 | Un) =1 _P(Un—H =U, | Un) =U,,

then (Uy)n>0 and (Z,),>0 can be coupled in a way that Z,, < U, almost surely for all n > 0.
It is known that U,, — U almost surely when n — +o00, where U is uniform on [0, 1]. Thus
Z, cannot converge to 1 and thus converges to 0 almost surely when n — +oo. [l

The next step to prove Proposition 3.2 is to compute the probability that a walker reinforces
the middle edge 3. Recall the definition (18) of the set £.
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Wy Wy v wiwy
v
w1 + Wy wy + wy

w3
------- == <>o—o == . o

W2

FI1G. 7. Calculation of the probability of (ii), the event that a random walker starting at the black dot reaches
the white dot before reaching the crosses. The dashed edges in the left-hand side picture have no effect on the
calculation and can be removed. In terms of effective conductances between the black dot and the crosses and the
black dot and white dot, these three graphs are equivalent.

LEMMA 3.4. One has, forall w € &,
Wi wW3ws

w) = .
P13s () (w2 + w3 + wiwg)(wg + ws) + wow3 + wiwswg
PROOF. We call “left” vertex the vertex linked to edges 1, 2 and 3, and “right” vertex the
vertex between edges 3, 4 and 5. To reinforce edges 1, 3 and 5, a walker has to:

(i) go through edge 1 in its first step;
(i1) then, from the left vertex, reach the right vertex before going through edge 2;
(ii1) finally, from the right vertex, reach the food before going through edge 2 or 4.

Let us denote by p;, pi; and p;; the respective probabilities of these three events; we thus
have p135(w) = p; pii piii- First note that

w1
pi=———=uwjy,
w1 + wyg

using for the last equality that w € £. To calculate p;; and p;;;, we use effective conductances.
One can check that p;; is the probability that a random walker starting from the black dot in
the left-hand side of Figure 7 reached the white dot before reaching one of the crosses. In
Figure 7, we use the parallel and series formulas for effective conductances to simplify the
left-hand side graph into the equivalent (in terms of effective conductances) right-hand side
graph. In the right-hand side graph, it is easy to see that the probability to reach the white dot
before the cross starting from the black dot is
w3 w3

wy + w3 + 5 wa w3+ wiwy

using again that w € £ for the last equality. Similarly, one can check that p;;; is the probability
that a walker staring from the black dot in the left-hand side of Figure 8 reaches the white
dot before reaching one of the crosses. Using the calculation of effective conductances done
in Figure 8, we eventually get that

ws ws

wrws(wiFwg)+wiwiwy = waw3twiwiws ’
w w
(w2 4w3) (w1 +wg)+wiwy 4+ ws+ wor w3 +wiwy

Diii =

wq + ws +

which concludes the proof, since, forall w € £, w1 +wqs =1. O
We deduce the following result, proving the first part of Proposition 3.2.

LEMMA 3.5. One has, forall w € &,

2 1

P135(w) + paza(w) < w3 -

’

w3+%
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Wy
wy

w3 Wy w3 ws

Ws Ws

Wal3 + W1W3Wy

Wy
Wy + w3 + wiwa

WaWs3 + Wiw3wy

Wy + W3 + wWiwWy

F1G. 8. Calculation of the probability of (iii) in the case w1 + wq = 1, the event that a random walker starting
at the black dot reaches the white dot before reaching the crosses. In terms of effective conductances between the
black dot and the crosses and the black dot and white dot, these five graphs are equivalent.

and as a consequence almost surely,

. Ws3(n)
1m =

n—o00o n

0.

PROOF. The idea is the following: we run the ants walk from time 0, and simultaneously,
we consider an urn that contains black and red balls. We call this urn the “ants urn”. At time
zero, we put one black ball and one red ball in the urn, and every time an ant reaches the food
in the ants walk process, we add a ball into the urn: this ball is red if edge number 3 has been
reinforced by this ant, black otherwise. The first part of the lemma will show that this urn can
be coupled with a Friedman-like urn of Lemma 3.3 so that there are always more red balls in
the Friedman-like urn.

By Lemmas 3.1 and 3.4 we have, for all w € £,

wiw3ws

35(w) =
pi3s () (w2 + w3 + wiwg)(wg + ws) + wow3z + wiwswy

(20) wiw3ws

< .
(w3 + w2)(ws + ws) + wawy
Using that ws + w2 > wy, and wy + ws = 1, we deduce
W{wW3Ws

21 w) < .
(21 pi3s(w) < W3 W1w0a + Waths

By symmetry, we have that
W W3 W4
w3 + wiws + wows’

p23s(w) <

and thus, the probability that the nth walker reinforces edge 3 is at most
wiws + wrws
w3 + wiws + wows

p135(w) + p23a(w) < w3 -

Finally, we note that
W ws + wawg = wiwg + waws + (w1 — w2) (ws — wa) < wWiwa + waws + w3,

which entails

wiwg + waws + w3 w3 (1l —w3)
P135(w) + paza(w) < w3 - 3 < w3(1 - )

wiwg + waws + w3z wiw4 + waws + w3
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Recalling next that, for all x € [0, 1], x(1 —x) < % and that wi + w4 = wy + w5 = 1, we have
that wiws + wyws < l, which implies
w% + %

w3+%

w3 (1 —w3))

p13s(w) + pr4(w) < w3(1 - :
w3 + 2

proving the first part of the lemma. Applying this with w = W(n), we thus have proved that,
at every time step n, the probability to add a red ball in the ants-urn is at most the probability
to add a red ball in the Friedman-like urn of Lemma 3.3. Therefore, the number of red balls
in the ants urn (i.e., W3(n)) is at most R, at time n (for all n > 0), where R, is the quantity
defined in Lemma 3.3. Thus the result follows from Lemma 3.3. [

REMARK. It is interesting to note that, in the loop-erased ant process, one has
wWiw3ws
w3 + wiws + wows

P135 =

to compare with equation (21). This means that Lemma 3.5 holds in this case too. However,
to show almost-sure convergence of W(n), we need to know that the convergence of W3 (n) to
zero has polynomial speed. This is done in the following lemma, whose proof relies on a bet-
ter bound, using the equality in equation (20). Therefore, the fact that this better bound does
not hold in the loop-erased case is the reason why we believe that the proof of Conjecture 1.1
in that case is more intricate.

We now aim at bootstraping the previous result to get a polynomial speed of convergence.
For this we will need the following fact.

LEMMA 3.6. For any p € (0, %), there exists € > 0 such that for any w € £ satisfying
w3 = ¢,

pi3s(w) + pa(w) < (1 — p)ws.
PROOF. By Lemma 3.4, for any w € £,

w{w3ws
(22) pi3s(w) =

w3 (1l 4+ wq + wiwy) + wowyg + wows + w1w§ + wiwaws

Assume that w3 < }‘. Let us first prove a lower bound on the denominator of (22). This
denominator is at least equal to w3 (1 + w4) + wow4 + wyws, and we would like to prove that

(23) w3 (1 + wy) + wrwsg + wrws > —w§+2w1w5.
Indeed, first using the fact that, for all w € £, wq > ws — w3, we get
w3 (1 + wg) + wowg + wows > wi(l + wy) + wr(ws — w3) + wrws
> w3 (1 + wg — wr) + 2w ws.

Now, using the facts that, for all w € £, wy > w; — w3, w4 — w5 > —w3 and 1 — wy = ws,
we get that

w3 (1 + wyg) + wows + waws > w3(wg + ws) +2(w; — w3)ws
> w3(ws — ws) +2wiws > —w§ + 2w ws,

which concludes the proof of (23).
Next we distinguish two cases: either wy > w or wy < wy.
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e We first treat the case when w; > w» and, as a consequence, ws > w4. Plugging equation
(23) into equation (22), we thus get
wiw3ws

p135(w) B —
2w1w5—w§

Since w € &£, we have w; + wy > w3, which, since w; > w, implies w; > % Similarly,

the facts that ws + ws > w3 and ws > w4 imply that ws > % Moreover, since w € £, we
have w; + wyq = 1, and thus either w; > % or wy > % If w; > % then we conclude that
wiws > > 0 wy > %, then ws > w4 > %, and we also get wiws > 2 in this case.
Therefore, in both cases (w; > % and wyg > %), using the fact that ﬁ <1+ 2x for all
O0<x< % we get

w3 w3
< —_ << —
pi13s(w) < 3=

2w2,
dwy) = 2 W3

as long as w3 < }L.
e We now treat the case when wy > wp, which implies w4 > ws. In that case, it is straight-
forward to see that the denominator in (22) is at least wy (w4 + ws) > 2w ws, which implies

p13s(w) < ws/2.
By the two cases above, we have thus proved that, for all w € £ such that w3 < l,

w3
pi3s(w) = —= + 2w3.
Note that by symmetry the same inequality holds for p234(w), that is, for all w € £,
(24) max (p135(w), p23a(w)) < - 2w,

but this is not yet enough to conclude the proof: we need to get a better upper bound by taking
into account the terms in the denominator of equation (22) that we previously neglected.

To do that, we again distinguish two cases: first assume that wyq > % In this case, using the
fact that for all w € £, ws > w5 — w3, we get

1
wlwf Z WIW4Ws5 — W W3W4 = §w1w5 — Ww3w4,

and since we assume that w4 > l, we also get

1
wiw4aws = Ewlws.

Now if in addition ws > w4, one has w; > wy and thus w; > w3/2, as well as ws — wq <
w3 < 4wjws. This, together with the last two displays and (22) implies

(w) < < <
3wiws + wi(wg — ws) 3 1_4% 3

wiw3ws w3 1 w3 8w3
P135 <—- < (1 + )

as long as w3 < %. We thus get that, for all w € £ such that w3 < %, and wyg > %,
p13s(w) < 3 + w3.
We now need to treat the case when wy4 < % In that case, w; > % and we get, by symmetry,

w3
p234(w) < 3 + w3,
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In both cases (w4 > % and w; > %), using equation (24), we get

Sws

G + 33,

1 1
P135(w) + pa34(w) < (5 + §>w3 +3w3 =

as long as w3 < }1, and the lemma follows. [

LEMMA 3.7. Almost surely, for any a > 5/6,

lim Y3 _

n—-oo p«

PROOF. Fix o > 5/6, and set Z, :=n~% - W3(n). Using equation (19), we get, for all
n>1,

’

1)a Wi+ 1) — Wsm) _ Fn AM3(n+1)
n—+1 (n+ 1) T a1 (n+ 1)

withr, = (n+ D' @E,Y3s(n+ 1) —aZ, + O(Z,/n), almost surely when n — +o00. Recall
that Y(n + 1) = Wm + 1) — W(n) and fix & € (5/6, a); by Lemmas 3.5 and 3.6, almost
surely for all n large enough,

E,Y3(n+1)= Plas(W(n)) + P234(W(n)) <aWs(n).

Therefore, almost surely for n large enough, r, < —§Z,, for some constant § > 0. As a
consequence, almost surely there exists m > 1, such that for all n > m,

Znt1=2n - (1 -

Yin - AM3(i)

lC{

n
anym,n'zm+ Z
i=m+1
where y; ,, := ]_[;?=l~ 1= %), for all i <n (with the convention that y,, , = 1). Recall that by

definition |AM3(i)| < 1, almost surely for all i > 1. Thus, by Doob’s L2—inequality, one has
as m — 400,

" in - AM3(i 1 1
P sup Z Vin : 3(1) > )= O(?)
nzm|; o ¥ m2a—1—*§ mo/
By Borel-Cantelli, we deduce that almost surely, one has, for all m large enough,
" in - AM3(i 1
sup Z Yin : 3(i) < -
n>m P % mZ(x—l—‘g

The lemma follows, since 20 — 1 — % > 0, and for any fixed m > 1, y, » = 0, as n — oo.

g
3.2. Convergence of W(n). Our next goal is to prove the following proposition.

PROPOSITION 3.8. Almost surely, there exists some (random) real x € [0, 1], such that
as n — oo,

W, W,
i Ni=1.2. ana ™

—1—yx Vi=4,5.

We start with a computation giving the probability to reinforce edge 2, which is similar to
Lemma 3.4.
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Wy Wy

ws(wiwy + ws)

wWiwWy + W W3 + Ws + Wy Wy

F1G. 9. Calculation of pz (w)/wy (i.e. the probability to reach the circled vertex before the crossed vertex
starting from the black vertex) for w € &€ (in particular, we use wi + wqg = 1).

LEMMA 3.9. One has, forall w € &,

wrw3 + wiwaws + wiwrw4

w) + w) =
p12(w) + p23a(w) w3 ¥ s + W1w0a

PROOF. Note that pja(w) + pa3a(w) is equal to the probability that the last step before
reaching the vertex F is through edge 2. Let us compute this probability by decomposing
with respect to the first step, which is either through edge 1 (jumping on the left vertex), or
through edge 4 (jumping on the right vertex), hence we will write

(25) p12(w) + paza(w) = p*(w) + p" (w).

For w € &, the probability to jump on the left vertex is w1, and once on the left vertex, we
need to compute the probability to cross edge 2 before crossing edge 5, which is easily done
through graph transformations similar to those done in the proof of Lemma 3.4; see Figure 9.
One obtains

wa (w3 + ws + wiws)
w2 (w3 + ws + wiwyg) + ws(ws + wiwy)
waw3 + waws + wiwawy
w3 + wrws + wiwg

(26) pl(w) =w; x

27 =w X

where we used that wy + ws = 1.
Now, using symmetry, one has

wsw3 + waws + wiwswy
28 "(w) = wy X (1— >
(28) p (w) =wy w3+ Waws + Wiws
29) — wy x Wrw3 + Wiwawyg

w3 + wows + wiwy

One can now easily conclude using (25), by adding up (27) with (29) and using that w; +
wg=1 040

We next deduce the following bound on F>(w) (the second coordinate of the function
F(w) from (17)).

LEMMA 3.10. Forany w € £, we have

|Fy(w)| < %

PROOF. By Lemma 3.9, for any w € &,
(Wi —w2)wrws
w3 + waws + wiws

(30) F(w) = prao(w) + pa3a(w) —wy =
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Note now that since w; — wy = w5 — w4, either w; > wy, or wa > ws. In the first case, using
also that wg > w5 — w3, we deduce w3 + wiws > wrws. By symmetry, the same holds when
w4 > ws. We thus get

w2| w3

lwy —
|F2(w)|§T§7 forallweg,

where we have used |w; — w»| < w3 in the second inequality. [

PROOF OF PROPOSITION 3.8. Iterating equation (19), we get that, for all n > 0,

n—1

(31) W(n) = W(O)—i—Z 1 F(W@)) +AM( + 1)),

where we recall that AM(n+1):=Y(n+1)—E,Y(n+ 1) withY(n+1):=Wrn+1) —
W(n), and where F is defined in equation (17). By definition of the model, ||[Y (n + 1)||; <3
almost surely, and thus ||AM (i 4+ 1)||; < 3 almost surely, which implies that the martingale

. UAMG 41

i=0
is bounded in L? and thus converges almost surely when n — +o00. By Lemma 3.1, W(n) €

&, forall n > 0. Thus Lemma 3.10 gives |F2(W(n))| < W3 (n)/2, for all n > 0, which implies
using Lemma 3.7 that

B F(W(D) | "S AMy(G +1)
Wa(n) = WZ(OH,ZO 3 +§0 3

converges almost surely when n — +-00. The proposition follows, since by Lemma 3.5, one
has W1 (n) — Wz(n) — 0, and by Lemma 3.1, one has W4(n) =1- W1 (n), and W5(n)
11— Wz(n), foralln >0. O

3.3. On the absence of convergence to 0 or 1. The last step of the proof is to exclude the
convergence toward an extremal point, that is we prove the following proposition.

PROPOSITION 3.11. Almost surely,

. Win)
lim

n—oo p

¢ {0, 1}.

Note that by symmetry it suffices to exclude the possibility of converging to 1. We prove
this by contradiction, and start with the following fact.

LEMMA 3.12. Forall a € (0, 1), on the event where

W W
im Vg g fim YR
n—oo n n—+oo0 p%

=0,

both hold, we have almost surely, for any B > «,

INIAIC))

n——+0o0o nﬂ

=0.
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PROOF. Fix « € (0, 1) and assume that both Wi (n)/n — 1 and W3(n)/n* — 0 when
n — +00. Assume by contradiction that there exists 8 > «, such that limsup,,_, , ., W5(n)/
nf > 0. Without loss of generality one can even assume that lim SUp, s 400 Ws(n)/ nf > 1,
by taking a smaller g if necessary. In other words, letting
W W
E:= { tim 2 0, and tim 21

n—>oo p« n—o00 n

W.
=1}, and E’:=Eﬂ{limsup 5(n)>1}’
n——+o0o nb

our aim is to show that P(E") = 0.
For m > 1 integer, define

Ey :={W3(n) <n®% and Wa(n) > 3(n +2)/4 for all n > m}.

By definition, and using that W»>(m) > W{(m) — W3(m), for all m > 0, one has that £ C
U,» Em, and therefore

0.

lim P(E N ES)

m— 00

Thus it amounts to show that
lim IP’(Em N E/) =0.
nm—0o0

Note now that by conditioning with respect to the first time n > m when Ws(n) > nf, it
suffices in fact to show that almost surely

(32) lim P(E, NE | Fy)-1{Ws(m) >mP} =0,
m—0o0

where F,,, = o0 (W(0), ..., W(m)). Thus the rest of the proof consists in proving (32). The
idea is to show that for any integer m > 1, on the event that {W5(m) > mP }, the pro-
cess (Wa(n))p>m can be coupled with another process (R;),>m, in a way that outside
an event with vanishing probability as m — oo, one has W»(n) < R, for all n > m, and
limsup,,_, o, Rx/n < 1, from which (32) follows.

We proceed with the details now. Fix y € (0, 1), suchthat 1 + o < 8+ y. Letm > 1 be
given, and conditionally on F,,, we define the process (R;),>m as follows: R, = Wa(m),
and for all n > m,

R, + R}
(33) Gn =P(Ros1 =Ry +11G) =1 = P(Rys1 = Ry | G) = ———",
n—+ R;,

where G, = F,, Vo (R, ..., Ry).
o First, we prove that, for all m > 1, if we set

(34) Am::{inf&>%}ﬂ{infn_Rn 3 }

n>m n n>m n = Sml-8
then almost surely on the event {Ws(m) > mPy N {Wa(m) > 3(m + 2)/4}, one has
(35) P(AS, | Fn) = O(m™?),

where the implicit constant in the O is deterministic, and § = §(B, y) is some positive con-
stant depending only on 8 and y. To do this, we use again Rubin’s construction; see Fig-
ure 10: Let (§;);>1 and (.;g,-),-z 1 be two independent sequences of independent exponential
random variables with mean 1 (also independent of the process (W2(n)),>1). Forall m >0
and i > 0, set
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§i/(i+1)

B

(] R

0= vaQ(’”L)*l = TI/V5(m)71 Tlme

R EEEE

4>

&/i

FI1G. 10. Rubin’s construction for the proof of Lemma 3.12.

with the convention that 7; =0 for i < W»(m), and T, =0, fori < Ws(m). For all t > 0, set
t(t):=sup{i >0:T; <t}, and 7(¢):=sup{i>0: T, <t},
and for all n > m,
ty :=inf{t > m :t(t) + T(¢) > n}.

Standard properties of independent exponential random variables imply that (t(#,)),>, and
(Ry)n>m have the same law. Note that for all m > 1, and i > Wr(m),

i 1 LoE—1
36) Ti=M +log(—— ) +O0(—— ith M; := I
(30) l i 0g<W2(m)> - (Wz(m)l_”) e j:WZQ(m) Jj+Jjr

when m — +o0, and for all i > Ws(m),

)+O<W51(m)) with M; := Xl: gj-_l’

j=Wsem)y /

i
Ws(m)

(37) T, = M; + log(

when m — 400. By Doob’s L2-maximal inequality, we get that, almost surely

1 1 1 1

68 P swp (M= [Waem) <dwaem? Y 5 =0(———),
i=Wa(m) Wa(m)3 i>Wym) " Wa(m)2

when m — 400, and similarly,

~ 1 1
(39) IP’( sup | M| > : ‘Ws(m)>=(’)< l),

i>Ws(m) Ws(m)4 Ws(m)2

when m — +4-00. Moreover, by definition
(40) Tt(t,,) = 7~ﬂn—'t(t”) + O(Fm + I:m)s

with

Iw= sup &/j, and T[)y= sup &;/j.
J=Wa(m) j=Ws(m)

Note that, for all m large enough,

1 VWa(m)
I[D(Fm > \/W ‘ Wz(m)> = eXP(—?)

41
() J_W5<m>>.

- 1
(T > i | Matm) <exp(—55
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Taking the exponential in equation (40) gives

T(tn)  Ws(m) _
n—1t(t,) Wa(m)
where, by equations (36), (37), (38), (39) and (41), there exists § = §(8, y) > 0 such that
almost surely on the event {W5(m) > mﬁ} N{Wy(m) > 3(m + 2)/4},

IF’(sup len| > m™? }]—"m) =0(m™).

n>m

(42)

exp(en),

Since, by Lemma 3.1, W5(m) =m + 2 — Wa(m), we get that on the event {W>(m) > 3(m +
2)/4}, one has Ws(m)/ Wo(m) < %, and thus, by equation (42),
En _ -8
) > 3efrn _ 3n(l — O(m ))’
1 4 3eén 4
where the last equality holds on an event of probability at least 1 — O(m~%) when m —

+o0. Similarly, on the event {W5(m) > mP}, we have Ws(m)/ Wa(m) > mP~1, and thus, by
equation (42),

(43) T(ty) > (n —T(1y))3e™" =

3n(1 — Om™?))
4 b
where the last inequality comes from equation (43). This implies

(n - T(tn))ml_ﬂeen >T(ty) >

1-0@m™?)),

n
n—t(t,) > m(
when m — 400, on an event of probability at least 1 — O@m=%). Since (Ry)n>m and
(t (t1))n=m have the same law by construction, this concludes the proof of (35).

e To conclude we just need to show that there exists a coupling of (W2(n)),>, and
(Rp)n>m> such that almost surely on the event A, N E,, (see equation (34) for the defini-
tion of A,,), one has W,(n) < R, for all n > m, at least for m large enough. Indeed, this
would prove that on A, N E,,, the sequence (W1 (n)/n),>, cannot converge to 1, or other-
wise stated that for all m large enough, almost surely,

P(A,NE,NE|F,) =0.
Together with (35), this would conclude the proof of (32). So let us prove the existence of the

desired coupling now.
Recall that, by Lemma 3.10, for all n > m, on the event {W3(n) < n®},

W (n) +n®
pu=P(Waln+1) = Waln) + 1| F) < %

To show that our coupling exists, it is enough to prove that, for all n > m, if Wo(n) < R, then
Pn < qn, Where g, is defined in equation (33). Indeed, if W2 (n) < R, and p, < g,, then there
exists a one-step coupling such that Wa(n 4+ 1) < R, 1, and we can proceed by induction.
Note that g, > p,, is implied by

(n+2)(R, + RY) > (n+ RY)(Wa(n) + n®).
Developing and using the induction hypothesis (i.e., W2(n) < Rj), it suffices to show that
RY (n — R, —n®) = n'te,

which is indeed true on A,,, since on this event
3 3
R)(n — R, —n%) > gny (gnﬁ - no‘),

which is well larger than n'*%, for all n large enough, since by hypothesis y € (0, 1) and
y + B > 1 + «. This concludes the proof of (32), and of the lemma. [J
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LEMMA 3.13. Leta € (0, 1) be given. On the event
A(e) ={W;(n) = O(n*) fori =3,5}
one has almost surely for any p > max(2« — 1, 3),
Wa(n) + Ws(n) < Ws(n) + O(nF).

For the proof of this lemma we need some intermediate results. The first one gives a lower
bound on F4 + F5 — F3.

LEMMA 3.14. Forall w € £, such that ws < % we have
Fy(w) + Fs(w) — F3(w) > —8(w3 + w3).

PROOF. Note that
Fy(w) + Fs(w) — F3(w) =2Fs(w) — 2p135(w) + ws — wg + ws.
Recall that by equation (30) (using the symmetry of the model), we have

Fs(w) = (wg — ws)wows

w3 + wiws + wows
Also recall that (see equation (22))
W1wW3wWs

p13s(w) = 3
w3 (1 + wg + wiwy) + wawy + wrws + wiw; + Wiwaws

- wiw3iws < wiw3ws
T w3+ (w3 + wp)wa + wrws T w3+ wiws + waws
where we have used in the last inequality that w; < wy + w3 for all w € £. Using again that

w1 < wy + w3 for all w € &, and the fact that w3 + wiw4 + wows > ws(1 — ws) > ws/2, for
1

all w € £ such that ws < 5, we get that
WrW3W5 )
135(w) < +2ws3.
p w3 + wiwyg + worws 3
Therefore,
wsw2 (w3 — wq + ws)
Fs(w) — p13s(w) > — —2wj3,
w3 + wiw4 + worws
and thus

(w3 + wiwyg — wows)(w3 — wg +ws)
w3 + wiw4 + waws
- (w3 + wg — ws) (w3 — wg + ws)
- w3 + Wiw4 + Wrws
(ws (I —wp) —wg(l —wy)) (w3 —wyg +ws)
w3 + wiw4 + waws

Recall that, for all w € £, w; + wqg = wy + ws = 1, and thus ws(1 — wy) — wa(l — wy) =

2 2 2 1
w3 — wj > —wj. As a consequence, for all ws < 3

Fa(w) + F5(w) — F3(w) > 4’”%

(44)

+ 4w§.

(ws(1 — w) —wa(l —w1) (w3 —wa+ws) _ wi(ws — wa +ws)
w3 + wiwg + waws T w3t wiws + waws

wi(w3 + ws)

2 = _2w£7
w3 + wiw4 + ws — w;3
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where we used that, as ws < 1 w3 + wiw4 + ws — wg > w3 + ws(1 — ws) > (w3 + ws) /2.
Then from equation (44) we get

(w3 + wg —ws)(w3 —wg +ws)

Fa(w) + F5(w) — F3(w) >
w3 + wiw4 + waws

2 2
4wz — 2wy

2 2
w; —(Wgqg —w
- 3 (wyg 5)

T w3+ wiw4 + waws

—4w? —2w? > —4w? — 2(w3 + ws)?,

using that |wq — ws| < w3, for all w € £. This concludes the proof because (w3 + ws)? <
2w3 42w O

The second result we shall need is the following general fact, which will be used at several
places during the rest of the proof. For a process (M;),>0, we write AM,, ;== M,+1 — M,,
forall n > 0.

LEMMA 3.15. Leta,b,c € (0,1), be such thatb < a and 1 < 2a + c.

(1) Let (Ap)n>1 be a sequence of real random variables. On the event {A, = Omb—hy,
we have almost surely as m — 400,

n
A; b—
> = O(m"=).
P 2 gy O

(i1) Let (My)n<0 be a real martingale such that |AM,| < 1, almost surely for all n > 0.
On the event {E,[(AM,)*] = O(n~°)}, we have almost surely when m — +00,

" AM;
! — O(m/c—a)’

2 Gy

i=m

sup

n=m

forallk € (%, a).

PROOF. (i) is straighforward. For (i1), we fix I%C < Kk < a, and then & > 0, such that

HT'” <k,and K :=« + 5 < a. For m < n, define the event

Apn =B [(AM)?] <i™“T Vm <i <n}.
We have, foralln >m > 1,

LOAM; . e . AM;
IP’(Z T 3’)0 >m 1, .Am,n> < exp(—mi)]E|:l_[ exp(m“_" : )lAm,n:|'

i=m i=m (l + 3)a

Using the bound |AM,,| < 1, and a Taylor expansion, we get for all n > m, on the event A,, ,,
. AM L EL[(AM,)?] o
E a—K n >i|:1 O( 2a—2k —n ><1 10) 2k —c+e ,
" [eXp <m (n +3)@ e nram )T (n )

where the constant in the O-term is deterministic. By induction, and since 2« + ¢ — ¢ > 1,
we get that for all m large enough,

n _. AM;
E[H exe{m* "7 3l)ﬂ>1*""="} =2

i=m

and thus for all 1 <m < n, with m large enough,

1AM, - .
P<i§1 n 3l)a > m" ,Am’n) <2exp(—m?2).
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By symmetry and a union bound, we deduce that for all m large enough,

L AM;

P sup -
(m§n§2m l-; (l + 3)a

>m<, .Am,zm> < 4mexp(—m?).
Next, another union bound gives, for all m large enough,
" OAM; . I .
P{ su >R-m"7 A <ex <__ 2)
(nz?i ; i+3«| - " ’“*’O) P
with R := 3;592% 9" which is finite since & < a. Then the result follows from Borel-

Cantelli’s lemma, since on the event {E,[(AM,)*] = O(n )}, almost surely A, oo holds
for all m large enough. [J

We now prove Lemma 3.13.

PROOF OF LEMMA 3.13. Consider the process U (n) = Ws(n) + Wa(n) — W3(n), and

set U(n) := ZJ(:‘Z) One has, for any integers m < n,

, LGW(i) | 'S ADG>)

(45) U(n) = U(m)+12’;1 13 ig 13

where G(w) = F5(w)+ F4(w) — F3(w),and A®()) =Y (i +1)—-E;Y(@+1),withY(i+1) =
UGli+1)—U(@) foralli > 0.

Note first that, |Y(n 4+ 1)| < 2 almost surely for all n > 0, by definition of the model,
and thus also |A®(n)| < 4. Note furthermore, that on A(«), one has Wy(n) = O(n%), since
Wyi(n) < Ws(n) + W3(n) (recall Lemma 3.1), and thus |0(n)| = On*"1). Moreover, using
Lemmas 3.5 and 3.10 (and the fact that if at some time n, W4 increases by one unit, then
either W3 or Ws also), we deduce that on A(x),

Ea[|A®n))*] <Eu[Y(n 4 1)2] <4-P,(Y(n + 1) #0) = O(Ws(n) + Ws(n)) = O(n®").

On the other hand, by Lemma 3.14, on A(«), we have almost surely G(W(i ) > -0,
Thus Lemma 3.15 (applled witha=1,b=20—1,andc=1—) and equatlon (45) (with n
taken large enough) give U (m) < O(mﬂ 1, for any 8 > max(2o — ) which proves the
desired result. [

We deduce the following fact (recall the definition of the events A(«) from Lemma 3.13).

LEMMA 3.16. Leta € (0, 1) be given. One has almost surely,
Ala) € A(B),

for any B > maxQa — 1, 5).
For the proof of this result, we will need some intermediate result.

LEMMA 3.17.

(a) Forall c € (%, %), there exist positive constants € and C, such that for all r € [0, 1),
and all w € &£, with w3 < & and w4 + ws < w3 + r, one has

Fs(w) — Fy(w) > c(wg —ws) — Cr.
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(b) There exist positive constants € and C, such that for any w € &, with w3 < ¢, wg +
ws < w3 + r and wg < ws, one has

§F4(w) — F3(w) = —Cr.

(c) Let p € (0, %) be given. There exist positive constants ¢ and C, such that for any
rel0,1),and any w € &€, with wz <&, wg + ws < w3 +r and wg < pw3s + r, one has

Fy(w) > —Cr.

PROOF. Let us start with Part (a). Note that, if, under the assumption of the lemma, we
have w4 + ws — w3 > 2ws3, then 3ws < wg + ws < w3 + r, which implies w3 < %, and
thus w4 + ws < 3-. In particular, we have that w3, ws, ws € [0, 2r). Recall that, F5(w) —
Fy(w) = P135(w) p234(w) + wg — ws > —pa3a(w) — ws, and, by equation (22) (using the
symmetry of the model), we have that, for all w € £, p3a(w) < wy. Thus F5(w) — Fg(w) >
—w4 — w5 > —4r, which, using that wq < 2r, concludes the proof of (a) in the case when
w4 + w5 — w3 > 2w3z. We now assume that ws + ws — w3 < 2w3. This implies

1 1 1 1 r
>

46 > - )
(46) 2wy T w3t ws+ws — 2ws(1+ w4+w5 w3) 2wy 4w}

using that w4 + ws > w3, for all w € &, for the first 1nequa11ty. Using again (22), we get that,
when w3, wyq, ws — 0, with (wg + ws)/3 < w3 < wq + ws,

Fs(w) — Fy(w) = p13s(w) — p234(w) + wyg — ws

w3ws W3Wyq

— T s T d U
I+o(l
= wy —ws+ (1= o()) = 2 (1 +0(1) - %
3wy 3r(l+o(1))

> 22 (1 - 0(1) = (1 +o(1) - T T
because w4 + ws — w3 < 2ws implies ws < 3ws. This concludes the proof of (a).

We prove now Part (b). First note that if wq + ws — w3 > 2ws3, then we have as in Part (a)
that w3, wg, ws € [0, 2r], and since F3(w) <0 by Lemma 3.5, we deduce that % - Fy(w) —
F3(w) > —9w4/2 > —9r, proving the result. So we may assume now that ws + ws — w3 <
2w3. In this case

9 9
§F4(w) — F3(w) = E(Fs(w) + ws — wa + paza(w) — p13s(w)) — Fz3(w).
Using equation (30), we have, when w3, w4, ws — 0,

(ws —wg)(w3 +wiws)  (ws —wg) (w3 + wy) (1 +0(1))

Fs(w) +ws — w4 = —
w3 + wiw4 + waws w3 + w4 + w5

Using equation (46), and the fact that w4 < ws, we get

(ws —wg) (1 +0(1)) (1 T ) . (ws —wg)(I +o(1))

Fs(w)+ws — w4 > 7 > Z(H_O(l))’

using that ws — w4 < w3. In the proof of (a), we have shown that

wiwg(1+0(1))  wiws(1+o(1)) - (wg —2ws) (1 +o(1))
2wz +wg +ws) w3+ wg+ws T 4 '

2ws

P234 — P135 =
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Using in addition that by assumption w3 > wg4 + ws — r, we get
wsws(1+o(1))  wiws(d+o0(1)
w3 +wq +ws  2(w3 + wg + ws)
1
__ws+o) 3wy(+o)
2 4
In total, we thus get

F3(w) = p135 + p23a — w3 =
47)

§F4(u}) — F3(w) > _Swsd+o0d))  9r(l+o(D) (ws 3wy

: - 7+T—r>(1+o<1))

> —%(1 +o(1)) + E(1 —o(1)) — w,
8 2 8
- ws(1 +0(1)) B 17r (1 + 0(1))
= 2 3 )
because w4 < ws, which concludes the proof of (b).
Finally, we prove (c). Assuming again that w4 + ws — w3 < 2w3 (as otherwise we conclude
as in Part (b)), we get when w3 — 0 (and as consequence w4, ws — 0 also),

Fa(w) = Fs(w) + p23a(w) — p13s(w) + ws — wy
(w5 —wg) (w3 + wiws)
w3 + wiw4 + waws

+ p23a(w) — pi3s(w)

- (ws —wg)(w3 +wiwg)  wiwg(l —o(1)) w3ws
w3 + Wi w4 + waws 2(w3 +wq +ws) w3+ wiws + waws
w3 +wiwg —wijws  wiwa(l —o(1))

v

—wy(1+o(1)) -

w3 + wq + ws 2(w3 + wq + ws)
wa[ws(1 —o(1)) — (F + wa)(1 4 o(1))]
w3 + wa + ws ’

Using the fact that, for all w € £, ws > w3 — wq, and the fact that, by assumption, wyq <
pws +r, we get
w5—%—w4z%—21042%—2,0103—21*:%(1 —4p) —2r,
which implies
waw3s(1 —4p)

HWOEﬂwaM+wﬂﬂ—00»—%0+00»2—%O+00»

since p < % by assumption. [J
We are now ready to prove Lemma 3.16.

PROOF OF LEMMA 3.16. We fix « € (0, 1). Recall that
A(e) = {W3(n) = O(n*) and W5(n) = O(n*)}.

The proof is divided in three steps.

First step. Fix ¢ € (3,1). Consider the process U (n) = sl

e By equation (19), we

have, forn > 1,
I'n AV (n)

(48) Vot D=+ o=t s
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where (when n — 400 in the second equality)
rn = Fs(W(n)) + Ws(n) — F4(W(n)) — Wa(n) + (0 +2)'° — (n +3)' =) U (n)
= F5s(W(n) — Fs(W(n)) + Ws(n) — Wa(n) + (c — 1 + o(1))n U (),

and AV (n) := AMs(n +1) — AM4(n + 1). By Lemma 3.13, for all 8 > maxQ« — 1, %),

almost surely on A(«), we have W4(n) + Ws (n) < W3 (n) +OnP~1) when n — +o00. Using
Lemma 3.17(a), this implies that, almost surely on A(«), for all n large enough,

~ ~ 1 ~ ~
Fs(Wn) = F(Won) = (= 3 ) (Wat) = Wstm) = O ),
and thus (using the fact that U (n) = (Ws(n) — W4(n))(n + 2)°)

_— <1 —c+ %)(Vf/s(n) — Wan)) — 0PN 4 (c — 1+ o(1))n U (n)
(49) !
- (Z + 0(1))n_CU(n) —0o@nf,

for all 8 > max(2a — 1, %). Note that AU (n) # 0 implies W3(n + 1) — W3(n) = 1, and thus
by Lemma 3.5 on A(«), one has

E.[|AW (1) |*] <P(AU (1) #0) = O(n®").

Using next Lemma 3.15, we deduce that for any B > «/2,

"OAW() e
50 su L | =O(m~Tth,
0 )2 Ty )
By equation (48), we have, for all n > m,
OAW()

(51) U(n) = U(m)+z( +3)1 C+,~:Zm T
Now fix 8 > max(Qa — 1, %). Observe that if for some ¢ > 0, limsup,, , , ,,(Ws(m) —
Wa(m))/ mPte = 0, then equations (49), (50), (51) and Lemma 3.15 imply, by induction,
that U(n) > 0, for all n large enough. Thus on A(w), there are only two possibilities: ei-
ther Ws(n) < Wa(n) + OnP), for all B > maxa — 1, %), or Ws(n) > Wa(n) for all large
enough n.

Second step. Consider first the case when Ws(n) < Wa(n) +QO (nP), for any 8 > max (2o —
1, %). Note that, for all w € £ and asymptotically when w3, wa, ws — 0, we have, using
equation (30),

(wg —ws)wows (w4 — ws)ws (
w3+ wiw4 + wrws w3 + w4 + ws

By Lemma 3.13, on A(x), we have W3(n) < Wa(n) + Ws(n) < Ws(n) + O(n?). Since
we also assume, in this second step, that W5(n) < Wa(n) + OnP), this implies 2Ws5(n) <
Ws(n) + OmP). Therefore, using that Wi(n) — Ws(n) > —W3(n)AOP) we get
F5(W(n)) > —OmP~1). Next, let us prove that for any f > maxQQa — 1, %), Ws(n) =
O(nP). Using (19), we have, for n > m,

(52) Fs(w) = 1+o(1)).

. W UAMSG+1
W) = Ws(m) + 3 5(+(3’))+Z—i5$;)

i=m i=m

’
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where by Lemma 3.15 the two sums are greater than —O@mP. On A(a), if
limsup,, W5 (m)/ mP~1 = oo, then the equation above would contradict that W5 (n) goes to
zero, when n — oo. Thus Ws(n) = O(n#), as claimed.
Now note that, for all w € £, asymptotically when w3, wq, w5 — 0,
w3 (ws + 5*)

Fi(w) = w) + w) —wy3=——7-—="(140(1)) —w
3(w) = p135(w) + p23a(w) 3 w3+w4+w5( (1) 3

- 2ws + w4

- 4
where we have used equation (47) and the fact that w4 + ws > w3 for all w € £. Since, for
allwe &, wy < ws + ws, we get

(1+o(D) — ws,

F3(w) < M(l +o(1)).

Applying this to w = W(n) (which belongs to £ by Lemma 3.1), we get that on A(«), almost
surely when n — 400,

F3 (W(n)) < (’)(nﬁ_l).

Now if limian3(n)/n/3 < 1, for some B > max(Ra — 1, %), then Lemma 3.15 gives

W3(n) = OmP) following an argument very similar to the one above for W5 (n). On the
other hand, if liminf W3(n)/n? = +o0, for any 8 > maxQa — I, 5), then, as Wy(n) >
W3(n) — Ws(n) > W3(n) — OmP), we have Wa(n) — Ws(n) > 0, for all n large enough,
which implies Fs (W(n)) > 0. From (19), this means that for m large enough, the process
(Ws(n))y=m stochastically dominates a P6lya urn process (Rj)n>n, defined by P(R,4+1 =
R,+1|R)=1—PRy+1=R,| Ry = nﬁ’z, which is well known to grow almost surely
linearly in n (this can be seen using Rubin’s construction as in the proof of Lemma 3.12).
Thus Ws(n) would also grow linearly in n, and we would get a contradiction. Therefore,
necessarily W3 (n) = OnP), as wanted.

Third step. Consider next the case when W5(n) > Was(n), for all n large enough. Define

V(n) = 3Wa(n) — W3(n), and V (n) = 2% One has, for any n > 1,

HW@m) A6
n+3 n+3’
with again A® (n) the increment of some martingale, and H (w) = 2 Fa(w) — F3(w). Using

Lemmas 3.17(b) and 3.15 (with arguments similar to those in the second step), we deduce
that V (n) < Om?), for any 8 > max(2a — 1, %). We note finally that by Lemma 3.17(c) this

entails Fy (W(n)) > —O(nf~1), and thus by another application of Lemma 3.15, we conclude
that Wa(n) = O(nP), for any 8 > maxQo — 1, %). Then we can use the same argument as in
step 2: we first observe that this entails

Ws(n)
2

Vin+1)=Vn) +

—Wi(n) +0(nP ) <o@).

(W) < (1—o(1) = W3(m) + O(nf~") < -

Therefore, if liminf Y202 = oo, then W3(n) ~ Ws(n), and Wy(n) = o(W3(n)). Thus by

Lemma 3.17(c) again (applied with r = 0), we get F4(W(n)) > 0, for all n large enough,
which leads to a contradiction as in step 2. We conclude that W3(n) = OnP), as wanted.
This concludes the proof of the lemma. [J

An immediate corollary of the results obtained so far is the following fact.
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COROLLARY 3.18. On the event when Wi(n)/n — 1, one has almost surely for any
>0,

W3(n) = O(n®).

PROOF. It suffices to combine Lemmas 3.7 and 3.12 with Lemma 3.16, which we can
iterate as much as needed. Indeed, the map ¢ : o > max(2« — 1, %) is decreasing, with 0 as
unique fixed point in [0, 1), which implies that any sequence defined by o, +1 = ¢ (o), with
ap < 1, converges to 0. Lemmas 3.7 and 3.12 give the existence of ag < 1 such that, on the
event Wi(n)/n — 1, A(ag) has probability 1. Lemma 3.16 then implies that for all n > 0,
on the event Wi (n)/n — 1, A(a,) has probability 1. We then choose n large enough so that
o, <e. O

The final step is the following result, which together with Corollary 3.18 brings a contra-
diction, if Wi(n)/n — 1, and therefore concludes the proof of Proposition 3.11.

LEMMA 3.19. On the event when Wi(n)/n — 1, one has almost surely for any c €
0, 1),

%
lim 3 _

n—>oo p¢

PROOF. Recall that when w3, w4 and ws go to 0, one has, for w € £,
w3 (ws + 5*)

14 0(1)).
w3+w4+w5( o( ))

p135(w) + pa3a(w) =

Using now that ws + ws > w3, we get that
wi(l+o(1))  FA+o(1)

p135(w) + paza(w) >

4 Cl—w+ B
Thus there exists & > 0, such that for any w € &£, with w3, w4, ws < ¢,
w3
5
w) + w) > —————.
p1as(w) + psa(w) = -— 03t

By Proposition 3.2 and Lemma 3.12, we deduce that almost surely on the event when
Wi(n)/n — 1, there exists a random integer ng such that, for all n > ng,

Wim)/s W)
W3(n) *

P13s(Wn)) + prsa(W(n)) > - —— =
1_W3(”)+W3T(n) n+2—Win)+ =%

Therefore, after some (random) time n¢, the process (W3(n)),>, stochastically dominates
an urn process (U (n)),>n,, defined by U (ng) = 1 and, for all n > no,

PUn+D=Umn)+1|Um)=1-PUm+1)=Un)|Un))
B U(n)/5
S n+ng+2-Um)+UWm)/5

For any fixed ng, the urn process (U (n)),>y, is studied for instance in Janson [10] (see in
particular Theorem 1.4 and Remark 1.12 there), which provides a precise asymptotic behavior

of n~3U (n): it converges in law towards some nondegenerate random positive variable. But
here one can simply rely again on Rubin’s construction, which covers our needs. It shows
that for any fixed ng, almost surely there exists a constant ¢ > 0, such that U (n) > cn'/3, for
any n > ng, and the lemma follows. [J

The proofs of Proposition 3.11 and Theorem 1.4 are now complete.
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4. Proof of Proposition 1.6. We fix an integer L and look at the uniform-geodesic ver-
sion of the model on the graph on the left-hand side of Figure 5. Note that each ant reinforces
either the L edges on the left (and the edge linked to F) or the L edges on the right (and the
edge linked to F'). Thus, the L edges on the left have all the same weight at all times, and
similarly for the the L edges on the right. For all integers n, we set Nj(n) to be the weight
of the L left-edges at time n, and by N»(n) the weights of the right-edges at time n. By def-
inition, we have that Ni(n) + Na(n) = n + 2, which is also the weight of the edge linked
to F.

To prove Proposition 1.6, we apply a result of [7] (see [16], Theorem 2.8).

THEOREM 4.1. Let (Z,)n>0 be a sequence of random variables taking values in [0, 1]
satisfying, for all n > 0,

1
(53) Znt1=2Zn+ ;(F(Zn) + AMy41),

where F :[0,1] — R and AM, 11 is a martingale increment. If there exists € > 0 such that
F <0on|0,e¢], then P(Z, — 0) > 0.

First note that, if Z, = Ni(n)/(n + 2) for all n > 0, then Z, satisfies equation (53) with
F(x) = p(x) — x, where p(x) is the probability that an ant reinforces the left-hand side
geodesic after performing a random walk on G with weights x on all edges on the left, 1 — x
on all edges on the right, and 1 on the edge linked to F. We let G(x) denote the graph
G equipped with these weights, P denote the unique vertex neighbouring F, and for all
ke€{0,..., L — 1}, Ay denote the vertex at distance k of N on the right-hand-side geodesic
(with Ag = N). See Figure 11 where the notation are illustrated.

We now calculate p(x) when x — 0 to show that p(x) < x in a neighbourhood of zero;
this implies that /' < 0 in a neighbourhood of zero and thus that Theorem 4.1 applies. Asymp-
totically when x — 0,

S m 1 @ LINE l @ 2
(54) p)=Y" (p,ﬁ () + 5Pk (x)) + 507+ 5pP ) +0(7),
k=0
where, forall k € {0, ..., L — 1}:

° p,ﬁl) (x) the probability that a walker on the weighted graph G(x) goes from N to A using
only edges on the right-hand-side geodesic, then goes from Ay to N without reaching
Aj+1, then goes from N to P without reaching Az and, finally, goes from P to F without
using the left-hand side geodesic or reaching Ag;

) p,ﬁz) (x) the probability that a walker on the weighted graph G(x) goes from N to Ay using
only edges on the right-hand side geodesic, then goes from Ay to P without reaching Ay 1
(thus using edges on the left-hand side geodesic) and, finally, goes from P to Ay using only
edges on the right-hand side geodesic;

P Ary

FI1G. 11.  The graph of Proposition 1.6 and the notation used in Section 4.
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e p®(x) the probability that a walker on the weighted graph G(x) first goes from N to P
only using edges on the right-hand side geodesic, then goes from P to N using edges on
the left-hand side geodesic and before entering the left-hand geodesic from N;

e p™(x) the probability that a walker on the weighted graph G(x) first goes from N to
P only using edges on the right-hand side geodesic, then goes back from P to N only
using edges on the right-hand side geodesic and, finally, goes from N to P using edges
on the left-hand side geodesic and before entering the left-hand-side geodesic from P or
hitting F.

The O(x?)-term in equation (54) stands for all trajectories of the walker that leave N or P at
least twice towards the left. We have, if ke {1,..., L — 1},

1—x 1—x

= = L 1 X L—k
(D k k L 2
P (X)) = +— — — - —=—-——4+0(x
k lTx+x 1TX+(1_X) %+(]1€+)16) 1+x+i_:;< L L—-k+1 ()
‘We also have
X 1 X L
(1) L 2
x) = . =— . —— 4+ 0(x).
PO = T T Tragtx L Ly oW

Using the fact that }_7_, } =logn + O(1) when n — 400, we get

LZ_I (1) XLZ_I ! 2
P (X)==— <1—7>+(’)(x)
s Lk:O L—k+1

(55)

log L
_ x(l -2y oLﬁma)) + 0@,
where the Op _, ;c0o(1)-term does not depend on x and corresponds to the L — +oo limit,
while the O(x?)-term depends on L and refers to the x — 0 limit. Similarly, for all k €
{1,..., L —1}, we have

1-x 1—x x 1—x 1
(2)()_ k . k . L . L—k —1
Pe = T ey x gl T o T L Lkl
J k LTkl I—k
and
X 1—x
2 T - T X 1
Py () = —*~ L s+ 0.

I+ (1-x) . l%x—i—l-l-x_L.L‘i‘l
Using again the asymptotic behaviour of the harmonic sum, we get

1 &2] 1 x L 1 logL
56) = Dixy== S — ) = ( 1 N 1) 2).
(56) 2§)pk (x) L;)L_leoc) ¥ S (T+0ro100(D) ) + O(7)

We also have, when x — 0,

—X X
T X
PP =5 L =7+ 00),
7 X L
L I + 1 + x+1%X
and
1—x 1—x X X
PP ) =5 L L +0(x?)
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Using these last equations together with (55) and (56) into equation (54), we get that, in total,
log L

px) = x(l - (1+ 0L—>+oo(1))> +0(x?).

Therefore,

Fx) — _ logL
(0 =p) —x = =x( "2

(14 01 4(1)) + O,

implying that for all L large enough, F is indeed negative in a right-neighbourhood of 0.
Hence, Theorem 4.1 applies and we conclude that P(Z, — 0) > 0, which concludes the
proof of Proposition 1.6.
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