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Abstract. We revisit Vervoort’s unpublished paper (Vervoort (2002)) on the once reinforced random walk, and prove that this process
is recurrent on any graph of the form Z × �, with � a finite graph, for sufficiently large reinforcement parameter. We also obtain a
shape theorem for the set of visited sites, and show that the fluctuations around this shape are of polynomial order. The proof involves
sharp general estimates on the time spent on subgraphs of the ambiant graph which might be of independent interest.

Résumé. Nous revisitons un article de Vervoort (Vervoort (2002)), jamais publié, sur la marche une-fois-renforcée, ou once reinforced
random walk, et nous prouvons que ce processus est récurrent sur tout graphe de la forme Z × �, où � est un graphe fini, et pour un
paramètre de renforcement suffisamment grand. Nous obtenons également un théorème de forme pour l’ensemble des sites visités, et
prouvons que les fluctuations sont d’ordre polynomial. La preuve utilise des estimées précises et générales sur le temps passé dans des
sous-graphes du graphe ambiant, ce qui pourrait être intéressant par soi-même.
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1. Introduction

1.1. General overview

The once-reinforced random walk (ORRW) belongs to the large class of self-interacting random walks, whose future evo-
lution depends on its past history. The study of these processes is usually difficult and basic properties such as recurrence
and transience are hard to obtain. One of the most famous example of self-interacting random walks is the linearly edge-
reinforced random walk introduced by Coppersmith and Diaconis [7] in the eighties, for which recurrence and transience
were only recently proved in a series of papers, see [1,9,18–20].

Even though the definition of ORRW, introduced in 1990 by Davis [8], is simple, it turns out that its study does not
seem easier than that of the linearly reinforced RW, and results on graphs with loops are very rare. In this model, the
current weight of an edge is 1 if it has never been crossed and 1 + δ otherwise, with δ > 0. It has been conjectured by
Sidoravicius that ORRW is recurrent on Z

d for d ∈ {1,2} and undergoes a phase transition for d ≥ 3, being recurrent
when the parameter δ is large and transient when it is small. These questions on Z

d , d ≥ 2, are completely open. Until
recently, it was not even clear whether this weak reinforcement procedure could indeed change the nature of the walk, so
that ORRW could be recurrent on a graph which is transient for simple random walk, as soon as the parameter δ is large
enough. The first example of such phase transition was provided in [12] on a particular class of trees with polynomial
growth, which is in contrast with the result of Durrett, Kesten and Limic [11] who showed that the ORRW is transient on
regular trees for any δ > 0 (later generalized to any supercritical tree by Collevecchio [3]). More recently, the complete
picture on trees has been given in [6] (see also [5] for a related result): the critical parameter of ORRW on a locally finite
tree is equal to its branching-ruin number, which is defined in [6] as a polynomial regime of the branching number (see
[14]). We note that the speed of Once reinforced biased random walk on trees is also studied in [4].

As already mentioned, results on graphs with loops are very rare. Sellke [21] first investigated the case of the ladder
Z× {1, . . . ,L}, with L ≥ 2, and proved that the ORRW is almost surely recurrent on this graph for all δ ∈ (0,1/(L − 2))
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(with the convention 1/(L − 2) = ∞ if L = 2). The proof is a simple consequence of a general (and nice) martingale
argument, but it does not really face the difficulty of possible drift pushing the walk toward infinity, which can in principle
happen in the presence of loops in the graph. In an unpublished paper, Vervoort [22] announced a more difficult result,
namely that the ORRW is recurrent on the ladder for all large enough reinforcement parameter δ. Unfortunately, his proof
was never published and the preprint [22] is unpolished, with gaps and mistakes. The general strategy of [22] was to
show that the mean drift of the walk, each time it exits its present range, is almost balanced. The reason being that for
large enough δ, all possible exit edges are equally likely to be chosen. Thus, at least at first order, there should be equal
probability to get a drift δ to the right (when the exit edge is an horizontal edge oriented to the left) as an opposite drift
(when this edge is oriented to the right). However, an important ingredient, which was missing in [22], is to show first
that the ORRW cannot travel a large distance before exiting its present range. Indeed the first order approximation of
uniformity for the choice of the exit edge is only valid when the edges taken into consideration are not too far one from
each other. One difficulty then is to obtain an estimate, which is uniform over all the possible ranges (or finite subgraphs
of Z× �). We prove such general result here, which might be of independent interest, with the help of electrical network
techniques. Details can be found in our Proposition 2.6 below.

Furthermore, we improve the lower bound on δ, and obtain a polynomial bound in the height of the ladder, instead
of an exponential one, which was implicit in [22]. For this purpose, one needs to adapt the notion of walls from [22], to
ensure their existence with a probability 1/2, instead of an exponentially small (in the size of �) one. We also analyze the
fluctuations of the range of the walk and provide a shape theorem. Finally we show that the successive return times to the
origin have finite expectation.

1.2. Model and results

Let us define a nearest-neighbor random walk (Xn)n≥0 as a ORRW on a (nonempty, locally finite and undirected) graph
G, with reinforcement parameter δ ≥ 0. First, the current weight of an edge is defined as follows: at time n, an edge has
conductance 1 if it has never been crossed (regardless of any orientation of the edges) and conductance 1 + δ otherwise.
For any n ≥ 0, let En be the set of non-oriented edges crossed up to time n, that is

En := {{x, y} : x, y ∈ G and there exists 1 ≤ k ≤ n, such that {Xk−1,Xk} = {x, y}}. (1.1)

At time n ∈N, if Xn = x ∈ G, then the walk jumps to a neighbor y of x with conditional probability

P[Xn+1 = y | Fn] = δ1{{x, y} ∈ En} + 1∑
z:z∼x(δ1{{x, z} ∈ En} + 1)

, (1.2)

where (Fn)n≥0 is the natural filtration generated by the walk, i.e. Fn = σ(X0, . . . ,Xn).
Our first result is the following:

Theorem 1.1. There exists a constant C > 0, such that for any finite connected graph �, the once-reinforced random
walk on Z× � is recurrent for any reinforcement parameter δ ≥ C|�|40.

Note that here by recurrent we mean that almost surely every site is visited infinitely often.
Our second result is a shape theorem. Denote by Rn the graph whose vertex set is {X0, . . . ,Xn}, the set of visited sites

up to time n, and whose edges are those crossed by the walk up to this time. Let t (n) be the first time when the number
of vertices in this graph equals (2|�| + 1)n.

Theorem 1.2. There exists a constant C > 0, such that for any finite connected graph � and any δ ≥ C|�|40, the following
holds: almost surely for all n large enough, there exists xn ∈ Z, such that{

xn − n + n1/δ1/8
, . . . , xn + n − n1/δ1/8} × � ⊆Rt (n) ⊆ {

xn − n − n1/δ1/8
, . . . , xn + n + n1/δ1/8} × �,

where inclusions here are meant as inclusion of graphs.

Remark 1.3. We do not expect that the center of the cluster xn could be taken to be zero. Indeed for the ORRW on Z

(i.e. when � is reduced to a single vertex), explicit computations show that, for any ε > 0, xn/n < −1/2 + ε infinitely
often and xn/n > 1/2 − ε infinitely often.
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Remark 1.4. The exponent δ−1/8 is far from being optimal. Our proof would allow to replace the constant 1/8 by any
other constant smaller than 1/4, at the cost of imposing larger δ, but we do not believe that this would be optimal neither.
We refer to the end of this paper for further discussion and conjecture on this question.

Note that contrarily to Theorem 1.1, Theorem 1.2 does not hold for the simple random walk (which corresponds to
the case when δ = 0). In this direction, we also show that the successive return times to the origin have finite expectation,
which we state slightly informally as follows (see Proposition 6.1 at the end of the paper for a more precise statement).

Proposition 1.5. If (τi)i≥0 denote the sequence of successive return times to the origin of the ORRW on Z × �, then
E[τi] < ∞, for all i ≥ 0.

Finally let us mention that the range of the ORRW on Z has been studied recently in [17], where the authors prove
asymptotic formula for the moments.

1.3. Organization of the paper

The paper is organized as follows. In Section 2, we prove general estimates on random walks on networks where conduc-
tances take only two values: δ on a finite subgraph A of Z× � and one elsewhere. Our main results there are estimates,
which are uniform on A, on the time spent on certain level sets, that is subsets of the form {i} × �. This section can be
read independently of the rest of the paper, and might be interesting on its own. Then in Section 3, we define a notion of
wall, that extends the one from Vervoort’s paper [22]. The interest of this new definition is to obtain bounds of polynomial
order (in the size of |�|) in all our results. In Section 4 we gather the results proved so far to obtain gambler’s ruin type
estimates. These estimates are then used in Section 5 to prove Theorems 1.1, and 1.2, and in Section 6 to prove that the
successive return times to the origin have finite expectation. We end the paper with a list of open problems in Section 7.

2. Random walks on sub-graphs of G = Z× �

This section gathers some results concerning (reversible) random walks on sub-graphs of Z × � where � is a finite
graph. In particular, we study the position where such a walk exits a given sub-graph. As such, the section does not deal
specifically with once-reinforced random walk but the results obtained here will play a crucial role during the proof of
the main theorems. We also believe that some estimates such as Proposition 2.9 may be found of independent interest.

2.1. Notation

A graph G = (V ,E) is a collection of vertices V and edges E. By a small abuse of notation, we shall sometimes identify
a graph and its set of vertices when the associated edge set is unambiguous. An undirected edge between two vertices x

and y is denoted by {x, y}, while a directed edge is denoted by (x, y). We write x ∼ y when {x, y} ∈ E and we say in this
case that x and y are neighbors. All the graphs considered here are assumed to be non-empty and locally finite, meaning
that all vertices have only finitely many neighbors. If e = (x, y) is a directed edge, we call x the tail and also denote it by
e−, and y the head and denote it by e+. We write �E for the set of directed edges of G.

Given two vertices x and y, we denote by d(x, y) their graph distance in G. For a subgraph A ⊆ G, we denote by
dA(x, y) the induced (also called intrinsic) distance, i.e. the minimal number of edges needed to be crossed to go from x

to y while staying inside A. In particular, we have dG = d .
Given a subgraph A = (VA,EA) ⊆ G, we define

∂eA := {
e ∈ �E : e− ∈ VA,

{
e−, e+}

/∈ EA

}
(2.1)

∂vA := {
v ∈ VA : ∃e ∈ ∂eA with e− = v

}
. (2.2)

In words, ∂eA is the set of directed edges of G which do not belong to A as an undirected edge but whose tail belongs to
A. Notice that the head of a directed edge e ∈ ∂eA may, or may not, be in A. The set ∂vA is the set of tails of the edges in
∂eA, or equivalently the set of vertices adjacent to an edge outside A.

In this paper, we consider cylinder graphs of the form G = Z × �. In this case, if a ∈ G, we will denote by ā and a

the respective projections on Z and � so that

a := (ā, a
).

Finally, for z ∈ Z, we denote by {z} × � the sub-graph of G isomorphic to � with edge set consisting of all edges with
both endpoints in {z} × �. We call this sub-graph the level set z.
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2.2. Reversible RW and electrical networks

We recall here some standard results on random walks and electrical networks which we will use repeatedly in the paper.
We refer the reader to [10] and [15] for a comprehensive and thorough presentation of the theory.

A network is a graph G = (V ,E), endowed with a map c : E → (0,∞). The value c(e) of an edge e is called its
weight or conductance, and its reciprocal r(e) := 1/c(e) is called its resistance. A random walk on a network (V ,E, c)

is the Markov chain which moves only to neighbors of its current position, choosing it with a probability proportional to
the weight of the edge traversed. We denote the law of the chain starting from a ∈ V by Pa . This process is reversible
with respect to the measure π defined by π(x) := ∑

y∼x c({x, y}). Given a subset of vertices V0 ⊆ V , a map h : V → R

is said to be harmonic on V0 if it satisfies:

h(x) = 1

π(x)

∑
y∼x

c
({x, y})h(y) for any x ∈ V0.

Given a vertex a ∈ V and a subset Z ⊆ V \ {a}, a voltage v is a function which is harmonic outside {a} ∪ Z, and vanishes
on Z. Given a voltage function, we define the associated current function i on the oriented edges by

i(x, y) := c
({x, y})[v(x) − v(y)

]
. (Ohm’s law)

Then, i is a flow from {a} to Z, which means an anti-symmetric function on the set of oriented edges �E such that∑
y∼x

i(x, y) = 0 for all x ∈ V \ {a} ∪ Z. (Kirchoff’s node’s law)

The strength of the flow is defined by ‖i‖ := ∑
y∼a i(a, y) = −∑

z∈Z

∑
y∼z i(z, y). We say that we have a unit current

flowing from a to Z when ‖i‖ = 1, and one defines similarly a unit flow.
Given a random walk (Sn)n≥0, the hitting time of a set of vertices B ⊆ V is defined by

HB := min{n ≥ 0 : Sn ∈ B},
whereas the first return time is defined by

H+
B := min{n ≥ 1 : Sn ∈ B}.

To simplify notations, we just write Hb (resp H+
b ) when B = {b}. Similarly, when G is of the form Z × �, we also use

the notation Hr := H{r}×� for the hitting time of the level set r ∈ Z.
The effective conductance C(a ↔ Z) between a vertex a and a subset Z ⊆ V is defined by the formula

C(a ↔ Z) := π(a)Pa[HZ < H+
a ]. (2.3)

Its reciprocal is called the effective resistance between a and Z and is denoted by R(a ↔ Z). It follows from the maximum
principle that there exists a unique unit current flowing from a to Z. The corresponding voltage is the unique function
that is harmonic outside of {a} ∪ Z, vanishes on Z, and satisfies v(a) = R(a ↔ Z).

We recall three important results which we will need in later sections.

Proposition 2.1 (Current as edge crossings, Prop. 2.2 in [15]). Let G be a finite connected network. Consider the
random walk starting at some vertex a and let Z be a subset of vertices not containing a. For x ∼ y, let Nxy be the
number of crossings of the directed edge (x, y) by the walk before it hits Z. We have Ea[Nxy − Nyx] = i(x, y), where i is
the unit current flowing from a to Z.

As a consequence of this proposition (c.f. Exercice 2.37 of [15]), if i is a unit current from a to Z, then necessarily∣∣i(x, y)
∣∣ ≤ 1 for all x ∼ y. (2.4)

Given a flow j on an electrical network, the energy dissipated by the flow is defined by

E(j) := 1

2

∑
e∈ �E

r(e)j2(e)

The following result characterizes the current among all flows on a network.
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Proposition 2.2 (Thomson’s principle, p. 35 in [15]). The unit current i has minimal energy among all unit flows:

E(j) > E(i) =R(a ↔ Z) for any unit flow j �= i.

We say that a flow j has a cycle if there exist oriented edges e1, . . . en with e+
i = e−

i+1 and e+
n = e−

1 and j(ei) > 0 for
all i ∈ {1, . . . , n}. It follows from Thomson’s principle that a current i cannot have a cycle because we could otherwise
decrease its energy by removing from it a small flow with support on the cycle. Another immediate consequence of
Thomson’s principle is that the effective conductance/resistance is a monotone function of the conductances on the edges.

Proposition 2.3 (Rayleigh’s Monotonicity Principle, p. 36 in [15]). Let G be a finite connected graph with two con-
ductances assignments, c and c′ such that c ≤ c′. Let a be a vertex and Z a subset of vertices not containing a. We have
Cc(a ↔ Z) ≤ Cc′(a ↔ Z).

We end this section with the remarkable Commute-Time Identity, which relates the hitting times between two points of
a graph and the effective resistance between these two points.

Proposition 2.4 (Commute-Time Identity, Corollary 2.21 in [15]). Let G be a finite connected network and let a and
z be two vertices of G. The commute time between a and z is

Ea[Hz] +Ez[Ha] =R(a ↔ z) ×
(∑

x∈V

π(x)

)
.

2.3. The exit edge for a random walk on a sub-graph of G = Z× �

By definition, the once-reinforced random walk behaves as a usual random walk as long as it stays inside its trace. More
precisely, assume that at some time n, the ORRW has crossed exactly all the edges of a sub-graph A ⊆ G (in particular
Sn ∈ A). Then, from time n and until it exits the sub-graph A, the ORRW behaves as the random walk on the electrical
network G with conductances given by

c(e) := 1 + δ1{e∈A}. (2.5)

In particular, when δ is large, the probability to choose a non-reinforced edge is small. Thus, informally, one can visualize
the walk as “bumping” on the boundary of its trace many times before exiting, and so it should “mix” a little more than the
usual random walk. This remark leads to a key idea which originates from Vervoort [22]: when δ is large, the distribution
of the exit edge gets close (locally, in some sense) to the uniform measure on the boundary ∂eA.

In this subsection, we give two results in this direction that concern the distribution of the exit edge. They are stated in
term of the random walk on the electrical network (2.5) but they translate readily to the ORRW as explained above. The
first result states that two edges on the boundary which are not too far away have approximately the same probability to
be chosen as the next exit edge.

Proposition 2.5. Let A be a finite connected sub-graph of a graph G. Fix δ > 0 and consider the electrical network on
G with conductances c(e) := 1 + δ1{e∈A}. Let (Sn)n≥0 denote a random walk on this electrical network and define σ as
the first time the walk exits the sub-graph A:

σ := inf
{
n ≥ 1 : (Sn−1, Sn) ∈ ∂eA

}
. (2.6)

For any f1, f2 ∈ ∂eA, and for any a ∈ A, we have

∣∣Pa

[
(Sσ−1, Sσ ) = f1

] − Pa

[
(Sσ−1, Sσ ) = f2

]∣∣ ≤ dA(f −
1 , f −

2 )

1 + δ
. (2.7)

Proof. Consider the finite connected graph A	 whose vertex set is A ∪ {	}, with 	 an additional cemetery vertex, and
whose edge set consists of all the original edges in A plus, for each e ∈ ∂eA, one additional edge between e− and 	.
The edges inside A are assigned weight 1 + δ whereas the edges adjacent to 	 are assigned unit weight. Note that this
construction may create multiple edges between some vertex in A and 	.
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Let f1, f2 ∈ ∂eA with tails x1 = f −
1 and x2 = f −

2 . By construction, the law of S up to time σ , matches the law of the
random walk on the network A	, up to the hitting time of 	. Thus, according to Proposition 2.1 and using Ohm’s law,
for any a ∈ A, we have

Pa

[
(Sσ−1, Sσ ) = fi

] = i(fi) = c(fi)
(
v(xi) − v(	)

) = v(xi),

where v is the voltage at xi when a unit current i flows from a to 	. By definition there exists a path of length dA(x1, x2)

inside A going from x1 to x2 and composed of edges with conductance 1 + δ. Applying Ohm’s law along this path and
using (2.4), we find that

∣∣v(x1) − v(x2)
∣∣ ≤ dA(x1, x2)

1 + δ
,

and the result follows. �

The proposition above is fairly general since it does not make any assumption on the graph G (it need not be of
cylinder type). However, as time increases, so does the size of the boundary of the trace of the walk. Thus, without
additional information on the distribution of the exit probabilities, the bound (2.7) applied to the ORRW becomes mostly
useless when the number of possible exit edges becomes much larger than δ.

In order to keep (2.7) relevant, we need to control the number of exit edges which have a non negligible probability
of being chosen and show that they are o(δ). This estimate which is missing from Vervoort’s paper is the purpose of the
next proposition. Unlike Proposition 2.5, it is specific to cylinder graphs.

Proposition 2.6. Let A be a finite connected sub-graph of G = Z×� where � is a finite connected graph. Fix δ > 0 and
consider the random walk S on the electrical network G with conductances c(e) := 1 + δ1{e∈A}. Fix a ∈ A and suppose
that there exist d integers {s1, s2, . . . , sd} and r such that

1. ā < s1 < · · · < sd < r .
2. For each i ∈ {1, . . . , d}, there exist x ∈ ∂vA with x̄ = si (there is an exit edge at each level).

Recall that σ defined by (2.6) denotes the first time the walk exits the sub-graph A and that Hr denotes the first time it
reaches level r . We have

Pa(Hr < σ) ≤ 5 exp

(
− 1

44|�|3
(

d2

1 + δ

) 1
3
)

(2.8)

The proposition above tells us that the random walk on the network (2.5) cannot travel too far away horizontally
without exiting its trace. More precisely, the number of incomplete levels it can cross before exiting is (at most) of order√

δ. This means that, for the ORRW, only the exit edges belonging to the nearest
√

δ incomplete levels have to be taken
into account. But then, there are no more than |�|2√δ � δ such exit edges (because the underlying graph G is a cylinder).
Thus, we are now in the case where we can use Proposition 2.5 to control the exit probabilities.

Let us also remark that the ratio d2/(1+δ) in (2.8) is not surprising because the walk on any sub-graph A of G = Z×�

is diffusive. Thus, we can expect that it spends a time of order d2 inside a slice of diameter d . On the other hand, each
time the walk visits a site on the boundary of A, it has a probability proportional to 1/(1 + δ) to exit it at the next step.
This heuristic is simple but making it rigorous is challenging because the upper bound (2.8) needs to hold uniformly on
all possible sub-graph A. The proof we present here is rather convoluted and will by carried out at the end of the next
subsection.

2.4. Proof of Proposition 2.6

In this section, we need to consider random walks on different graphs. In order to distinguish between these processes,
we will use super-script that refer to the underlying graph. For instance, given a sub-graph A of G, probabilities relating
to a random walk on A will be denoted by P

A(·) whereas we will keep the usual notation P(·) for a random walk on the
whole graph G.

In everything that follows, � denotes a finite connected graph. We start with a simple lemma which bounds the return
time to a given vertex on the same level as the starting position for the simple random walk on Z× �.
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Lemma 2.7. Consider the simple random walk on G = Z× �. Let a, b ∈ G such that ā = b̄. Recall that Hb denotes the
hitting time of vertex b. We have

Pa

(
Hb ≤ 46|�|6) ≥ 1

2
.

Recall that, for a subgraph A ⊂ G, ∂vA, defined in (2.2), denotes the set of vertices of A which are adjacent to an edge
outside A. Since we can couple the simple random walk on G and the simple random walk restricted on A so that they
coincide until they reach a vertex of ∂vA, the previous lemma directly entails

Corollary 2.8. Let A be a sub-graph of G = Z× �. Consider the simple random walk on A, i.e. on the network G with
conductances c(e) = 1{e∈A}. For any a ∈ A such that ∂vA contains at least one vertex at level ā, we have

P
A
a

(
H∂vA ≤ 46|�|6) ≥ 1

2
.

Proof of Lemma 2.7. Without loss of generality, we can assume that ā = b̄ = 0. Fix L = 44|�|3 and consider the graph
GL := [| − L,L|] × � on which we put unit conductances (i.e. we are considering the SRW on the graph). Noticing
that the number of oriented edges in GL is bounded by (2L + 1)|�|(|�| − 1) + 4L|�| ≤ 4L|�|2, Proposition 2.4 (the
commute-time identity) shows that

E
GL
a (Hb) ≤ 4L|�|2RGL

(a ↔ b).

Furthermore, the effective resistance between a and b is bounded by the graph distance between those two vertices. This
may be checked, for instance, from Rayleigh’s monotonicity principle (Proposition 2.3) by putting null conductances
everywhere except on a geodesic path between the two vertices. Since a and b are on the same level, we deduce that
E

GL
a (Hb) ≤ 4L|�|3. Set T := 42L|�|3 = 46|�|6. Using Markov’s inequality, we find that

P
GL
a (Hb ≤ T ) ≥ 3

4
.

On the other hand, if S denotes a simple random on Z starting from 0, an application of the reflection principle shows that

P

(
max
k≤T

|Sk| ≥ L
)

= P

(
max
k≤T

|Sk| ≥ 4
√

T
)

≤ 4P(ST ≥ 4
√

T ) ≤ 4
E[S2

T ]
(4

√
T )2

= 1

4

Thus, the previous inequality shows that the probability that the simple random walk on GL starting from a hits level L

or −L before time T is at most 1/4. But, until this happens, the random walks on G and on GL coincide so we conclude
that

Pa(Hb ≤ T ) ≥ P
GL
a (Hb ≤ T < H−L ∧ HL) ≥ P

GL
a (Hb ≤ T ) − 1

4
≥ 1

2
. �

Proposition 2.9. Let A be a finite connected sub-graph of G = Z×�. Fix a ∈ A, and d ≥ 1. Let S = {s1, s2, . . . , sd} and
r be integers such that

ā < s1 < s2 < · · · < sd < r, and A ∩ ({r} × �
) �=∅.

Consider the simple random walk S on A started from a. Recall that Hr denotes the hitting time of the level set at r . This
stopping time is a.s. finite since A is finite and has a vertex at level r . Let Lr

S be the total time spent on the levels of S
before reaching level r :

Lr
S := ∣∣{n ≤ Hr : S̄n ∈ S}∣∣

We have

P
A
a

(
Lr
S < k

) ≤ |�|√8k

d
for any k ≥ 1.
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Fig. 1. Example of a modified graph Ã on G = Z × {1,2,3,4} with d = 3. The modification are marked in red. The fat edges have conductance 1
whereas the thin edges adjacent to z have conductance η.

Proof. We construct a modified electrical network Ã in the following way. First, we put unit conductances on each edge
of A. Then, we glue all vertices of A at the final height r together and call the resulting vertex b. We also fix η > 0 and
create a new vertex z connected by an edge of conductance η > 0 to every vertices x ∈ A such that x̄ ∈ S (c.f. Figure 1
for an illustration). Consider now a unit current i flowing from a to {b, z}. Let

i(b) :=
∑
x∼b

i(x, b),

be the total current flowing into the sink vertex b. For k = 1, . . . , d , let also

ik :=
∑

x∈A:x̄=sk

i(x, z),

denotes the total current flowing from level sk to z. From a probabilistic point of view, i(b) is the probability that the walk
on the electrical network Ã started from a hits b before hitting z. Similarly, ik is the probability that the walk hits z before
b while exiting through one of the edges added at level sk . We now show that

ik ≥ (d − k + 1)ηi(b)

|�|2 for any k = 1, . . . , d. (2.9)

To do so, we will need the following lemma which provides a decomposition of a flow without cycle on arbitrary graphs.

Lemma 2.10. Consider a finite connected graph A and fix three vertices a, b, z ∈ A. Let i be a flow from a to {b, z} such
that

1. For all x ∈ A, we have i(a, x) ≥ 0 (source) and i(z, x) ≤ 0 and i(b, x) ≤ 0 (sinks).
2. The flow i does not have any cycle.

Then, there exist a flow j on A from a to b such that

(a) j(x, b) = i(x, b) for any x ∈ A. Therefore, j is a flow of total strength ‖j‖ = j(b) = i(b) ≤ ‖i‖.
(b) j(x, z) = 0 for all x ∈ A (nothing flows in z).
(c) For any x, y ∈ A, i(x, y)j(x, y) ≥ 0 (the flows i and j have the same direction).
(d) For any x, y ∈ A, |j(x, y)| ≤ |i(x, y)|.
(e) For any x, y ∈ A, |j(x, y)| ≤ ‖j‖ = i(b).

(here and below, we use the convention that, for any flow, j(x, y) = 0 if x and y are not neighbors).

We postpone the proof of the lemma to finish that of the proposition. Fix k ∈ {1, . . . , d} and 0 < ε < 1. Since the
current i fulfills assumptions 1. and 2. of the lemma, we can consider the flow j as above and use it to create a new unit
flow ik,ε from a to {b, z} where some of the original current flowing into b is diverted toward z by going through the
edges of conductance η added at level sk . More precisely, we set, for x, y ∈ A − {z},

ik,ε(x, y) :=
{

i(x, y) if both x̄ ≤ sk and ȳ ≤ sk

i(x, y) − εj(x, y) if either x̄ > sk or ȳ > sk,
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and

ik,ε(x, z) := −ik,ε(z, x) :=

⎧⎪⎨⎪⎩
i(x, z) if x̄ �= sk

i(x, z) + εj(x, �x) if x̄ = sk where �x is the right neighbour of x

at level sk + 1 provided the edge {x, �x} exists.

It is clear that ik,ε satisfies the flow property. In words, the flow ik,ε coincides with i for levels below or equal to sk and
coincides with i − εj for levels above sk + 1. In order to maintain the flow node’s law, the missing flow going through the
cut-set of horizontal edges between levels sk and sk + 1 is re-routed through the edges at level sk that link to z. Let E(i)
(resp. E(ik,ε)) denotes the energy dissipated by i (resp. ik,ε). We estimate

	 := E
(
ik,ε

) − E(i)

= 1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y) − εj(x, y)

)2 − i(x, y)2]

+ 1

η

∑
x∈A:x̄=sk

[(
i(x, z) + εj(x, �x)

)2 − i(x, z)2]. (2.10)

Here the factor 1
η

corresponds to the resistance of the added edges. Thanks to properties (c) and (d) of the lemma, each
term in the first sum is non-positive so we can upper bound this sum by keeping only the terms corresponding to edges of
the form (x, �x) where x̄ = sl for some k ≤ � ≤ d :

1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y) − εj(x, y)

)2 − i(x, y)2] ≤
d∑

�=k

∑
x∈A
x̄=s�

[(
i(x, �x) − εj(x, �x)

)2 − i(x, �x)2]

= −2ε

d∑
�=k

∑
x∈A
x̄=s�

i(x, �x)j(x, �x) +O
(
ε2).

Now, since the flow j has strength i(b) and there are at most |�| edges in the cutset of edges linking level s� to s� + 1,
there must exist some x ∈ A with x̄ = s� such that |i(x, �x)| ≥ |j(x, �x)| ≥ i(b)

|�| . Thus, we deduce that

1

2

∑
x,y∈A

x̄>sk or ȳ>sk

[(
i(x, y) − εj(x, y)

)2 − i(x, y)2] ≤ −2ε(d − k + 1)i(b)2

|�|2 +O
(
ε2). (2.11)

On the other hand, using the fact that i(x, z) ≥ 0 and property (e), the second term in (2.10) can be upper bounded by:

1

η

∑
x∈A:x̄=sk

[(
i(x, z) + εj(x, �x)

)2 − i(x, z)2] = 2ε

η

∑
x∈A:x̄=sk

i(x, z)j(x, �x) +O
(
ε2)

≤ 2εi(b)

η

∑
x∈A:x̄=sk

i(x, z) +O
(
ε2)

= 2εi(b)ik
η

+O
(
ε2). (2.12)

According to Thomson’s principle, the unit current has minimal energy among all unit flows hence 	(ε) ≥ 0 for all ε.
Combining (2.10), (2.11) and (2.12), we conclude that

−2ε(d − k + 1)i(b)2

|�|2 + 2εi(b)ik
η

+O
(
ε2) ≥ 0

which finally yields (2.9) by letting ε tend to 0.
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The remaining of the proof is rather straightforward. First, we sum (2.9) for k = 1, . . . , d . Since i is a unit current, we
find that

1 = i(b) +
d∑

k=1

ik ≥
d∑

k=1

ik ≥ ηi(b)

|�|2
d∑

k=1

(d − k + 1) ≥ ηi(b)d2

2|�|2 ,

and therefore, recalling the probabilistic interpretation of i(b), we have proved that

P
Ã
a (the random walk on Ã hits b before z) ≤ 2|�|2

ηd2
. (2.13)

Let us now consider the natural coupling of the random walks X (resp. X̃) starting from a on the electrical networks
A (resp. Ã) such that both walks coincide until X̃ hits {z, b}. More precisely, we construct both walks by first tossing
a (biased) coin at each step to decide whether X̃ exits by an edge of conductance η when the coin gives a “head” (and
such an edge exist) and otherwise move the two walks together. Recall that Lr

S is the total time spent over the vertices at
levels belonging to S before hitting level r (i.e. hitting b). Furthermore, the vertices corresponding to levels in S are, by
construction, the vertices that share an edge of conductance η with z. Thus, we have

P
A
a (LS < k) ≤ P

Ã
a (X̃ hits b before z) + P

(
there is a “head” in the first k coin throws

)
. (2.14)

Note that, each time X̃ is on a vertex that has an edge of conductance η, there is a probability at most η
1+η

that the
associated coin returns “head” (because there is also at least one adjacent edge with unit conductance). Thus, we get

P
(
there is a“head” in the first k coin throws

) ≤ 1 −
(

1 − η

1 + η

)k

≤ ηk. (2.15)

Combining (2.13), (2.14) and (2.15) and choosing η =
√

2|�|
d
√

k
, we conclude that

P
A
a

(
Lr
S < k

) ≤ 2|�|2
ηd2

+ ηk =
√

8k|�|
d

,

which completes the proof of the proposition. �

Proof of Lemma 2.10. First, let us notice that we can discard all the edges e on which i(e) = 0, keeping only the
connected component of A that contains {a, b, z}. This is because j will also be zero on edges where i is zero. We now
assume that i is non-zero on all edges of A. Then, the flow i induces an oriented graph structure on A so we can speak
of “outgoing” and “incoming” edges from a vertex. We are going to construct j starting from {b, z} and going backward
with respect to the graph orientation. At each step of the exploration process, we keep track of a partition of the vertices
into inactive, active and completed vertices where

• An active vertex has the flow j defined on some outgoing edges but on no incoming edge.
• An inactive vertex is such that the flow j is not yet defined on any adjacent edge.
• A completed vertex is such that the flow j is already defined on all its adjacent edges.

To begin, we fix j = 0 on all edges adjacent to z and j = i on all edges adjacent to b. This is possible because there
is no edge (with non-zero flow) between z and b thanks to assumption 1. Hence j satisfies (a) and (b). Now, we set
{completed} = {b, z} and {active} = {neighbours of b and z} while all other vertices are inactive. We show that, at each
step, we can transform an active vertex into a complete one (possibly turning inactive vertices into active ones in the
process) while constructing a flow j which, restricted to the set of completed vertices, still satisfies all the required
conditions of the lemma.

Indeed, suppose that we have performed some steps of our exploration process and have our sets of active, inactive and
completed vertices. We claim that there must exist an active vertex x such that j is already defined on all of its outgoing
edges. Indeed, if this was not the case, we could start from any active vertex and then recursively construct a path that
follows the graph orientation and on which j is not defined. But then, such a path is either infinite or contains cycles. As
A is finite, this path has cycles, which contradicts the initial assumption that i has no cycle. So, let x be such a vertex.
The flow j already defined on the sub-graph spanned by the completed vertices has strength i(b). In particular, the sum of
j on the outgoing edges of x is at most i(b). It is also smaller, by construction, than the sum of i on the incoming edges
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of x. Thus, it is now clear that we can fix j on the incoming edges of x in such way that (c), (d), (e) hold true. There are
several ways to do it. For instance, we can set j(z, x) := αi(z, x) for any incoming edge (z, x) where α is the ratio of the
total outgoing j-flow over the total incoming i-flow. Finally, we move x to the set of completed vertices and activate all
its adjacent currently inactive vertices. This complete the induction step and the proof of the lemma. �

Remark 2.11. Under the hypotheses of Lemma 2.10, the function i − j is also a flow which satisfies all the properties
(a)–(e) when exchanging the roles of b and z. In particular, any flow i that satisfies the hypotheses of the lemma can be
written as the superposition of two flows jb and jz such that

(a) i = jb + jz.
(b) jb is a flow from a to b and no flow enters nor exits z.
(c) jz is a flow from a to z and no flow enters nor exits b.
(d) The flows i, jb and jz have the same sign on all edges.

As already noticed during the proof of the lemma, this decomposition is not, in general, unique. In particular, when i is a
current, the flows jb and jz need not be currents themselves.

Proposition 2.9 shows that the time spent on any d distinct level sets is of order (at least) d2 which is the correct diffu-
sive scaling for the random walk on a sub-graph A of Z× � but it provides only a polynomially decaying upper bound.
However, it is not difficult to bootstrap the previous result to get an exponential upper bound which is still homogeneous
in d/

√
k.

Corollary 2.12. Under the assumptions of Proposition 2.9, we have, for any k, d ≥ 1,

P
A
a

(
Lr
S < k

) ≤ 3 exp

(
− d

16|�|√k

)
.

Proof. Let c := 2e
√

8|�| and � := d

c
√

k
. We split the set {s1, . . . , sd} in ��� groups, each containing at least �d/�� consec-

utive levels. Thus, in order for the local time Lr
S to be smaller than k, it has to be smaller than this value on each group.

Making use of the Markov property at the time of first entrance in each group and applying repeatedly Proposition 2.9,
we find that

P
A
a

(
Lr
S < k

) ≤
(√

8k|�|
�d/��

)���
≤

(√
8k|�|
c
√

k
2

)�−1

= e
− d

c
√

k
+1 ≤ 3e

− d

16|�|√k .
�

We can now complete the proof of Proposition 2.6.

Proof of Proposition 2.6. Set c := 46|�|6 which is the constant appearing in Corollary 2.8. Let S := {x1, . . . , xd} and
define by induction the sequence of stopping time (Ti)i≥0 by T0 = 0, and

Ti+1 := inf{n > Ti + c : S̄n ∈ S} for i ≥ 1,

with the usual convention that inf∅ = +∞. Let Ai be the event that the walk does not cross any edge of ∂eA during the
time interval [Ti, Ti+1 − 1]:

Ai := {
Ti < ∞ and there does not exist n ∈ [Ti, Ti+1) such that (Sn, Sn+1) ∈ ∂eA

}
.

We can couple the random walk on the electrical network (2.5) with the simple random walk on the subgraph A up to
time σ (the time when the walk on the electrical network leaves A). Thus, we deduce that, for any fixed n,

Pa(Hr < σ) ≤ Pa(Hr < σ and Hr < Tn) + Pa(Tn ≤ σ)

≤ P
A
a (Hr < Tn) + Pa

(
n−1⋂
i=1

Ai

)
. (2.16)

On the one hand, before time Tn, the simple random walk on A cannot visit levels of S more than cn times, by definition
of the Ti ’s. Therefore, according to Corollary 2.12, we have

P
A
a (Hr < Tn) ≤ P

A
a

(
Lr
S < cn

) ≤ 3 exp

(
− d

16|�|√cn

)
. (2.17)
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On the other hand. Each time the walk on the electrical network (2.5) visits a site of ∂vA, there is, at least one adjacent
exit edge so it has probability at least 1

1+|�|(δ+1)
to cross an edge of ∂eA at the next step. Combining this fact with

Corollary 2.8 and using the strong Markov property, we deduce that,

P
A
a (Ai | A1, . . . ,Ai−1) ≤ 1 − 1

2(1 + |�|(δ + 1))
≤ 1 − 1

4|�|(δ + 1)

which implies,

Pa

(
n−1⋂
i=1

Ai

)
≤

(
1 − 1

4|�|(δ + 1)

)n−1

≤ exp

(
− n

8|�|(δ + 1)

)
. (2.18)

Thus, combining (2.16), (2.17), (2.18), we find that

Pa(Hr < σ) ≤ 3 exp

(
− d

16|�|√cn

)
+ exp

(
− n

8|�|(δ + 1)

)
. (2.19)

Finally, setting n = �x� with x = d2/3(1+δ)2/3

8|�|2 (which is the optimal choice) and recalling the exact value of c, we conclude
that

Pa(Hr < σ) ≤ 3 exp

(
− d

16|�|√cx

)
+ 2 exp

(
− x

8|�|(δ + 1)

)

= 5 exp

(
− 1

44|�|3
(

d2

1 + δ

) 1
3
)

. �

2.5. Auxiliary results

Proposition 2.6 gives a stretched exponential upper bound for the probability of crossing d levels without exiting a
reinforced sub-graph. However, this bound is meaningful only for d � δ1/2 (i.e. when the probability goes to 0). In the
next section, we will need a bound of this same probability in the regime d ≈ δ1/4 (when the probability goes to 1). But
one can still use Corollary 2.12, and adapt the proof of Proposition 2.6 to cover our needs. Note that it will be convenient
now to state the results with a site a on the right of level 0, and to consider the hitting time of level 0 instead of level r ,
but of course this is strictly equivalent to the previous formulation. We recall that for a vertex a of Z × �, we denote by
a its level, that is its projection on Z.

Lemma 2.13. Let d ≥ 1, and A be a connected subgraph of {0, . . . , d} × �, such that for any i ∈ {0, . . . , d} there is at
least one site at level i in ∂vA, and let a ∈ A, with a = d . Define the random walk S and the exit time σ from A, as in
Proposition 2.6. There exist positive constants c and C (not depending on any parameter), such that for any d ≥ C|�|8,
and d3/2 ≤ δ ≤ (2d)5,

Pa[σ < H0] ≥ c · d3/2

|�|6δ . (2.20)

Let us make some comment on the hypothesis on δ here. First imposing an upper bound on δ is clearly necessary, since
asymptotically as δ goes to infinity the probability to exit the range before hitting level 0 vanishes. On the other hand the
lower bound on δ is not necessary here, indeed a similar result would hold as well for any small δ. However, it will be
needed later in Corollary 2.14, and even here it is convenient as it ensures the term on the right-hand side of (2.20) being
smaller than one.

Proof. Let

L := ∣∣{0 ≤ n < H0 ∧ σ : Sn ∈ ∂vA}∣∣,
be the time spent on ∂vA before time H0 ∧ σ . Set N = d3/2|�| and L := N/(47|�|6), and note that the hypothesis on d

implies that L ≥ 1, at least for C large enough (not depending on any parameter). Then decompose

Pa(H0 ≤ σ) ≤ Pa(H0 ≤ N ∧ σ) + Pa(σ ∧ H0 > N,L ≤ L) + Pa(L > L). (2.21)
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Note that the random walk S can be coupled with the simple random walk on A (which by definition never exits A), in
such a way that they coincide up to the time σ . Therefore the first probability on the right-hand side of (2.21) can be
bounded using Corollary 2.12, and we get, for C large enough,

Pa(H0 ≤ N ∧ σ) ≤ P
A
a (H0 ≤ N) ≤ 3 exp

(
− d1/4

16|�|3/2

)
≤ 1

6
· d3/2

48|�|6δ . (2.22)

Using now, as in the proof of Proposition 2.6, that each time the process is on a vertex of ∂vA, it has probability at least
1

1+|�|(1+δ)
to exit A, we get

Pa(L > L) ≤
(

1 − 1

1 + |�|(1 + δ)

)L

≤ 1 − d3/2

2 · 47|�|5(1 + |�|(1 + δ))
≤ 1 − d3/2

3 · 47|�|6δ , (2.23)

using for the second inequality that (1 − ε)n ≥ 1 − nε/2, when ε ≤ 1/(2n) together with the hypothesis on d and δ, and
using for the last one that C is large enough. Finally, Corollary 2.8 and the fact that A does not contain any level set show
that, under the event {σ ∧ H0 ≥ N}, L is stochastically larger than a Binomial random variable with number of trials
N/(46|�|6) = 4L, and probability of success 1/2. Then, again Hoeffding’s inequality yields, choosing C large enough,

Pa[H0 ∧ σ ≥ N,L ≤ L] ≤ exp

(
−L

2

)
≤ exp

(
−2

d3/2

48|�|5
)

≤ 1

6
· d3/2

48|�|6δ . (2.24)

The lemma follows from (2.21), (2.22), (2.23), and (2.24), choosing c = 4−8. �

As a consequence we obtain the following result.

Corollary 2.14. Under the setting of Lemma 2.13, one has for some constant C′ > 0,

Pa[S̄σ = d + 1 | σ < H0] ≤ C′ · |�|5
d3/4

.

Proof. Denote by eσ the random exit edge (Sσ−1, Sσ ), and let F be the set of horizontal edges in ∂eA whose tail is on
level d and head on level d + 1. Now fix some f ∈ F , and denote by E(f ) the set of edges in ∂eA, whose tail is at
(intrinsic) distance smaller than d3/4/|�|2 from f − in A. We claim that E(f ) contains at least d3/4/(2|�|3) edges. To
see this, fix any non intersecting path in A of length d3/4/|�|2 starting from f −. The fact that any level set contains at
least one site in ∂vA, and that the diameter in � is bounded by |�| − 1, implies that to every 2|�| consecutive vertices in
the path one can associate in a one to one way an edge in ∂eA whose tail is at distance smaller than |�|− 1 from this path,
and this yields our claim on the size of E(f ). Now Proposition 2.5 implies that for any e ∈ E(f ), one has

∣∣Pa(eσ = f ) − Pa(eσ = e)
∣∣ ≤ d3/4

|�|2|(1 + δ)
.

Likewise, by conditioning first on the position of the walk at time H0, we also have

∣∣Pa(eσ = f,H0 < σ) − Pa(eσ = e,H0 < σ)
∣∣ ≤ d3/4

|�|2|(1 + δ)
.

Therefore, by triangle inequality,

∣∣Pa(eσ = f,σ < H0) − Pa(eσ = e, σ < H0)
∣∣ ≤ 2

d3/4

|�|2|(1 + δ)
.

Combining this with the result of Lemma 2.13, we obtain

∣∣Pa(eσ = f | σ < H0) − Pa(eσ = e | σ < H0)
∣∣ ≤ 2

|�|4
cd3/4

.
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As a consequence, one has either Pa(eσ = f | σ < H0) ≤ (4/c) · |�|4d−3/4, or

1 ≥
∑

e∈E(f )

Pa(eσ = e | σ < H0) ≥ d3/4

2|�|3
(
Pa(eσ = f | σ < H0) − 2

|�|4
cd3/4

)

≥ d3/4

4|�|3 Pa(eσ = f | σ < H0).

The result follows since F contains at most |�| edges. �

3. D-Walls

In this section we consider the ORRW on G = Z × �, which we recall we denote by (Xn)n≥0. We also recall that its
range Rn (which we will also sometimes write as R(n)) is the graph consisting of all vertices visited up to time n and all
edges crossed by the walk up to this time (in one or the other direction).

We define now the notion of D-wall created by the ORRW, which extends the definition of walls used by Vervoort in
[22] (the latter being just 1-walls). The reason of this new definition is that we want to ensure the typical spacing between
two consecutive walls being of polynomial order in the size of � (instead of exponential order when using the simpler
notion of wall from [22]).

Given positive integers x and D, we say that level x begins a D-wall if the walk S visits a complete level set on the
right of x before reaching level x + D:

there exists y ∈ {x, x + 1, . . . , x + D − 1} such that {y} × � ⊂R(Hx+D).

To simplify the discussion below, we use the convention that x also begins a D-wall when Hx+D = ∞. The usefulness
of D-walls will appear more clearly later. The basic idea is that they enable us to control the intrinsic distance within
the range in order to match pairs of (non-reinforced) oriented edges with opposite direction that are close together. Then
Propositions 2.5 and 2.6 show that the sum of their contributions to the drift part in the martingale that will be defined
later in (4.1) is negligible, ensuring recurrence. First, we must check that these walls occur often enough, at least when D

is suitably chosen as a function of δ. This is precisely the purpose of the next proposition, which is the main result of this
section (let us stress for ease of the reading that D will later be taken to be of order δ1/4).

Proposition 3.1. There exist a constant C > 0, such that for any D ≥ C|�|10, and D3/2 ≤ δ ≤ D5, one has for any x ≥ 0,
almost surely on the event {Hx < ∞},

P(x begins a D-wall | FHx ) ≥ 1

2
.

Note that the hypotheses on δ come from the fact that the proof relies on Corollary 2.14, so both the upper and lower
bounds will be needed.

We first need an intermediate lemma, which follows from the results proved in Section 2.5.

Lemma 3.2. Consider the ORRW (Xn)n≥0, starting from some vertex at level smaller than 0. Assume that at some time
n0 < Hd+1, one has X̄n0 = d , and that none of the level sets i, with 0 ≤ i ≤ d , is contained in Rn0 . Assume further that
the hypotheses on d , δ and |�| from Lemma 2.13 are satisfied. Let

σ1 := inf
{
n ≥ n0 : (Xn−1,Xn) ∈ ∂eRn−1,1 ≤ X̄n−1 ≤ d, and 1 ≤ X̄n ≤ d

}
,

and

σ2 := inf{n ≥ n0 : X̄n = d + 1} = Hd+1.

Then with the same constant C′ > 0 as in Corollary 2.14, one has

P(σ2 < σ1 |Fn0) ≤ C′|�|5
d3/4

.
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Proof. Let (H0,i )i≥0, and (Hd,i)i≥0 be the successive hitting times of levels 0 and d respectively. More precisely define
them recursively by Hd,0 = 0, and for i ≥ 0,

H0,i := inf{n ≥ Hd,i : X̄n = 0},
and

Hd,i+1 := inf{n ≥ H0,i : X̄n = d}.
Note that by definition σ2 cannot occur between H0,i and Hd,i+1, for any i ≥ 0. Thus

P(σ2 < σ1 | Fn0) =
∑
i≥0

P(Hd,i < σ2 < σ1 ∧ Hd,i+1 | Fn0)

=
∑
i≥0

P(Hd,i < σ2 < σ1 ∧ H0,i | Fn0).

Then the Markov property and Corollary 2.14 give

P(σ2 < σ1 | Fn0) ≤ C′|�|5
d3/4

∑
i≥0

P(Hd,i < σ2 ∧ σ1 < H0,i |Fn0) ≤ C′|�|5
d3/4

.
�

We are now in position to give the proof of Proposition 3.1.

Proof of Proposition 3.1. The idea of the proof is to use Lemma 3.2, to show that between two consecutive hitting times
of a new level in {x, . . . , x + D} × �, the walk will cross many new edges with large probability. To be slightly more
precise, Lemma 3.2 tells us that at any time, as long as no level set has been entirely covered in {x, . . . , x + D} × �, the
probability to cross a new edge before hitting a new level set is so high that the process is really likely to discover more
edges than the total number of edges in {x, . . . , x + D} × � before hitting level x + D, which is of course excluded, and
as a conclusion, with high enough probability the walk has to cover some level set before hitting level x + D.

Now let us formalize this idea. Denote by τ the first time when a level set in {x, . . . , x + D − 1} × � is covered, and
set for k ≥ 0, τk := Hx+k+�D/2�. Then for each k ≥ 0, define (τk,i)i≥0 and (σk,i)i≥0 by τk,0 := τk , and for any i ≥ 0,

σk,i := inf
{
t > τk,i : (Xt−1,Xt ) ∈ ∂eRt−1 and x + 1 ≤ X̄t−1 ≤ x + k + �D/2�},

τk,i+1 := inf
{
σk,i ≤ t < τk+1 : X̄t = x + k + �D/2�}.

Note that {τk,i+1 = ∞} ∩ {τk+1 < ∞} = {σk,i = τk+1 < ∞}. Finally, define

N(k) = inf{i ≥ 1 : τk,i = ∞} =
∞∑
i=0

1{τk,i < ∞}.

For each k ≥ 0, the random variable N(k) counts how many times X starts from k, and crosses a new edge with tail at a
level between x + 1 and x + k + �D/2�, before τk+1.

Now, letting d = �D/2�, Lemma 3.2 implies that for any k, i ≥ 0, almost surely,

P(τk,i+1 = ∞ |Fτk,i
)1{τk,i < τ } ≤ C′|�|5

d3/4
≤ 1

10|�|2 ,

using the hypothesis that D ≥ C|�|10, and choosing C large enough, for the last inequality. Hence, if no level set is cov-
ered by time τk+1, N(k) stochastically dominates a geometric random variable with parameter 1/(10|�|2). On the other
hand, by definition, the number of edges in {x, . . . , x + D − 1} × �, which are crossed before time Hx+D is larger than

 := N(1) + · · · + N(�D/2�). The above discussion shows that on the event {τ > Hx+D}, this sum stochastically domi-
nates the sum of �D/2�, i.i.d. Geometric random variables with parameter 1/(10|�|2). Thus it follows from Bernstein’s
inequality that with probability at least 1/2, 
 is larger than 5|�|2�D/2�. However, the latter quantity is always larger
than the total number of edges on {x, . . . , x + D} × �, leading to a contradiction. We conclude that with probability at
least 1/2, one has τ < HD , as wanted. �
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Remark 3.3. Proposition 3.1 shows the existence of D-walls at typical distance of order a constant multiple of D, when
D is a power of δ, and δ is polynomially large with respect to |�|. However, if one does not care about polynomial bounds,
a much simpler argument gives a weaker exponential bound. Indeed it is easy to check that with a probability of order
exp(−|�|3), a level set is entirely covered before the next level is discovered, in other words that a 1-wall begins.

4. Gambler’s ruin type estimates

4.1. A martingale

We consider now {Xn}n≥0 the ORRW on Z× � starting from some vertex at level 0. We then define the process

Mn := X̄n + δ ·
n−1∑
k=0

(X̄k+1 − X̄k)1
{{Xk,Xk+1} /∈ Ek

}
, (4.1)

where Ek , defined in (1.1), is the set of edges crossed by time k. The following fact was observed by Vervoort [22].1

Lemma 4.1. The process (Mn)n≥0 is an (Fn)n≥0-martingale.

Proof. Assume that, at time n ∈ N, we have Xn = s = (x, γ ) ∈ Z × �. If Xn+1 ∈ {x} × �, then Mn+1 = Mn. Thus, to
compute the conditional expectation of Mn+1 − Mn, we only need to consider the cases when Xn+1 = (x − 1, γ ) or
Xn+1 = (x + 1, γ ). Denoting e1 = {s, (x + 1, γ )} and e2 = {s, (x − 1, γ )}, we obtain

E[Mn+1 − Mn|Fn] = (1 + δ1{e1 ∈ En})(1 + δ1{e1 /∈ En}) + (1 + δ1{e2 ∈ En})(−1 − δ1{e2 /∈ En})∑
z:z∼s(δ1{{s, z} ∈ En} + 1)

= 0.

Therefore, (Mn)n is a martingale. �

4.2. Gambler’s ruin estimates

Here we prove gambler’s ruin type estimates for the (horizontal coordinate of the) ORRW on Z × �. These will be our
main tools for the proofs of Theorems 1.1 and 1.2. We first present a relatively simple form of the result, Proposition 4.2,
which will be sufficient for the proof of Theorem 1.1 and Proposition 6.1. Then we will give a slightly more precise and
more effective version, Proposition 4.5, which is needed for the proof of Theorem 1.2. But first let us introduce some new
notation. For x ≥ 0, let

Hx,0 := inf{n ≥ Hx : X̄n = 0},
be the first return time to level 0 after time Hx . Let also Z0 be the (random) smallest positive integer such that Z0 begins
a D-wall, with the notation of Section 3, and let D0 := Z0 + D. Recall that D0 is almost surely finite by Proposition 3.1.

Here is our first result:

Proposition 4.2. There exists a constant C > 0, such that for any δ ≥ C|�|40, almost surely, on the event {Hx < ∞} ∩
{x ≥ D0δ},

P[H2x < Hx,0 | FHx ] ≤ 1

210
.

Remark 4.3. The exact value of the constant in the upper bound does not have any serious meaning, the only reason for
the choice of 2−10 is for convenience for the proof of Proposition 6.1.

Proof. Fix some x > 0, and assume that both Hx is finite and x ≥ D0δ. Then consider (σn)n≥0, the successive times of
visit of new edges after Hx . Formally σ0 = Hx , and for n ≥ 1,

σn := inf
{
k > σn−1 : {Xk−1,Xk} /∈Rk−1

}
.

1Similar martingales related to other reinforcement schemes were also previously constructed by Davis [8].
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Then set An := Rσn , which we recall we consider as a subgraph of G, where the edges are those traversed by the walk,
and let

Dn :=
n∑

k=1

(X̄σk
− X̄σk−1)1(σk ≤ n),

be the total drift accumulated after Hx and before time n. For simplicity write also τx := Hx,0 ∧ H2x . Applying the
optional stopping time theorem, and using Lemma 4.1, we get

2x · P[H2x < Hx,0 | FHx ] + δE[Dτx |FHx ] = x. (4.2)

Thus it amounts to estimate the expected value of the total drift accumulated at time τx .
To this end, we will bound the expected drift at each visit of a new edge. When both the tail and the head of the edge

are on the same level, then the drift is zero, so nontrivial contributions only come from horizontal edges. Informally we
need to show that the walk has at least as much chance (to the leading order) to exit An through a directed edge e = (v,w)

oriented positively, i.e. such that w̄ = v̄ + 1, as through an edge oriented in the other direction. This holds actually only
up to small error terms which are of sub-linear order in δ. Fortunately the latter are compensated by a strong drift equal
to δ accumulated each time the process arrives at a new level for the first time, which on the event {H2x < Hx,0} happens
exactly x times.

To be more precise, from now on, and in the whole section, we fix D = �δ1/4�. Since we assume δ ≥ C|�|40, we have
also D ≥ C1/4|�|10, so that by taking large enough C one can apply the result of Proposition 3.1.

Next, for n ≥ 0, let

E+
n = {

e = (v,w) ∈ ∂eAn : w̄ = v̄ + 1 and v̄ ∈ {D0, . . . ,2x − 2}},
and

E−
n := {

e = (v,w) ∈ ∂eAn : w̄ = v̄ − 1 and v̄ ∈ {D0, . . . ,2x − 1}}.
Then we define an injective map ϕn : E−

n → E+
n as follows. If e ∈ E−

n , with e− = (y, γ ), we let ϕn(e) be the edge in E+
n ,

such that ϕn(e)
− = (y′, γ ), with the largest possible y′ smaller than or equal to y. Such an edge necessarily exists as soon

as there exists a D-wall on the left of e, which we assumed. Moreover, if z is the largest integer beginning a D-wall with
z + D ≤ y, and z′ is the smallest integer beginning a D-wall, which is larger than y, then one has dAn(e

−, ϕn(e)
−) ≤

|�|(z′ + D − z), using again that the diameter in � is bounded by |�| − 1. Note that a D-wall on the right of y might not
have been yet discovered at time σn. In this case one can just define z′ as the maximal level reached at time σn, and the
same bound for dAn(e

−, ϕn(e)
−) holds. We also set Dn(e) := (z′ + D − z), with the above notation. Then we define a

new intrinsic distance between vertices: given some subgraph A ⊂ G = Z× �, and for any v,w ∈ A, we let

d̃A(v,w) := #{i : v̄ ∧ w̄ ≤ i ≤ v̄ ∨ w̄, and level i is not contained in A}.
Next we define

Gn := E−
n ∩ {

e : d̃An

(
e−,Xσn

) ≤ δβ and Dn(e) ≤ δα
}
,

with α and β some constants satisfying 1/4 < α < 1/2 < β < 1, and α +β ≤ 7/8. We also denote by en := (Xσn−1,Xσn),
the n-th visited (directed) edge after time Hx . Then set for n ≥ 0,

In := 1(σn = HXσn
),

the indicator function that a new level is discovered at time σn. One has, on the event {σn < τx},
E

[
(Dσn+1 − Dσn)1

({σn+1 ≤ τx}
) |Fσn

]
≥ P[In+1 = 1, σn+1 ≤ τx | Fσn] − P

[
ē+
n+1 = ē−

n+1 − 1 ∈ {0, . . . ,D0 − 1} | Fσn

]
− P

[
Dn(en+1) > δα | Fσn

] − P
[
d̃An

(
e−
n+1,Xσn

)
> δβ |Fσn

]
−

∑
e∈Gn

(
P[en+1 = e | Fσn] − P

[
en+1 = ϕn(e) |Fσn

])
. (4.3)
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The last sum above can be bounded using Proposition 2.5, which gives∑
e∈Gn

∣∣P[en+1 = e | Fσn] − P
[
en+1 = ϕn(e) | Fσn

]∣∣ ≤ 2|�|2 · δα+β−1,

since the number of edges in Gn is bounded by 2|�|δβ , and for any e ∈ Gn, one has by the above discussion
dAn(e

−, ϕn(e)
−) ≤ |�|δα . Moreover, the total number of edges between levels 1 and 2x is bounded by 2x|�|2. Thus∑

n≥0

∑
e∈Gn

∣∣P[en+1 = e | Fσn] − P
[
en+1 = ϕn(e) |Fσn

]∣∣1(σn < τx) ≤ 4x|�|4δα+β−1. (4.4)

Likewise the number of edges oriented negatively between levels 0 and x0 is bounded by |�|x0. Thus∑
n≥0

P
[
ē+
n+1 = ē−

n+1 − 1 ∈ {0, . . . ,D0 − 1} | Fσn

]
1(σn < τx) ≤ |�|D0. (4.5)

Using Proposition 2.6, and the hypothesis δ ≥ C|�|40, we obtain similarly by taking larger C if necessary,∑
n≥0

P
[
d̃An

(
e−
n+1,Xσn

)
> δβ |Fσn

]
1(σn < τx) ≤ x · δ−1.

For the last remaining term in (4.3), let us denote by Lx and Lx,2x the sum of the distances between two consecutive
D-walls whose distance exceeds δα , respectively between levels 0 and x and between levels x and 2x. First one has

E

[∑
n≥0

P
[
Dn(en+1) > δα | Fσn

]
1(σn < τx)

∣∣∣FHx

]
≤ |�|2(Lx +E[Lx,2x | FHx ]

)
. (4.6)

Moreover, Proposition 3.1 shows that the distance between two consecutive D-walls is stochastically dominated by a
geometric random variable with parameter 1/2, times D. Using that geometric random variables have exponential tail,
we get that almost surely, for all x large enough,

Lx ≤ x · δ−1 and E[Lx,2x | FHx ] ≤ x · δ−1. (4.7)

On the other hand∑
n≥0

P[In+1 = 1, σn+1 ≤ τx | FHx ] ≥ x · P[H2x < Hx,0 |FHx ], (4.8)

simply because on the event {H2x < Hx,0} the walk arrives exactly x times at a new level for the first time.
Therefore, it follows from (4.3), (4.4), (4.5), (4.6), (4.7), and (4.8) that almost surely for all x large enough,

E[Dτx | FHx ] ≥ x · P[H2x < Hx,0 |FHx ] − 8x|�|4δα+β−1 − |�|D0.

Together with (4.2), it implies

P[H2x < Hx,0 | FHx ] ≤ 1

2 + δ
+ 8|�|4δα+β−1 + |�|D0

x
.

Then Proposition 4.2 follows, since α + β ≤ 7/8 and δ ≥ C|�|40, and thus by choosing C large enough, one can make
the sum of the two first terms on the righthand side smaller than 2−11, and similarly for the last term using that x/D0 ≥ δ,
by hypothesis. �

Now we present a stronger form of Proposition 4.2, which requires some more notation. For x ≥ 0, we let Lx be the
sum of the distances between two consecutive D-walls on the left of x, whose distance exceeds δα , with α ∈ (1/4,1/3).
Recall also that we fixed the value of D as D = �δ1/4�. The next lemma will be needed.

Lemma 4.4. Consider the event Ex := {Lx ≤ x
δ
}. Then for δ large enough, one has for all x ≥ 1,

P(Ex) ≥ 1 − exp

(
− x

2δ5/4

)
.
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Proof. Recall that Proposition 3.1 shows that the distance between two consecutive D-walls is stochastically dominated
by D · g, with g a geometric random variable with parameter 1/2. Moreover, between levels 0 and x, there are certainly
less than x integers beginning a D-wall. Therefore Lx is stochastically bounded by the sum of x independent random

variables distributed as D · g1(g ≥ δα− 1
4 ). Then the result follows from Chebyshev’s exponential inequality. �

Now one can state the refined gambler’s ruin estimate necessary to prove Theorem 1.2. It will be assumed here and
in the rest of the paper, that integer parts have to be taken when needed (in particular in the statement of the proposition
below (1 + ε)x should be understood as its integer part).

Proposition 4.5. Let α ∈ (1/4,1/2) and β ∈ (1/2,1) be fixed. There exists a constant C > 0, such that for any δ ≥
C|�|40, and any ε ∈ (0,1), almost surely on the event {Hx < ∞} ∩ {x ≥D0δ} ∩ Ex ,

P[H(1+ε)x < Hx,0 |FHx ] ≤ 10|�|4δα+β

1 + εδ
.

We omit the proof of this proposition, since it follows directly from the proof of Proposition 4.2.

5. Proofs of Theorems 1.1 and 1.2

We start by proving Theorem 1.1.

Proof of Theorem 1.1. Proposition 4.2 shows that, almost surely, each time the process arrives at a new level of the
form 2k (resp. −2k), such that 2k ≥ D0δ, the probability that it goes back to the origin before arriving at level 2k+1

(resp. −2k+1) is lower bounded by a positive constant, independently of the past. Thus the largest level set visited before
returning to the origin is stochastically bounded by the exponential of a geometric random variable (times some almost
surely finite random constant), and in particular is almost surely finite. Since the ORRW cannot stay confined forever in
any finite subgraph, this shows that it returns almost surely infinitely many times to level 0, concluding the proof. �

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. Define

H ∗
n := inf

{
k ≥ 0 : {n − 1, n} × � ⊆Rk

}
.

It amounts to prove that almost surely for all n large enough, one has

H ∗
n < H

n+nδ−1/8 , (5.1)

We use Proposition 4.5, with ε := 1/δη , and η = 1
8 + 1

100 . We next fix α and β such that α + β ≤ 3
4 + 1

100 . Then
Proposition 4.5 shows that for δ ≥ C|�|40, with C some large constant, one has almost surely on the event {Hx <

∞} ∩ {x ≥ D0δ} ∩ Ex ,

P[H(1+ε)x < Hx,0 |FHx ] ≤ 10|�|4
δ

1
8 − 1

50

≤ 1

2
, (5.2)

taking larger C if necessary for the last inequality. Notice moreover, that the environment on the left of the starting
position at time 0 plays no role in the proof of the proposition: it could be anything this would not change the argument
nor any of the constants appearing there. Therefore, taking the origin of the space to be the position of the walk at
time Hn, the time origin to be Hn, and then applying (5.2), one deduces that for each n, almost surely, on the event
{Hn+x < ∞} ∩ {x ≥ δD0(n)} ∩ Ex(n),

P[Hn+(1+ε)x < Hn+x,n |FHn+x ] ≤ 1

2
, (5.3)

with D0(n) and Ex(n) defined analogously as D0 and Ex , but concerning the D-walls between levels n and n + x, and

Hn+x,n := inf{t > Hn+x : X̄t = n}.
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Now define z0 := n1/δη
, and for i ≥ 1, set zi := (1 + ε)iz0. Let also

N := 9

δη log(1 + ε)
logn,

and

Ẽ(n) =
N⋂

i=0

Ezi
(n).

In particular zN ≤ n10/δη
. Then define for i ≥ 0,

εi := 1{Hn+zi ,n < Hn+zi+1},
and for t ≥ 0,

τn(t) := inf

{
k ≥ 0 :

k∑
i=0

εi1{Hn+zi
< ∞} ≥ t

}
.

Next introduce the martingale (Mk)k≥0 (with respect to the filtration (FHn+zk
)k≥0), defined by

Mk :=
k∑

i=0

(
εi − P(εi = 1 | FHn+zi

)
)
1{Hn+zi

< ∞}.

Equation (5.3) implies that for any i = 0, . . . ,N , almost surely on the event Ezi
(n) ∩ {Hn+zi

< ∞} ∩ {z0 ≥ D0(n)δ},

P(εi = 1 | FHn+zi
) ≥ 1

2
.

Using also that log(1 + ε) ≤ ε, we obtain N ≥ 9 logn (recalling that ε = 1/δη). Therefore one can fix a small constant
κ > 0, such that, at least for δ large enough, one has (N − 2κ logn)2/(8N) ≥ α logn, for some α > 1. Then Azuma’s
inequality gives that almost surely on the event {z0 ≥D0(n)δ},

P
(
τn(κ logn) > N, Ẽ(n),Hn+zN

< ∞ | FHn+z0

) ≤ P

(
MN ≤ κ logn − N

2

)
≤ e− (N−2κ logn)2

8N

≤ n−α.

Recall now Lemma 4.4 and that the distribution of D0(n) has an exponential tail. Together with the above estimate, and
Borel-Cantelli’s lemma, they imply that almost surely z0 ≥ D0(n)δ, for all n large enough, and

almost surely for all n large enough, if Hn+n10/δη is finite, then τn(κ logn) ≤ N . (5.4)

In other words, almost surely for n large enough the walk makes at least κ logn returns from level n + n1/δη
to level n,

before hitting level n + n10/δη
.

At each of these returns, and for every k ∈ {0, . . . ,K}, with K := [n1/δη
/2], it has some positive probability in-

dependently of the past, say at least p (with p a positive constant depending only on δ and |�|) to cover entirely
{n + 2k − 1, n + 2k} × �, before exiting this subgraph. Moreover, this holds independently for any k, and for ev-
ery excursion. Now to simplify the discussion below, given some time T > 0, let us say that k is T -good when
{n + 2k − 1, n + 2k} × �, is covered before time T , and otherwise that it is T -bad. Write also zn(i) := zτn(i), for i ≥ 0.
Note that, using (5.4), all that remains to be done to prove (5.1) is to show that

almost surely, 0 is Hn+zn(κ logn)-good, for all n large enough, (5.5)

since, at least for δ large enough, one has 10/δη ≤ 1/δ1/8, by definition of η. The discussion above shows that if

t0 := Hn+zn( κ
2 logn),
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then any k ∈ {0, . . . ,K}, is t0-good with probability at least

pn := 1 − (1 − p)
κ
2 logn ≥ 1 − n− κp

2 .

Let K ′ := [nκp/4], and M := 8/(κp). Since the number of integers k ≤ K ′ which are t0-bad is stochastically bounded by
a Binomial random variable with parameters K ′ and K ′−2, Chernoff’s inequality shows that

P
(
#
{
k ≤ K ′ : k is t0-bad

} ≥ M
) ≤ 2 exp

(
−M2(K ′)3

4

)
≤ n−2,

at least for n large enough. Therefore by Borel-Cantelli, almost surely for all n large enough the number of integers
k ≤ K ′ which are t0-bad is bounded by M . Now for k ∈ {0, . . . ,K ′}, set

d(k) := inf{� ≥ 0 : k + � is t0-bad}.

When the number of t0-bad integers is smaller than M , for at least one of them d(k) ≥ K ′/M . Denote by k1 the smallest
of them. Then let M ′ be the number of t0-bad integers smaller than or equal to k1, and denote them by kM ′ < · · · < k1.
Note that one can assume that kM ′ = 0, as otherwise there is nothing more to prove.

Let

t1 := H
n+zn( κ

2 (1+ 1
M ′ ) logn)

.

Note that between times t0 and t1 there are at least (κ/2M ′) logn excursions between levels n + n1/δη
and n. Note

moreover, that if d(k1) ≥ K ′/M , then between levels n + 2k1 and n + 2k1 + N ′/M , the horizontal coordinate of the
ORRW behaves as a simple random walk on Z. Now we recall some basic fact on the local time at the origin for this
process. If we denote by Lm the time spent at the origin, when the simple random walk (starting from the origin) first hits
±m, then Lm is distributed as a Geometric random variable with parameter 1/m (since whenever the random walk is in
±1, gambler’s ruin estimate shows that it has probability exactly 1/m to hit ±m before the origin). In particular

P(Lm ≤ √
m) ≤ c√

m
,

for some constant c > 0. As a consequence for each of the excursions between times t0 and t1, the number of returns
to level n + 2k1 (after a jump to level n + 2k1 + 1) is larger than

√
K ′/M with probability at least q := 1 − c

√
M/K ′.

Therefore in total the number of returns to level n + 2k1 between times t0 and t1 stochastically dominates
√

K ′/M · B ,
with B a Binomial random variable with parameters (κ/2M ′) logn and q . One has

P(B = 0) = (1 − q)
κ

2M ′ logn ≤ e−c′(logn)2
,

for some constant c′ > 0. Thus almost surely for n large enough, B ≥ 1, and there are at least
√

K ′/M returns to level
n + 2k1 between times t0 and t1. Using then again that at each of these returns (and independently for each of them) the
probability to cover {n + 2k1 − 1, n + 2k1} × � is larger than p, we deduce that

almost surely, for n large enough k1 is t1-good.

Then one can just iterate this argument. More precisely, for i = 2, . . . ,M ′, one defines

ti := H
n+zn( κ

2 (1+ i
M ′ ) logn)

,

and using repeatedly the above argument, one shows inductively that

almost surely, for n large enough, ki is ti-good, for all i = 1, . . . ,M ′,

proving well (5.5), since we recall that kM ′ = 0. This concludes the proof of Theorem 1.2. �
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6. Finiteness of the expected return times

We prove here that the successive return times to the origin (after an excursion on the right of it) have finite expectation.
To be more precise, define (τi)i≥1 and (τ+

i )i≥0 by τ0 = 0 and for i ≥ 0,

τ+
i := inf{t > τi : Xt > 0}, and τi+1 := inf

{
t > τ+

i : Xt = 0
}
.

The following implies Proposition 1.5.

Proposition 6.1. There exists a constant C > 0, such that for any δ ≥ C|�|40, one has E[τi] < ∞, for all i ≥ 1.

Remark 6.2. Recall that the one-dimensional simple random walk is null recurrent, meaning that its successive return
times to the origin have infinite expectation. Here the situation is intermediate between positive and null recurrence, since
with Theorem 1.2 one can see that E[τi+1 − τi] diverges when i goes to infinity.

Proof of Proposition 6.1. First note that by symmetry, it suffices to show that for all i ≥ 0, E[τi+1 − τ+
i ] is finite. Write

Mi := sup{Xt : t ≤ τi}, for the maximal level reached before time τi , when i ≥ 1, with the convention M0 = 1. We will use
Proposition 4.2, but one has to take care that the result holds only for x large enough. Indeed, the proof reveals that there
are two conditions that x should satisfy. First the event Ex should hold, with the notation from Lemma 4.4, and secondly
x should be larger than 211|�|x0, where x0 is random, but by Proposition 3.1, we know that it is stochastically dominated
by δ1/4 times a geometric random variable with parameter 1/2. Write Ẽx for the event when these two conditions are
satisfied, and note two things: first it is FHx -measurable, and by Lemma 4.4 one has P(Ẽx) ≥ 1 − exp(−cx), for some
constant c > 0 (depending only on |�| and δ). Note that defining Ẽ+

x := ∩y≥x Ẽx , we also get by a union bound that
P(Ẽ+

x ) ≥ 1 − C exp(−cx), for some constant C > 0.
Now fix some i ≥ 1. The proof of Proposition 4.2 and the previous discussion, show that for all n ≥ 1, and for some

constant C > 0,

P
(
Mi+1 ≥ 2nMi

) ≤ P
(
Mi+1 ≥ 2nMi, Ẽ2n−1Mi

) + P
(
Ẽc

2n−1Mi

)
≤ 1

210
P
(
Mi+1 ≥ 2n−1Mi

) + P
((
Ẽ+

2n−1

)c)
≤ 1

210
P
(
Mi+1 ≥ 2n−1Mi

) + C exp
(−c2n−1),

using that Mi ≥ 1 at the second line. By induction we obtain that for all n ≥ 1,

P
(
Mi+1 ≥ 2nMi

) ≤ C · 2−10n, (6.1)

for some possibly different constant C > 0 (still depending on δ). Then by Cauchy-Schwarz,

E
[
τi+1 − τ+

i

] ≤
∑
n≥1

E
[(

τi+1 − τ+
i

)
1
(
2n−1Mi ≤ Mi+1 ≤ 2nMi

)]
≤ C ·

∑
n≥1

1

25n
E

[(
τi+1 − τ+

i

)21
(
Mi+1 ≤ 2nMi

)]1/2
. (6.2)

Now by definition on the event {Mi+1 ≤ 2nMi}, one has τi+1 ≤ τ̃i+1, where τ̃i+1 is the first time after τ+
i when the walk

reaches either level 0 or level 2nMi . Therefore, almost surely

E
[(

τi+1 − τ+
i

)21
(
Mi+1 ≤ 2nMi

)] ≤ E
[(̃

τi+1 − τ+
i

)2]
. (6.3)

Next, for any time t satisfying τ+
i < t < τ̃i+1, one of the two following cases may hold. Either all edges between levels 0

and 2nMi have already been discovered, in which case it is standard that the hitting time of level 0 or 2nMi is bounded by
a constant (depending on �) times 24nM2

i . If not, at least one edge has not been crossed yet. In this case, a basic coupling
with the simple random walk shows that the second moment of H∂vRt

∧ H0 ∧ H2nMi
is also bounded by a constant times

24nM2
i . But the process will cross a new edge after a geometric number of visits to ∂vRt . Thus in any case, the second
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moment of the time needed to either cross one new edge, or hit level 0 or level 2nMi is bounded by a constant times
24nM2

i . Since the total number of edges between these two levels is bounded by |�|22nMi , using (6.3), we get the bound

E
[(

τi+1 − τ+
i

)21
(
Mi+1 ≤ 2nMi

)] ≤ C · 26n
E

[
M3

i

]
,

for some constant C (that depends on δ and �). Injecting this in (6.2), we get

E
[
τi+1 − τ+

i

] ≤ C ·E[
M3

i

]1/2
.

Finally applying (6.1) again, we deduce that the third moment of Mi is finite. Using then symmetry with respect to level
0, concludes the proof. �

7. Open problems

The ORRW has now been well studied on trees, see [3,4,6,11,12], but results on graphs with loops are sparse, in particular
on the integer lattice where very interesting problems remain to be solved. We list here a series of questions concerning
the model of ORRW.

1. Maybe the first open problem, already mentioned in the introduction, is to prove that the ORRW is recurrent for any
parameter δ > 0, on Z× {1, . . . ,L}, for any L ≥ 3 (the case L = 2 being known by Sellke [21]).

2. The case when δ is negative, and larger than −1, is also interesting. The conjecture, which is still open at the moment,
is that it is recurrent for any δ ∈ (−1,0) and any L ≥ 2.

3. In fact the limiting case when δ = −1 still makes sense, and corresponds to the greedy random walk, where the walk
is only allowed to cross adjacent edges that it has never crossed in the past, except when there are no other choices, in
which case it picks one adjacent edge at random, see [16]. It is open whether the walk is also recurrent for any L ≥ 2.
The cases when L = 2,3,4 can be solved at the cost of long computation [2], but proving it for all values of L is still
open. This model on Z

2 is also known under the name of the Lorentz mirror model, which is also conjectured (and
still widely open) to be recurrent, see [13] for a partial result in this direction.

4. Concerning the exponent δ−1/8 in Theorem 1.2, it is far from being optimal. Our proof would allow to replace the
constant 1/8 by any other constant smaller than 1/4, at the cost of imposing larger δ, but we do not believe that this

would be optimal neither. In fact we expect that the correct order of the fluctuations is precisely in n
1+o(1)

ρ , with ρ the
asymptotical mean drift per level: ρ := limx→+∞ E(Dx), where Dx equals δ times the number of edges between level
x and x + 1 which are crossed for the first time from left to right minus the number of those edges crossed for the first
time in the other direction. But here the main issue would be to show that the above limit actually exists. On the other
hand, our proofs in this paper show that if the limit indeed exists, then it is larger than δ, up to lower order terms (and
in particular it is positive for large δ). We also suspect that ρ should be equivalent to cδ, for some constant c ≥ 1, when
δ goes to infinity.

5. Of course the most challenging problem remains to study the ORRW on Z
d , for d ≥ 2. It is believed to be recurrent

for any δ ≥ 0 on Z
2, but for d ≥ 3, there is not even consensus, on whether there should be a phase transition or not

regarding transience vs recurrence, as δ varies. The question of the existence of a limiting shape is also completely
open.
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