
The Annals of Probability
2021, Vol. 49, No. 3, 1480–1514
https://doi.org/10.1214/20-AOP1489
© Institute of Mathematical Statistics, 2021

THE CONTACT PROCESS ON RANDOM HYPERBOLIC GRAPHS:
METASTABILITY AND CRITICAL EXPONENTS

BY AMITAI LINKER1,*, DIETER MITSCHE1,†, BRUNO SCHAPIRA2 AND

DANIEL VALESIN3

1Institut Camille Jordan, Université Lyon, UMR 5209, Univ. Jean Monnet, *amitailinker@gmail.com; †dmitsche@unice.fr
2Aix-Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, bruno.schapira@univ-amu.fr

3Johann Bernoulli Institute, University of Groningen, d.rodrigues.valesin@rug.nl

We consider the contact process on the model of hyperbolic random
graph, in the regime when the degree distribution obeys a power law with
exponent χ ∈ (1,2) (so that the degree distribution has finite mean and infi-
nite second moment). We show that the probability of nonextinction as the
rate of infection goes to zero decays as a power law with an exponent that
only depends on χ and which is the same as in the configuration model, sug-
gesting some universality of this critical exponent. We also consider finite
versions of the hyperbolic graph and prove metastability results, as the size
of the graph goes to infinity.

1. Introduction. It has been empirically observed that complex networks such as social
networks, scientific collaborator networks, citation networks, computer networks and others
(see [2]) typically are scale-free and exhibit a nonvanishing clustering coefficient. Moreover,
these networks have a heterogeneous degree structure, the typical distance between two ver-
tices is very small, and the maximal distance is also small. A model of complex networks that
naturally exhibits these properties is the random hyperbolic model introduced by [29] (and
later formalized by [24]): one convincing demonstration of this fact was given by Boguñá, Pa-
padopoulos and Krioukov in [8] where a compelling maximum likelihood fit of autonomous
systems of the internet graph in hyperbolic space was computed. Another important aspect of
this random graph model is its mathematically elegant specification, making it amenable to
mathematical analysis. This partly explains why the model has been studied also analytically
by theoreticians.

On the other hand, the contact process describes a class of interacting particle systems
which serve as a model for the spread of epidemics on a graph. Its use in the context of
complex networks as above goes back at least to Berger, Borgs, Chayes and Saberi [3], and
has been since then the object of an intense activity (see below for a partial overview).

Before giving more related work, we define the concepts mentioned in more detail.

The hyperbolic graph model of [29]. In the original model of Krioukov, Papadopoulos,
Kitsak, Vahdat and Boguñá [29] an n-vertex size graph was obtained by first randomly choos-
ing n points in the disk of radius R = R(n) centered at the origin of the hyperbolic plane.
From a probabilistic point of view, it is arguably more natural to consider the Poissonized
version of this model. Formally, the Poissonized model is the following (see also [24] for the
same description in the uniform model): for each n ∈ N, consider a Poisson point process on
the hyperbolic disk of radius R := 2 log(n/ν) for some positive constant ν ∈R+ (log denotes
here and throughout the paper the natural logarithm) and denote its point set by Vn (the choice
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of Vn is due to the fact that we will identify points of the Poisson process with vertices of the
graph).

The intensity function at polar coordinates (r, θ) for 0 ≤ r < R and 0 ≤ θ < 2π is equal to

g(r, θ) := νe
R
2 f (r, θ),

where f (r, θ) is the joint density function with θ chosen uniformly at random in the interval
[0,2π) and independently of r , which is chosen according to the density function

f (r) :=
⎧⎪⎨⎪⎩

α sinh(αr)

cosh(αR) − 1
if 0 ≤ r < R,

0 otherwise.

Note that this choice of f (r) corresponds to the uniform distribution inside a disk of radius
R around the origin in a hyperbolic plane of curvature −α2. Identify then the points of the
Poisson process with vertices (i.e., identify a point with polar coordinates (rv, θv) with vertex
v ∈ Vn) and make the following graph Gn = (Vn,En): for u,u′ ∈ Vn, u �= u′, there is an edge
with endpoints u and u′ provided the distance (in the hyperbolic plane) between u and u′ is
at most R, that is, the hyperbolic distance between u and u′, denoted by dh := dh(u,u′), is
such that dh ≤ R where dh is obtained by solving

(1.1) cosh dh := cosh ru cosh ru′ − sinh ru sinh ru′ cos(θu−θu′).

For a given n ∈ N, we denote this model by Poiα,ν(n). Note in particular that∫∫
g(r, θ) dθ dr = νe

R
2 = n,

and thus E|Vn| = n. The main advantage of defining Vn as a Poisson point process is moti-
vated by the following two properties: the number of points of Vn that lie in any region A

follows a Poisson distribution with mean given by
∫
A g(r, θ) dr dθ , and the numbers of points

of Vn in disjoint regions of the hyperbolic plane are independently distributed.
In this paper, we restrict ourselves to 1

2 < α < 1. The restriction α > 1
2 guarantees that the

resulting graph has bounded average degree (depending on α and ν only): if α < 1
2 , then the

degree sequence is so heavy tailed that this is impossible (the graph is with high probability
connected in this case, as shown in [7]), and if α > 1, then as the number of vertices grows,
the largest component of a random hyperbolic graph has sublinear size (more precisely, its
order is n1/(2α)+o(1); see [6], Theorem 1.4, and [18]). It is known that for 1

2 < α < 1, with high
probability the graph Gn has a linear size component [6], Theorem 1.4, and the second largest

component has size �(log
1

1−α n) [28], which justifies referring to the linear size component
as the giant component. More precise results including a law of large numbers for the largest
component in these networks were established in [21].

For ease of notation, we will assume ν = 1 throughout the paper; all our results, however,
hold for any constant ν. In fact, in this paper, we use a different representation, namely
the representation of the hyperbolic graph in the upper half-plane. For our purposes, the
representations are equivalent (see Section 2 for details), and for us it is easier to deal with
the latter. We consider an infinite rooted version of this graph (i.e., a graph in which one vertex
is distinguished as the root, once more see Section 2 for details), which we shall denote by
G∞, and a finite version, corresponding to the previous model: for n ≥ 0, we let Gn denote
the restriction of G∞ to the rectangle [−π

2 n, π
2 n] × [0,2 logn], in which we identify the left

and right boundaries.
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The contact process. In the contact process, each vertex of a graph is at any point in time
either healthy (state 0) or infected (state 1). The continuous-time dynamics is defined by the
specification that infected vertices become healthy with rate one, and transmit the infection
to each neighboring vertex with rate λ > 0. We refer to [32] for a standard reference on the
contact process.

Given a subset A of the set of vertices V of a graph, we denote by (ξA
t )t≥0 the contact

process starting from an initial configuration of infected vertices equal to A, and write simply
(ξv

t )t≥0 when A is a singleton {v} (when a superscript is not present, the initial configuration
is either clear from the context or unimportant). We will view ξA

t either as a function from V

to {0,1}, or as a subset of V .

Our results. Our first result concerns the nonextinction probability of the contact process
on G∞, starting from only the root infected, which we denote by γ (λ). In particular, it shows
that γ (λ) is nonzero for all λ > 0, which means that the critical infection rate λc(G∞) is
almost surely equal to 0. Thus Theorem 1.1 should be read as a result on the asymptotic
behavior of γ (λ), as λ approaches this critical value by above. Given nonnegative functions
λ �→ f (λ), g(λ), we say that f (λ) 
 g(λ) as λ → 0 if there exist two positive constants c and
C such that cf (λ) ≤ g(λ) ≤ Cf (λ) for all λ small enough.

THEOREM 1.1. As λ → 0,

γ (λ) 


⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

1
2−2α α ∈

(
1

2
,

3

4

]
;

λ4α−1

log(1/λ)2α−1 α ∈
(

3

4
,1
)
.

It is worth noting that such result has been shown in only a very limited number of other
examples. Indeed, to our knowledge so far it was only established for the configuration model
[12, 15, 34], and the so-called Pólya point graph [10] (which is the local limit of preferential
attachment graphs [4]), as well as for certain classes of dynamical networks [26]. We shall
comment further on the similarities and differences between all these results a bit later; in
particular, the exponent in the power of λ seems to be a universal constant only depending on
the degree distribution, while the power of the logarithmic correction seems on the contrary
to be model dependent.

Our next results concern finite versions of the hyperbolic random graph and show metasta-
bility type results, namely that the extinction time when starting from the fully occupied
configuration is exponential in the size of the graph (see Theorem 1.2) and, furthermore,
that the density of infected sites remains close to γ (λ) for an exponentially long time (see
Theorem 1.4).

For a finite graph G, we define τG as the extinction time of the contact process on G, when
starting from all vertices infected. This is the hitting time of the unique absorbing state of the
process, equal to the identically zero configuration.

THEOREM 1.2. For any λ > 0 and α ∈ (1
2 ,1), there exist c > 0 and β ∈ (0,1), such that

P
(
τGn

> ecn)> 1 − e−cnβ ∀n ≥ 1.

The next result shows that there is no hope to take β = 1 in Theorem 1.2.

PROPOSITION 1.3. For any α ∈ (1/2,1), there are β, ε′ ∈ (0,1) and a Gn-measurable
event An with probability P(An) > exp(−nβ), such that E[τGn

| An] < exp(nε′
).
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Finally, our last main result proves the convergence of the density of infected sites to the
nonextinction probability on the infinite graph G∞.

THEOREM 1.4. For any λ > 0 and α ∈ (1
2 ,1), there exists c > 0 such that the following

holds. Fix (tn)n≥1 such that tn → ∞ and tn < ecn for each n. Then, for any ε > 0,

P
(∣∣∣∣ |ξGn

tn |
n

− γ (λ)

∣∣∣∣> ε

)
−→
n→∞ 0.

Metastability results such as Theorems 1.2 and 1.4 for the contact process were first estab-
lished in 1984 for finite intervals of the line [14], and have since then been obtained in a large
number of other examples, including finite boxes of Zd (see [19, 35] and references therein),
finite regular trees [16, 39], random regular graphs [30, 36], the configuration model [12, 15,
34], Erdős–Renyi random graphs [5], preferential attachment graphs [10], rank-one inhomo-
geneous random graphs [11], as well as for a large class of general finite graphs [33, 38]. The
general idea of the proof is often similar in all these models, but the technical difficulties are
specific to each case. Here as well, the hyperbolic nature of the graphs we consider lead to
some new difficulties.

Overview of proofs. The proof of Theorem 1.1 is based on proving corresponding lower
and upper bounds. For the lower bounds, we use a standard argument: we show that there is a
certain chance that the root will infect a vertex of sufficiently large degree, from where on the
infection then survives; either directly infecting from there vertices of even higher degree,
or indirectly infecting such vertices using low degree vertices, therefore giving rise to two
different regimes. The upper bounds require some harder and more original work. They are
based first on partitioning the event of survival into different events, depending essentially
on the distance to the origin and the degree of the vertices which are reached by the contact
process, in such a way that each of the events has at most the desired probability to happen.
Again, in both regimes we identify different events, giving rise to different values. Also,
interestingly our estimates rely on some new facts about the nonextinction probability of the
contact process which hold on general graphs and which might as such be of independent
interest; see, in particular, Lemma 5.5.

The proof of Theorem 1.2 is based on finding a large (linear-sized) connected subgraph on
which the contact process survives for a long time. The key idea is a suitable tessellation of the
upper half-plane into different boxes, such that a constant proportion of small degree vertices
belongs to this subgraph, and such that all vertices of sufficiently large degree belong to this
graph as well. Proposition 1.3 is shown by explicitly constructing a graph whose connected
components are of size at most cn1−α , therefore yielding a smaller extinction time.

Finally, Theorem 1.4 makes use of the idea that if the process on the infinite graph starting
from only the root infected, survives for a long time then and only then it will escape from a
large neighborhood of the root. The proof of this idea is based on self-duality of the contact
process, and then by applying the first and second moment methods to the number of vertices
escaping from a large neighborhood (for corresponding upper and lower bounds, resp.); The
hyperbolic shapes of the neighborhoods, however, and in particular, the existence of very
high-degree vertices make this basic idea a bit delicate at times.

Discussion of results. In Theorem 1.1 we can observe a phase transition at α = 3
4 . This is

interesting for different reasons: recently, it was observed that the value of α = 3
4 corresponds

to a change of regime in the local clustering coefficient averaged over all vertices of degree
exactly k (see [22] for details)—for α > 3

4 the clustering coefficient is of the order 1
k

, whereas
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for 1
2 < α < 3

4 it is of the order k2−4α (for α = 3
4 it is of the order log k/k). It would be

interesting to investigate further the link between these two results. Second, since random
hyperbolic graphs have a power law degree distribution with exponent χ := 2α+1 (see [24]),
the phase transition given here as well as the speed of decay to zero of γ (λ) is exactly the
same as in the configuration model [34], for both regimes. Given the similarities in the proof
strategies in the two models this might perhaps be less surprising, but it clearly raises the
natural question whether a more general theorem, with more general conditions on a random
graph model, can be stated and proved. In fact, this striking fact had already been observed in
another model, the Pólya-point graph, already mentioned before. Indeed, in [10] it is shown
that for χ ∈ [3,+∞), the nonextinction probability also decays polynomially as a function
of λ, with the same exponent as in the configuration model [34], except for the power of the
logarithmic correction, which suggests that only the power of λ might be a universal constant.

Related work. Although the random hyperbolic graph model was relatively recently in-
troduced [29], several of its key properties have already been established. As already men-
tioned, in [24], the degree distribution, the expected value of the maximum degree and global
clustering coefficient were determined (details on the local clustering coefficient were then
established recently in the already mentioned paper of [22]), and in [6], the existence of a
giant component as a function of α.

The threshold in terms of α for the connectivity of random hyperbolic graphs was given
in [7]. The logarithmic diameter of the giant component was established in [37], whereas
the average distance of two points belonging to the giant component was investigated in
[1]. Results on the global clustering coefficient of the so-called binomial model of random
hyperbolic graphs were obtained in [13], and on the evolution of graphs on more general
spaces with negative curvature in [20]. Finally, the spectral gap of the Laplacian of this model
was studied in [27].

The model of random hyperbolic graphs for 1
2 < α < 1 is very similar to two different

models studied in the literature: the model of inhomogeneous long-range percolation in Zd

as defined in [17], and the model of geometric inhomogeneous random graphs, as introduced
in [9] (see these papers and the references therein for more details about these models). In
both cases, each vertex is given a weight, and conditionally on the weights, the edges are
independent (the presence of edges depending on one or more parameters). The latter model
generalizes random hyperbolic graphs.

Plan of the paper. The paper is organized as follows. In Section 2, we define more pre-
cisely the random graph models on which we will work. We also recall basic facts and def-
initions about them, as well as for the contact process. In Section 3, we prove Theorem 1.2
and Proposition 1.3, which are based on some basic geometric constructions that shall be
used throughout the paper. In Sections 4 and 5, we prove the lower and upper bounds in
Theorem 1.1, respectively. Finally, Section 6 provides the proof of Theorem 1.4.

2. Preliminaries.

2.1. Hyperbolic graph model. Following [21], we consider the continuum percolation
model defined in the upper half-plane. Thus we let

H := R× [0,∞),

and consider an inhomogeneous Poisson point process P on H with intensity measure μ

given by

dμ(x,h) = α

π
e−αh dx dh.
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The first coordinate of a point in H is sometimes called its horizontal coordinate (or x-
coordinate), and the second one its height. We then define G∞ be the graph whose vertex
set is the set of points of P , together with an additional (random) point ρ = (0,h), called the
root, where h is a random variable with density with respect to Lebesgue measure given by
αe−αh. Furthermore, two vertices v = (x,h) and v′ = (x′, h′) are connected by an edge in
G∞ if, and only if, ∣∣x − x′∣∣≤ e(h+h′)/2.

For n ∈ N, we define the graph Gn, as the restriction of G∞ to the rectangle [−π
2 n, π

2 n] ×
[0,2 logn], in which we identify the left and right boundaries. Note that this may create new
edges between pairs of vertices which are close to the boundaries.

In [21], a precise correspondence is established between Gn and the model discussed in
the Introduction, which indicates that all results that we prove here for Gn hold as well for
the former model.

Recall that we set ν = 1, and thus R = 2 logn. Consider the map � : [0,R] × (−π,π ] →
(−π

2 n, π
2 n] × [0,R], with

� : (r, θ) �→
(
θ
eR/2

2
,R − r

)
,

between the Poissonized hyperbolic graph model from the Introduction and the continuum
percolation model in the upper half-plane. Denote by Vn the vertex set of Gn. In [21], the
following result is shown.

PROPOSITION 2.1 ([21]). There exists a coupling of Gn and Gn, such that with proba-
bility tending to 1, as n → ∞:

• �(Vn) = Vn, and
• under the event above, for all u = (r, θ) and v = (r ′, θ ′) ∈ Vn, with r, r ′ ≥ 3R/4, u and v

are neighbors in Gn, if and only if �(u) and �(v) are neighbors in Gn.

Since the proof of Theorem 1.4 only involves vertices at height smaller than ε logn with ε

some small constant, the proposition above is enough to transfer our proofs from Gn to Gn.
Theorem 1.2 and Proposition 1.3 require explicit control of the probabilities of certain bad
events. The coupling is not enough to directly transfer the results; however, the proofs of both
results can be easily modified for Gn, so for consistency we give the proofs still in Gn.

Now for a vertex v = (x,h) ∈ G∞, we denote by B∞(v,1) the ball centered at v containing
its neighbors, that is,

B∞(v,1) := {v′ = (x′, h′) ∈ G∞ : ∣∣x − x′∣∣≤ e(h+h′)/2}.
More generally, for r ∈N, we let B∞(v, r) denote the subset of vertices of G∞ being at graph
distance r from v, that is, the set of vertices that can be reached from v by a path of length at
most r . As in the infinite case, we define for any r > 0, and any vertex v ∈ Gn, by Bn(v, r)

for the ball of graph distance r in Gn.
We need one more fact. Define a rooted graph as a couple (G,ρ), with G some graph and

ρ some (possibly random) distinguished vertex of G. A finite rooted graph (G,ρ) is said to
be uniformly rooted, if ρ is a vertex chosen uniformly at random among the vertices of G.
A sequence of rooted graphs (Gn,ρn)n≥1 is said to converge locally toward (G∞, ρ) if for
every fixed r > 0 and every fixed graph H , limn→∞ P(Bn(ρ, r) ∼= H) = P(B∞(ρ, r) ∼= H).
In our case, it readily follows from the definitions of Gn and G∞ that the following holds.

LEMMA 2.2. The rooted graph (G∞, ρ) is the local limit of the sequence of uniformly
rooted graphs (Gn, ρn)n≥1, as n → ∞.
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2.2. Contact process. Here, we recall some elementary facts about the contact process,
as well as some results from [34]. We will keep using the abuse of notation that identifies, for
a set S, the element ξ ∈ {0,1}S with the set {x ∈ S : ξ(x) = 1}.

Given a graph G = (V ,E) and λ > 0, a graphical construction for the contact process on
G with rate λ is a family of Poisson point processes on [0,∞):

Dx : x ∈ V all with rate one, and

D(x,y) : x, y ∈ V, {x, y} ∈ E all with rate λ;
all of these processes are independent. If t ∈ Dx we say that there is a recovery mark at x

at time t (or in short, at (x, t)), and if t ∈ D(x,y) we say that there is a transmission arrow
from x to y at time t (or in short, from (x, t) to (y, t)). An infection path in the graphical
construction is a right-continuous, constant-by-parts function g : I → V for some interval of
time I , so that:

− for all r ∈ I, there is no recovery mark at
(
g(r), r

);
− whenever γ (r) �= γ

(
r−), there is a transmission arrow

from
(
γ
(
r−), r) to

(
γ (r), r

)
.

Given (x, s), (y, t) ∈ V × [0,∞) with 0 ≤ s ≤ t , we write (x, s) � (y, t) either if (x, s) =
(y, t) or in the event that there is an infection path g : [s, t] → V with g(s) = x and g(t) = y.
For A ⊆ V , we write A × {s} � (y, t) if we have (x, s) � (y, t) for some x ∈ A. Similarly,
we write (x, s) � B × {t} and A × {s} � B × {t}.

Given any initial configuration A ⊆ V , the contact process started from A infected can be
defined from the graphical construction by setting

ξA
t (x) = 1

{
A × {0} � (x, t)

}
, t ≥ 0, x ∈ V ;

as mentioned earlier, we write ξx
t when A = {x}, and we omit the superscript when it is clear

from the context or unimportant.
Due to the invariance of Poisson point processes under time reversal, for any A,B ⊆ V we

have P(A × {0} � B × {t}) = P(B × {0} � A × {t}); this immediately gives the self-duality
relation P(ξA

t ∩ B �=∅) = P(ξB
t ∩ A �= ∅). In case B = {x}, this gives

(2.1) P
(
ξA
t (x) = 1

)= P
(
ξx
t ∩ A �=∅

)
.

Let us also repeat the definition of the extinction time

τG := inf
{
t : ξV

t = ∅
}
,

that is, the time it takes for the process started from all infected to reach the (absorbing)
all-healthy configuration.

We now state a result about the contact process on star graphs.

LEMMA 2.3. There exists c̄ > 0 such that the following holds for any λ < 1 and any
d ≥ 1/(c̄λ2). Let Sd denote the star graph consisting of a center vertex o with d neighbors,
and let (ξt )t≥0 denote the contact process with rate λ on Sd . Then

(2.2) |ξ0| > c̄λd =⇒ P
(|ξt | > c̄λd

)
> 1 − exp

{−c̄λ2d
}

for any t ∈ [1, exp
{
c̄λ2d
}]

.

Moreover,

(2.3) ξ0 = {o} =⇒ P
(|ξt | > c̄λd

)
>

1

4
for any t ∈ [1, exp

{
c̄λ2d
}]

.
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Since the proof is essentially the same as that of Lemma 3.1 in [34], we omit it.
We will need the following consequence of the above lemma. For d ≥ 1, denote by Ld

the graph formed by the half-line N0 = {0,1, . . .}, where to each vertex m ∈ N0, we attach d

additional neighbors (with the additional neighbors attached to distinct points of N0 being all
distinct).

LEMMA 2.4. There exist positive constants c and C such that for any λ < 1/2, the con-
tact process with infection rate λ survives with probability at least c on the graph Ld , when
starting from the origin infected, where d = C log(1/λ) · λ−2.

PROOF. Let C > 0 be large, to be fixed later. Fix λ < 1/2, define d as in the statement of
the lemma and let (ξt )t≥0 denote the contact process on Ld with ξ0 = {0}.

Define tn := 1 + exp{c̄λ2d} · n for all n ∈ N0, where c̄ is the constant of Lemma 2.3, and
define the discrete-time process

ζn(m) := 1
{|ξtn ∩ Sm| ≥ c̄λd

}
, n ∈ N0,m ∈ N0,

where Sm denotes the subgraph of Ld consisting of the star graph containing m ∈ N0 and its d

extra neighbors (so not including the neighbors of m in N0). Note that (2.3) gives P(ζ0(0) =
1) = P(|ξ1 ∩ S0| > c̄λd) > 1

4 .
Now, assume that for some m, n we have ζn(m) = 1, that is, |ξtn ∩ Sm| ≥ c̄λd . Then, by

(2.2), with probability larger than 1 − exp{−c̄λ2d} = 1 − λc̄C we also have ζn+1(m) = 1.
Moreover, in case ζn(m) = 1 and ζn(m + 1) = 0, there is a high probability that the in-

fection from Sm at time tn will pass to Sm+1 in the time interval [tn, tn+1] and occupy
it sufficiently long to produce ζn+1(m + 1) = 1. Indeed, as already mentioned, the infec-
tion remains in Sm during [tn, tn+1] with probability larger than 1 − λc̄C ; condition on this.
During this time interval, we make propagation trials as follows: starting a trial at a time
t ∈ [tn, tn+1 − 3], we demand that during [t, t + 1] some infected vertex of Sm infects
m; next, before time t + 2 and before recovering, m infects m + 1; finally, the infection
spreads in Sm+1 until time t + 3, so that |ξt+3 ∩ Sm+1| > c̄λd . The probability of success
of such a trial is larger than cλ2 for some c > 0, by (2.3). The number of trials available
is �(tn+1 − tn)/3� = �exp{c̄λ2d}/3� = �(1/λ)c̄C/3�. Hence, by taking C large enough and
recalling that λ < 1/2, the probability to have a successful trial can be made as close to one
as desired.

Using these considerations, the proof is completed with a standard argument, showing
that (ζn)n∈N0 stochastically dominates a site percolation process (ζ̃n)n∈N0 on the oriented
graph with vertex set N0 × N0 and all oriented edges of the form 〈(m,n), (m,n + 1)〉 and
〈(m,n), (m+1, n+1)〉. This process can be taken one-dependent, and so that the probability
of any site being open is above 1 − δ, for any fixed δ > 0, by taking C large enough (and
uniformly over λ ∈ (0,1/2)). Consequently, it has an infinite percolation cluster containing
the origin with positive probability if δ is small enough (see [32], pages 13–16). �

3. Proofs of Theorem 1.2 and Proposition 1.3. Our approach for proving Theorem 1.2
consists in showing that there are some c > 0 and β ∈ (0,1) such that with probability at
least 1 − e−cnβ

the random graph Gn is “good” in the sense that it contains a special structure
where the process is able to survive for an exponentially long time in n.

In order to find such a structure, fix 0 < ε < 1
log 2 , and set L := α+1

2α
· log 2, which is chosen

to satisfy log 2 < L <
log 2
α

. Next, construct a sequence Bj,k of nonoverlapping open boxes of
height L and width 2j−1 as follows (see Figure 1):
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FIG. 1. Each Bj,k at row j lies below exactly one box Bj+1,�k/2� from row j + 1, which we call its parent.
Conversely, any Bj+1,k at row j + 1 lies on top of exactly two boxes Bj,2k and Bj,2k+1 from row j , which we
refer to as its children. In the picture we can see an example of the construction where B2,0 is highlighted as the
parent of B1,0 and B1,1.

• Take k0 = �n1−ε log 2�, which tends to infinity with n from our assumption on ε. We define
the first row of adjacent boxes {B0,k}, where k ranges from 0 to k02�ε logn� − 1, as a row of
adjacent boxes of width 1/2 and height L of the form B0,k = (k

2 , k+1
2 ) × (0,L).

• Analogously, for each j ∈ {1, . . . , �ε logn�} we construct a row of adjacent boxes {Bj,k}
where now k ranges from 0 to k02�ε logn�−i , of width 2j−1 and height L of the form Bj,k =
(2j−1k,2j−1(k + 1)) × (jL, (j + 1)L), that is, we construct the row Bj,· directly on top
of row j − 1; the only difference being that boxes now have width 2j−1.

Using this partial order relation between boxes, we define a new graph G which will be
fundamental in our construction.

DEFINITION 3.1. Let B := {Bj,k}j,k be as above. We define G as the graph with vertex
set B where any two B,B ′ ∈ B are connected by an edge if either:

• B is the parent of B ′ (or viceversa), or
• B and B ′ are adjacent boxes at row �ε logn�.

The reason we connect parents to their children is that vertices contained in the cor-
responding boxes are connected by an edge in Gn: indeed, take some (x,h) ∈ Bj,k and
(x′, h′) ∈ Bj+1,�k/2� and notice that from the definition of the boxes we have |x − x′| ≤ 2j

and h,h′ ≥ jL so that

∣∣x − x′∣∣≤ 2j ≤ ejL ≤ exp
(

h + h′

2

)
,

and hence (x,h) and (x′, h′) are neighbors in Gn. The same reasoning allows us to show that
vertices contained in adjacent boxes (i.e., in pairs of boxes of the form Bj,k and Bj,k+1) are
connected by an edge, since these also satisfy |x − x′| ≤ 2j and h,h′ ≥ jL. We will make
use of the latter property only for boxes at row �ε logn� though.

When taking λ small, the contact process tends to die out quickly, except on “good” re-
gions where vertices have an exceptionally large amount of neighbors, enabling the pro-
cess to survive for a very long time. We will show next that above some fixed row j0, with
a large probability the boxes defined above induce large cliques in Gn, and hence define
good regions. Indeed, note that every box induces a clique: observe that for any two vertices
(x,h), (x′, h′) ∈ Bj,k we have |x −x′| ≤ 2j−1 and h,h′ ≥ jL, and hence we obtain that (x,h)

and (x′, h′) are neighbors in Gn, as in the previous argument.
To see that said cliques are large enough, observe that the amount of vertices within Bj,k

is a Poisson random variable Pj,k with parameter

(3.1) μj := 2j−1
∫ (j+1)L

jL

α

π
e−αy dy = c2j e−αjL,
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FIG. 2. Good boxes are shaded in light red, allowing us to obtain Ḡ which consists of two connected components
in this case.

where c is a positive constant. From our assumption L <
log 2
α

, it follows that μj ↗ ∞ with
j , and even further, using a tail bound for Poisson random variables we have that there is
some j0 independent of n such that for all j ≥ j0,

(3.2) pj := P
(
Pj,k ≥ λ−3)≥ 1 − (eλ3μj

)λ−3
e−μj ≥ 1 − De−μj /2,

for some D independent of μj and n. Since this expression tends to 0 as j → ∞, we conclude
that the corresponding cliques at rows with a sufficiently large index are very likely to be
large.

Say now that a box Bj,k is good if it contains at least λ−3 vertices in Gn. We define a
subgraph Ḡ ⊆ G obtained by:

• removing from G all vertices B ∈ B that are not good, and
• removing all connected components from the remaining graph not containing a box at row

�ε logn�.

As shown in Figure 2, the resulting graph Ḡ consists of a collection of percolated binary
trees all having their roots at row �ε logn�, and these roots might or might not be connected.
The next result states that with a large probability Ḡ is not only connected, but also contains
a positive fraction of the whole graph Gn.

LEMMA 3.2. There are some fixed c > 0 and δ,β ∈ (0,1) such that

P
(
Ḡ is connected, and |Ḡ| > δn

)≥ 1 − e−cnβ

.

PROOF. Notice that from the definition of G, the subgraph Ḡ is connected if and only if
all boxes (B�ε logn�,k)k are good. Now, applying (3.1) and (3.2) for j = �ε logn�, we obtain

P(Bj,k is good) > 1 − D exp
(−Cnε(log 2−αL)),

for all k, where C is some positive constant. Since there are at most k0 = �n1−ε log 2� such
boxes, we obtain that for that value of j ,

(3.3) P(Bj,k is good ∀k) ≥ 1 − Dn1−ε log 2 exp
(−Cnε(log 2−αL)),

which is already of the form 1 − e−cnβ
. It remains to show that |Ḡ| > δn with a probability

of the same order, for which we assume that the event on the left of (3.3) holds. Call Ḡj the
set of vertices of Ḡ at row j and define the events

Ej := {|Ḡj | > 2
(
1 − f (j)

)|Ḡj+1|},
with f (j) = 1/j2. Observe that for any fixed j , under Ej ,Ej+1, . . . ,E�ε logn� we have

(3.4) |Ḡj | > |Ḡ�ε logn�|
�ε logn�−1∏

�=j

2
(
1 − f (�)

)
> ck02�ε logn�−j−1 ≥ c2−j−2n,

where we have used that at row �ε logn� all boxes are good, and where c =∏∞
�=1(1 − f (�))

is a positive constant. The result then follows if we show that there is some j0 independent of
n such that

P(Ej0,Ej0+1, . . . ,E�ε logn�) ≥ 1 − e−cnβ

.
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From the construction of Ḡ and the independence of the events {Bj,k is good}j,k , we know
that given |Ḡj+1| the random variable |Ḡj | follows a binomial distribution with parameters
pj and 2|Ḡj+1|. On the other hand by (3.2), there is j0 large such that for j > j0 we have
1 − f (j) < pj , and thus using Chernoff’s bound we obtain

P
(
Ej | |Ḡj+1|)≥ 1 − exp

(
−μjf (j)|Ḡj+1|

2

)
,

which is increasing in |Ḡj+1|. From the discussion leading to (3.4), there is a constant c̄ > 0,
such that

P(Ej | Ej+1, . . . ,E�ε logn�) ≥ 1 − exp
(−c̄n2−jμjf (j)

)≥ 1 − exp
(−c̄n1−αεLf (ε logn)

)
,

where we used that 2−jμjf (j) is decreasing in j . Finally, we conclude that

P(Ej0,Ej0+1, . . . ,E�ε logn�) ≥ 1 − �ε logn�e−c̄n1−αεLf (ε logn),

which is larger than 1 − e−cnβ
, for any β < 1 − αεL, and some c > 0 depending on β . �

We are now ready to give the proof of Theorem 1.2. Take a realization of Gn such that Ḡ is
connected and |Ḡ| > δn, and construct the subgraph Ḡn ⊆ Gn with vertex set Gn ∩⋃B∈Ḡ B

as follows:

1. For each B ∈ Ḡ, choose an arbitrary vertex vB and let all the remaining vertices in B

to be connected by an edge to vB (and to no other vertex),
2. Add the edge {vB, vB ′ } to Ḡn if and only if B ∼ B ′ in Ḡ.

It follows that Ḡn is composed of at least δn stars of size no smaller than λ−3, which
are connected by their centers. For such a structure, it was already proved in [33] that the
infection starting from the fully infected configuration satisfies

P
[
τḠn

> ecn]> 1 − e−cn

for some c > 0, and the result follows.

We give now the proof of Proposition 1.3 by constructing the bad event An as follows:
Choose some a ∈ (1

2 ,1) and some ε ∈ (0,1) with a + ε < 1. Take now an ordered sequence
{xk} of evenly spaced points in [−π

2 n, π
2 n] with distance equal to n1−a . Observe that k ranges

from 1 to �πna�. We use these points to divide the space [−π
2 n, π

2 n] × [0,2 logn)] into the
sets

B0 = {(x,h), h ≥ ε logn
}
,

Bk =
{
(x,h), |x − xk| ≤ 1

2
nε and h < ε logn

}
,

Ck =
{
(x,h), xk + 1

2
nε < x < xk+1 − 1

2
nε and h < ε logn

}
,

which are well defined because ε < 1 − a. It follows directly from the definition of μ that
μ(B0) ≤ n1−αε , and for all k ≥ 1, μ(Bk) ≤ nε and μ(Ck) ≤ n1−a . As a result, there are
positive constants c and C, such that

P(B0 ∩ Gn = ∅) ≥ e−n1−αε

,

P(Bk ∩ Gn = ∅) ≥ e−nε

for all k ≥ 1,

P
(|Ck ∩ Gn| ≥ Cn1−a)≤ e−cn1−a

for all k ≥ 1.
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Define An as the event in which there are no vertices in any of the Bk (including k = 0), and
in every Ck there are at most Cn1−a vertices. Using that all sets correspond to disjoint areas,
we obtain

P(An) ≥ e−n1−αε(
e−nε )πna (

1 − e−cn1−a )πna ≥ 1

2
e−π(n1−αε+na+ε) = e−nβ

,

for some β > 0.
Now observe that if we take v = (x,h) and v′ = (x′, h′) belonging to different Ck we

necessarily have |x − x′| > nε , since there is at least one set Bk between them, and also

e
h+h′

2 < nε , so that v and v′ cannot be neighbors in Gn. It follows that on An the graph
Gn is composed of connected components each of size at most Cn1−a . As shown in [38],
Lemma 2.3, this entails that the expected extinction time on each of these connected com-
ponents is at most eC′n2−2a

, for some other constant C′ > 0. Since there are at most n such
components, we finally deduce

E(τGn
· 1An) ≤ n exp

(
C′n2−2a),

and the result follows from the assumption a > 1/2.

4. Survival probability: Lower bounds. In this section, we prove the lower bounds in
Theorem 1.1. We give two different strategies that show that the contact process survives for a
long time. In a nutshell, in the case α ∈ (1

2 , 3
4 ] the strategy of surviving corresponds to finding

a neighbor of the root of sufficiently high degree, from which the infection will then pass over
to vertices of even higher degree, and thus surviving an infinite amount of time. In the case
α ∈ (3

4 ,1), the strategy is different: a neighbor at a high level is infected, but all its neighbors
of low degree are needed to infect a vertex of even higher degree (using Lemma 2.4). We
make this more precise in the next two subsections.

4.1. Case α ∈ (1
2 , 3

4 ]. The goal is to prove the following lemma.

LEMMA 4.1. Let α ∈ (1
2 , 3

4 ]. Then

γ (λ) > cλ
1

2−2α ,

for some sufficiently small constant c = c(α) depending on α only.

PROOF. We consider the contact process (ξt ) on G∞ started from a single infection at
the root, ξ0 = 1{o}. Let h∗ := 1

1−α
log(C/λ), with C some large constant to be chosen later.

Let E0 denote the event that the height of the root is below h∗. Also define τ0 := 0 and let τ ′
0

be the first recovery time at o.
Let E1 denote the event that E0 occurs, and that o has a neighbor v̂1 ∈ R×[h∗, h∗+1), and

there is a transmission from o to v̂1 at a time τ1 ∈ [τ0, τ
′
0). Recursively, assume that events

E0 ⊃ · · · ⊃ Ek are defined, that they only involve information on the portion of the graph
contained in R × [0, h∗ + k), and that Ek involves a vertex v̂k ∈ R × [h∗ + k − 1, h∗ + k)

receiving the infection at a time τk . On Ek , let τ ′
k denote the first recovery time at v̂k after

τk . Then, let Ek+1 be the event that Ek occurs, and additionally v̂k has a neighbor v̂k+1 ∈
R×[h∗ + k,h∗ + k +1), and there is a transmission from v̂k to v̂k+1 at a time τk+1 ∈ [τk, τ

′
k).

Clearly, if
⋂

k≥0 Ek occurs, then ξt �= ∅ for all t , that is, the process survives.
We now give lower bounds to the probabilities of these events, starting with

P(E0) =
∫ h∗

0
αe−αh dh >

1

2
,
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if λ is small (and hence h∗ is large). Next, denoting the height of o by ho, the number N0 of
neighbors of o in R× [h∗, h∗ + 1) follows a Poisson distribution with parameter∫ h∗+1

h∗
exp
{
ho + h

2
− αh

}
dh ≥ β0 :=

∫ h∗+1

h∗
exp
{(

1

2
− α

)
h

}
dh ≥ c

(
λ

C

) 2α−1
2−2α

,

with c some positive constant depending only on α (which may change from line to line).
Hence,

P(E1 | E0) ≥ λ

1 + λ
· P(N0 ≥ 1 | E0) ≥ cλ · β0 ≥ c · C− 2α−1

2−2α · λ 1
2−2α ,

where we used that λ is small, so that 1 + λ < 2 and e−β0 > 1
2 .

Next, on Ek , let Nk denote the number of neighbors of v̂k on R×[h∗ + k,h∗ + k + 1). We
have that (conditioned on Ek) the law of Nk is Poisson with parameter larger than

βk :=
∫ h∗+k+1

h∗+k
exp
{
h∗ + k − 1 + h

2
− αh

}
dh ≥ c exp

{
(1 − α)(h∗ + k)

}= cC

λ
· e(1−α)k.

Then, by the strong Markov property,

P
(
Ec

k+1 | Ek

)= E
[

1

1 + λNk

∣∣∣Ek

]
≤ P(Nk ≤ βk/2 | Ek) + 1

1 + λβk/2
.

By a Chernoff bound, we have P(Nk ≤ βk/2 | Ek) � β−1
k ; so we obtain

P
(
Ec

k+1 | Ek

)≤ c

λβk

≤ c

C
· e−(1−α)k.

Putting these bounds together, we have

P
(⋂

k≥0

Ek

)
≥ 1

2
· cC− 2α−1

2−2α · λ 1
2−2α ·∏

k≥1

(
1 − c

C
· e−(1−α)k

)
.

Recalling that c depends only on α, and choosing C > c, so that the infinite product on the
right-hand side is positive, the proof is complete. �

4.2. Case α ∈ (3
4 ,1). The goal is to prove the following lemma.

LEMMA 4.2. Let α ∈ (3
4 ,1). Then

γ (λ) > c · λ4α−1

log(1/λ)2α−1 ,

for some sufficiently small constant c = c(α) depending on α only.

Before we prove this, we state an auxiliary result. Recall the definition of the graph Ld

from Lemma 2.4, consisting of a “half-line of stars.”

LEMMA 4.3. Let C > 0 and d = C log(1/λ)/λ2 be as in Lemma 2.4, and let h∗∗ :=
2 log(2d). Let v = (xv, hv) ∈ H with hv > h∗∗, and let Gv∞ be the random hyperbolic graph
with a vertex artificially added at v. Then, with probability tending to one as λ → 0, Gv∞ has
a subgraph isomorphic to Ld , entirely contained in [xv,∞)×[0,∞), and so that v plays the
role of the center of the first star of the half-line.
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Let us now show how this lemma allows us to prove our lower bound on the survival
probability.

PROOF OF LEMMA 4.2. As before, we start a contact process on G∞ with only the root
o infected. Writing o = (xo, ho), we first consider the event E0 that the root has at least one
neighbor in [xo,∞) × [h∗∗,∞). On this event, we let v̂ = (xv̂, hv̂) denote the neighbor of
o on [xo,∞) × [h∗∗,∞) such that xv̂ is minimal. Furthermore, let E1 be the event that E0

occurs and there is a transmission from o to v̂ before the first recovery at o. We then have

P(E1) ≥ cλ

1 + λ
· e( 1

2 −α)h∗∗ ≥ cλ4α−1

log(1/λ)2α−1 ,

for some positive constant c that only depends on α. Conditioned on E1, since the graph on
[xv̂,∞)×[0,∞) is still unrevealed, and by Lemma 4.3, with probability larger than 1

2 (if λ is
small), v̂ is the first star in a copy of Ld entirely contained in [xv̂,∞) × [0,∞). Conditioned
on this subgraph being present, the infection then survives with a probability bounded from
below by a positive constant, uniformly in λ, by Lemma 2.4. �

It remains to prove the auxiliary result.

PROOF OF LEMMA 4.3. By invariance of the point process under horizontal translations,
it suffices to treat the case xv = 0. We define Hk := h∗∗ + k for k ≥ 0; also let

�k := eHk−2, k ≥ 0, L0 := 0, Lk :=
k−1∑
j=0

�j , k ≥ 1.

Next, define the boxes

Sk := [Lk,Lk+1) × [Hk,∞), S′
k := [Lk,Lk+1) × [0,1], k ≥ 0;

note that they are all disjoint. We now state and prove two claims about these boxes.

CLAIM 4.4. Let k ∈ N and condition on a = (xa, ha) ∈ Sk being a vertex of Gv∞. Then a

has a neighbor in Sk+1 with probability larger than 1 − exp{− 1
α
e(1−α)(h∗∗+k)−1}.

PROOF. First, note that any vertex b = (xb, hb) ∈ Sk+1 is necessarily a neighbor of a,
since

|xa − xb| ≤ �k + �k+1 = eHk−2 + eHk−1 ≤ eHk ≤ e
ha+hb

2 .

Hence, we only need to estimate the probability that Sk+1 has no vertices. Since the number
of vertices in Sk+1 is Poisson with parameter at least

�k+1 ·
∫ ∞
Hk+1

e−αh dh = 1

α
· e(1−α)(h∗∗+k)−1,

the result follows. �

CLAIM 4.5. The following holds for λ small enough: let k ∈ N and condition on a =
(xa, ha) ∈ Sk being a vertex of Gv∞. Then a has at least d neighbors in S′

k with probability
larger than 1 − exp{−cdek/2}, for some c > 0 that does not depend on λ or k.
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PROOF. First, note that since eHk/2 � 1
2eHk−2 = 1

2�k for any k if λ is small, at least one
of the boxes [

xa − eHk/2, xa

]× [0,1] and
[
xa, xa + eHk/2]× [0,1]

is contained in S′
k . Moreover, any vertex in these two boxes is connected by an edge to a,

since ha ≥ Hk . The number of vertices inside any of the two boxes is Poisson with parameter

eHk/2
∫ 1

0
e−αh dh = 1 − e−α

α
· eHk/2 = 2d · ek/2.

By a Chernoff bound, such a Poisson random variable is larger than d with probability larger
than 1 − exp{−cdek/2} for some universal constant c > 0, completing the proof. �

Now, combining the two claims and independence of the point process in disjoint pairs of
boxes, the probability that we can find a sequence v0 = v, v1, v2, . . . so that for every k we
have vk ∈ Sk , vk ∼ vk+1 and vk has at least d neighbors in S′

k , is larger than

1 −
∞∏

k=0

(
1 − exp

{
− 1

α
e(1−α)(h∗∗+k)−1

})
· (1 − exp

{−cdek/2}),
which can be made as close to 1 as desired by taking λ small, since h∗∗ → ∞ as λ → 0. �

5. Survival probability: Upper bounds. We prove here the upper bounds in Theo-
rem 1.1. We start with a general result (see Lemma 5.1 below) regarding the existence of
infection paths.

5.1. Infection paths and ordered traces. Given a graph G = (V ,E), we define �∞ =
�∞(G) as the set of all finite and infinite sequences of the form (γ (0), γ (1), . . .) with
γ (0), γ (1), . . . ∈ V and γ (i) ∼ γ (i + 1) for each i. Elements of �∞ are called vertex paths;
the length of a finite vertex path γ = (γ (0) . . . , γ (k)) is defined as |γ | := k; in case γ is
infinite, we set |γ | = ∞.

Assume given a graphical construction for the contact process (ξt )t≥0 with some rate λ >

0 on G. Recall the definition of infection paths from Section 2.2. Given an infection path
g : I → V , where I ⊆ R is an interval, we say that the ordered trace of g is the vertex path
γg = (γg(0), . . .) ∈ �∞ obtained by setting γg(0) as the vertex where g starts, g((inf I )+),
and letting the subsequent vertices of γg be the vertices visited by g in order.

LEMMA 5.1. Assume λ < 1
2 . Given γ ∈ �∞, the probability that there exists t ≥ 0 and

an infection path g : [0, t] → V having γ as its ordered trace is at most (2λ)|γ |.

PROOF. Fix γ ∈ �∞. For each t ≥ 0, define Xt as the largest value of i ∈ {0, . . . , |γ |}
such that there is an infection path g : [0, t] → V with g(0) = γ (0) and ordered trace γg =
(γ (0), . . . , γ (i)) (let Xt = −∞ in case no such i exists). Let

τ = inf
{
t : Xt ∈ {−∞, |γ |}},

and note that the event described in the statement of the lemma occurs if and only if Xτ = |γ |.
Next, define

Mt = (2λ)−Xt , t ≥ 0,
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so that Mτ = 0 when Xτ = −∞. We claim that (Mτ∧t )t≥0 is a supermartingale with respect
to the natural filtration (Ft )t≥0 of the Poisson processes in the graphical construction. To see
this, note that on {τ > t},

d

ds
E[Mt+s | Ft ]

∣∣∣∣
s=0

≤ ((2λ)−(Xt−1) − (2λ)−Xt
)+ λ
(
(2λ)−(Xt+1) − (2λ)−Xt

)
= (2λ)−Xt ·

(
2λ − 1 + 1

2
− λ

)
< 0,

assuming λ < 1
2 . Now, the optional stopping theorem gives

1 = E[M0] ≥ E[Mτ ] ≥ (2λ)−|γ | · P(Mτ = (2λ)−|γ |)= (2λ)−|γ | · P(Xτ = |γ |),
completing the proof. �

In what follows, we write, for h > 0 and d > 0,

(5.1) D(h) = 1

α − 1
2

· eh/2, H(d) = D−1(d) = 2 log
((

α − 1

2

)
· d
)
.

Note that D(h) corresponds to the expected degree of a vertex at height h; the value H(d)

should be thought of as a height compatible with degree d .

5.2. Regime α ∈ (1
2 , 3

4 ]. The goal of this section is to prove the following proposition.

PROPOSITION 5.2. Let α ∈ (1
2 , 3

4 ]. Then

γ (λ) < Cλ
1

2−2α ,

for some sufficiently large constant C = C(α) depending on α only.

PROOF. Let d0 = cλ− 1
2−2α for a sufficiently small constant c = c(α) > 0. Call a vertex

to be red if its height is at least h0 = H(d0) (in other words its expected degree is at least
d0), and all others blue. Starting from o (that was artificially added), we say we exit the kth
neighborhood of (G∞, o), if either the infection spreads through a path of all blue vertices
of length k, or if a red vertex at distance less than k from o is infected, or if a blue vertex
already appearing on a blue path becomes reinfected (we do not claim that the vertex healed
in the meantime, we just say that there was another infection that took place, i.e., another
transmission arrow in the graphical construction). We will show that for k = log(1/λ), the

probability to exit the kth neighborhood is at most Cλ
1

2−2α , thus proving the desired statement.
We define the following events:

E1 = {o is red},
E2 = {o is blue, there exists a path of length 0 ≤ j < k of (all different) infected

blue vertices, followed by a red vertex that is infected
}
,

E3 = {o is blue, there exists a path of (all different) blue vertices of length k

through which the infection travels
}
,

E4 = {o is blue, there exists a path of (all different) blue vertices of length 1 ≤ j < k

followed by a blue vertex that appeared previously on the path that is infected again
}
.

It is clear that if none of E1, E2, E3, E4 happens then the infection does not survive.
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For E1, the probability that o is red is (C = C(α) is a sufficiently large constant that
changes from line to line),

α

∫
h≥h0

e−αh dh = e−αh0 = Cλ
2α

2−2α < Cλ
1

2−2α .

Next, consider a path of length 1 ≤ j < k, of (all different) blue vertices followed by
a red vertex, through which the infection travels. For j + 1 (ordered) distinct vertices
o, x1, . . . , xj , let F2(o, x1, . . . , xj ) be the indicator function for vertex x1 being infected by o;
for i = 2, . . . , j − 1, xi being blue and being infected by xi−1, and finally, xj being red and
being infected by xj−1. By the multivariate Mecke formula (see, e.g., [31], Theorem 4.4) and
Lemma 5.1, we have

E

( �=∑
o,x1,...,xj

(
F2(o, x1, . . . , xj )

))

≤ (Cλ)j
∫
h<h0

∫
h1<h0

· · ·
∫
hj−1<h0

∫
h′≥h0

e(1−α)(h1+···+hj−1)

× e( 1
2 −α)(h+h′) dh′ dhj−1 . . . dh1 dh

≤ (Cλ)j e(1−α)(j−1)h0+( 1
2 −α)h0 ≤ (Cc2−2α)j · λ1− 1−2α

2−2α ,

where the sum is over (j +1)-tuples of vertices being all different; indeed, the Mecke formula
gives the desired integral representation for the expected number of vertices in the desired
region, and since conditional under having points at certain locations the probability of having
infections is bounded by Lemma 5.1, the expected number of infection paths is the product of
the existence of paths together with the indicator variable of having an infection throughout
the path, giving the desired formula. Therefore,

E

(
k−1∑
j=1

�=∑
o,x1,...,xj

(
F2(o, x1, . . . , xj )

))≤ λ1− 1−2α
2−2α ·

k−1∑
j=1

(
Cc2−2α)j ≤ Cλ

1
2−2α ,

where in the the last inequality we assumed c sufficiently small so that the sum is convergent.
Note that in order for E2 to hold, there must exist 1 ≤ j < k and o, x1, . . . , xj−1, xj so that
F2(o, . . . , xj−1, xj ) = 1, and hence, by a union bound we have the desired upper bound on
the probability of E2.

By the same argument, for E3, the probability of having a path of (all different) blue
vertices of length k = log(1/λ) through which the infection travels is at most

(Cλ)k
∫
h≤h0

∫
h1≤h0

· · ·
∫
hk≤h0

e(1−α)(h1+···+hk−1)e( 1
2 −α)(h+hk) ≤ λ

(
Cc2−2α)k−1 ≤ Cλ

1
2−2α ,

where we assumed again c sufficiently small, and used α > 1/2 for the last inequality.
Finally, for the probability that o is blue, and that there is a path of (all different) blue

vertices of length 1 ≤ j < k through which the infection travels, followed by a blue vertex that
appeared previously on the path, observe that for the last vertex that is repeated, there are j +1
choices to choose the vertex. Since this vertex is already there, there is no additional factor
corresponding to the intensity of having a vertex there, there is however an additional factor
λ for reinfecting the previously appeared vertex. Let F4(o, x1, . . . , xj , xr) be the indicator
function for vertex x1 being infected by o; for i = 2, . . . , j − 1, xi being blue and being
infected by xi−1 (all vertices up to xj being distinct), and finally, xr is infected by xj , where
xr is a repeated vertex (for which there are j + 1 choices). Once again by the multivariate



CONTACT PROCESS ON RANDOM HYPERBOLIC GRAPHS 1497

Mecke formula we have (summing over all tuples of vertices where only the last vertex is
repeated, all others being distinct),

E

(
k−1∑
j=1

∑
o,x1,...,xj ,xr

(
F4(o, x1, . . . , xj , xr)

))

≤
k−1∑
j=1

(Cλ)j+1(j + 1)

∫
h≤h0

∫
h1≤h0

· · ·
∫
hj≤h0

e(1−α)(h1+···+hj−1)

× e( 1
2 −α)(h+hj ) dhj . . . dh1 dh

≤
k−1∑
j=1

(j + 1)λ2(Cc2−2α)j−1 ≤ Cλ2 ≤ Cλ
1

2−2α ,

where the sum is over tuples of vertices with (o, x1, . . . , xj ) being all different and xr ∈
{o, x1, . . . , xj }, and where we used for the last inequality that α ≤ 3/4. By taking a union
bound over the probabilities of all events E1, E2, E3, E4, the proof is complete. �

5.3. Regime α ∈ (3
4 ,1). The goal of this section is to prove the following proposition.

PROPOSITION 5.3. Let α ∈ (3
4 ,1). Then

γ (λ) < C · λ4α−1

log(1/λ)2α−1

for some sufficiently large constant C = C(α) depending on α only.

Before turning to the proof of this result, we need to make a detour, with several definitions
and intermediate results. To justify why this is needed, we first point out that, in the upper
bound for the case α ∈ (1

2 , 3
4 ], we did not really have to deal with the infection spreading

from vertices of degree above d0 = cλ− 1
2−2α � λ−2: such vertices were labeled red there,

and the probability of their ever becoming infected was already small for the purposes of our
upper bound. For the present case α ∈ (3

4 ,1), however, the event that the root has a neighbor
of degree around λ−2, and infects this neighbor, has probability of larger order than what we
hope to achieve with our union bound. Hence, we need to include this event in our proof,
and go further by saying that even if it happens, the infection has small chance of surviving
thereafter. To do so, we need to develop tools to argue that the infection does not travel far
even if it starts from a vertex whose degree is around λ−2; around these vertices, multiple
re-infections are likely to occur.

We fix a rooted graph (G = (V ,E), o), and consider the contact process (ξt )t≥0 on G

started from ξ0 = {o} (in all that follows, this initial configuration will be assumed). Given
a vertex u ∈ V , we say that (ξt ) is thin on u in the event that there is no infection path
g : [0, t] → V for some t ≥ 0 with g(0) = o and such that u appears more than once in the
ordered trace of g. We say that (ξt ) is thin on a set V ′ ⊆ V in the event that (ξt ) is thin on
every vertex of V ′.

LEMMA 5.4. If V0 ⊆ V is finite, then on the event that (ξt ) is thin on (V0)
c, it almost

surely dies out, that is, almost surely there is t ≥ 0 such that ξt =∅.

PROOF. For t ≥ 0, let Et be the event that ξt �= ∅ and the ordered trace γg of any in-
fection path g : [0, s] → V with g(0) = o and s ≤ t visits each vertex of (V0)

c at most once.
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Using the finiteness of V0, and making a finite number of prescriptions on Poisson processes
on the graphical construction, it is easy to see that P(Et+1) ≤ σ(λ,V0) · P(Et ) for some
σ(λ,V0) < 1 (it suffices, e.g., to extend an existing infection path g : [0, t] → V by impos-
ing that in the time interval (t, t + 1), it reaches some u ∈ (V0)

c, then from there jumps to a
neighbor of u, then to u again). We then have

P
(
ξt �= ∅ ∀t, (ξt ) is thin on (V0)

c)= lim
t→∞P(Et ) = 0. �

Before stating the next result, we will need to define some subsets of �∞. We fix a set
A ⊆ V with o /∈ A, and define

(5.2)

�k
A :=
⎧⎨⎩
(
γ (0), . . . , γ (k)

) ∈ �∞ : γ (0) = o,

γ (0), . . . , γ (k − 1) are distinct and not in A,

γ (k) ∈ A

⎫⎬⎭ , k ≥ 1,

�k
A,∗ :=

⎧⎨⎩
(
γ (0), . . . , γ (k)

) ∈ �∞ : γ (0) = o,

γ (0), . . . , γ (k − 1) are distinct and not in A,

γ (k) ∈ {γ (0), . . . , γ (k − 1)
}

⎫⎬⎭ , k ≥ 3,

�A :=⋃
k≥1

�k
A, �A,∗ =⋃

k≥3

�k
A,∗.

The role of A will become clear in the sequel, but the intuition is that in the hyperbolic graph
setting A is a set of dangerous vertices (typically vertices above a certain height, and thus of
high degree) whose infection should rather be avoided, as otherwise the infection goes on for
too long. Nevertheless, the following lemma holds in a more general setup.

LEMMA 5.5. There exists c > 0 such that, for any λ < 1
2 , the following holds. Let G, o,

A be as above, and let (ξt )t≥0 be the contact process with parameter λ on G with ξ0 = {o}.
Then

P(ξt �= ∅ ∀t ≥ 0) ≤ exp{cλ2 deg(o)}
T

+ T
∑

γ∈�A∪�A,∗
(2λ)|γ | for all T > 0.

PROOF. Let S denote the star graph with vertex set {o} ∪ {x : x ∼ o} and edge set
{{o, x} : x ∼ o} (we will also denote the vertex set of this graph by S). We assume given
a graphical construction for the contact process (ξt ) with rate λ on G; using this same graph-
ical construction, we define (ηt ) as the contact process on S with η0 = {o}.

Fix T > 0. Let τ = inf{t : ηt = ∅} and define the event Eo := {τ ≥ T }. For each finite
γ = (γ (0), . . . , γ (k)) ∈ �∞, let ET,γ denote the event that there exist t < T and an infection
path starting at (o, t) and having ordered trace γ . Finally, define τ ′ as the first time when
either a vertex of A becomes infected, or an infection path g : [0, τ ′] → V can be formed
with g(0) = o and so that some vertex v /∈ S is in the ordered trace of g twice.

CLAIM 5.6. We have that

(5.3)
{
τ ′ < ∞}⊆ Eo ∪ ⋃

γ∈�A∪�A,∗
ET,γ .

PROOF OF CLAIM 5.6. Assume that τ ′ < ∞. Then we can take an infection path g :
[0, τ ′] → V with g(0) = o and so that either g(τ ′) ∈ A or the ordered trace of g contains
some vertex v /∈ S more than once. We consider three cases:
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• If τ ′ ≥ T and during the whole time interval [0, T ], g only occupies vertices of S, and only
traverses edges of S, then Eo occurs.

• If τ ′ < T and during the whole time interval [0, τ ′], g only occupies vertices of S, and only
traverses edges of S (which can only happen if g(τ ′) ∈ S ∩ A), then the event ET,γ occurs
for γ = (o, g(τ ′)).

• If neither of the previous two situations holds, then we let s be the first time at which g

traverses an edge that is not in S; note that s ≤ T , g(s−) is a vertex of S, and g(s) may
or may not be a vertex of S. Then ET,γ occurs for the vertex path γ defined by setting
γ (0) = o, γ (1) = g(s−), γ (2) = g(s), and the rest of γ given by the subsequent vertices
visited by g in order, stopping when either there is a repetition or A is reached. �

We now complete the proof of the lemma by using the claim and bounding the probabilities
of the events on the right-hand side of (5.3). It is known that there exists c > 0 such that
E[τ ] ≤ exp{cλ2deg(o)} (see Theorem 1.4 in [25] and the observation that follows it). Using
this and Markov’s inequality,

P(Eo) ≤ exp{cλ2 deg(o)}
T

.

Next, fix γ = (γ (0), . . . , γ (k)) ∈ �A ∪ �A,∗. Let us first observe that, for any t , the proba-
bility that there is an infection path starting at (γ (1), t) and from there visiting the vertices
(γ (2), . . . , γ (k)) in order is smaller than (2λ)k−1, by Lemma 5.1. Hence, letting X denote
the set of times t ≤ T at which there is a transmission arrow from (o, t) to (γ (1), t), a union
bound gives P(ET,γ |X ) ≤ |X | · (2λ)k−1. Taking expectations on both sides of this inequality,
we obtain

P(ET,γ ) ≤ (2λ)k−1 ·E[|X |]= T · λk.

Hence, by a union bound over all γ , the probability that a vertex of A ever becomes infected,
or that a vertex outside S appears more than once in the ordered trace of an infection path
started from (o,0), is at most

exp{cλ2 deg(o)}
T

+ T
∑

γ∈�A∪�A,∗
(2λ)|γ |.

If none of these things happen, then (ξt ) is thin outside S. The conclusion now follows from
Lemma 5.4. �

We now come back to the hyperbolic setup. Given u = (xu,hu), v = (xv, hv) ∈ H with
|xu − xv| ≤ exp{(hu + hv)/2}, let Gu,v denote the graph obtained from G∞ by artificially
including vertices at u and v. We root this graph at u. We define

(5.4) h� := H

(
1

λ2

)
and

A := {w = (xw,hw) ∈ Gu,v : hw ≥ h�

}
,

and the sets of vertex paths �A and �A,∗ as in (5.2). We then have the following.

LEMMA 5.7. There exists ε0 > 0 such that for any δ > 0 and for λ small enough (de-
pending on δ), the following holds. Abbreviate

(5.5) h′′ := H

(
δ

λ2 log
(

1

λ

))
.
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If u has height hu ≤ h′′ and v has height hv ≤ h�, then

E
[ ∑
γ∈�A∪�A,∗

(2λ)|γ |
]

< λε0 .

We will give the proof of this lemma later; for now, we state and prove the following.

PROPOSITION 5.8. There exist δ, ε > 0 such that the following holds for λ small enough.
Let u = (xu,hu), v = (xv, hv) be as above, and further assume that

(5.6) hu ≤ h′′, hv ≤ h�.

Let (ξt ) denote the contact process with parameter λ on Gu,v and ξ0 = {u}. Then

P(ξt �=∅ ∀t ≥ 0) ≤ λε.

PROOF. We let δ = ε0
8c

, where ε0 is the constant of Lemma 5.7, and c is the constant of
Lemma 5.5. Also let T = λ−ε0/2. Then, by Lemma 5.5,

P
(
ξt �= ∅ ∀t ≥ 0 | Gu,v)
≤ 1
{

deg(u) >
2δ

λ2 log
(

1

λ

)}
+ exp{cλ2 · 2δ

λ2 log( 1
λ
)}

T
+ T

∑
γ∈�A∪�A,∗

(2λ)|γ |

= 1
{

deg(u) >
2δ

λ2 log
(

1

λ

)}
+ λε0/4 + λ−ε0/2 · ∑

γ∈�A∪�A,∗
(2λ)|γ |.

Taking expectations and using Lemma 5.7 then gives

P(ξt �=∅ ∀t ≥ 0) ≤ P
(

deg(u) >
2δ

λ2 log
(

1

λ

))
+ λε0/4 + λε0/2.

Note that deg(u) − 1 ∼ Poisson(D(hu)) and by (5.6) we have

D(hu) ≤ D

(
H

(
δ

λ2 log
(

1

λ

)))
= δ

λ2 log
(

1

λ

)
.

Using a Chernoff bound, it is easy to see that there exists c̄ > 0 such that

P
(

deg(u) > 2
δ

λ2 log
(

1

λ

))
≤ exp

{
−c̄ · δ

λ2 log
(

1

λ

)}
� λ,

if λ is small. We then have, for λ small,

P(ξt �= ∅ ∀t ≥ 0) ≤ λ + λε0/4 + λε0/2,

so the result follows by taking ε = ε0/5. �

PROOF OF LEMMA 5.7. We fix ε0 > 0, whose value will be chosen later, let δ > 0 be
arbitrary, and assume u = (xu,hu) has hu ≤ h′′, with h′′ defined as in (5.5). Recall that �k

A =
{γ ∈ �A : |γ | = k} for k ≥ 1 and �k

A,∗ = {γ ∈ �A,∗ : |γ | = k} for k ≥ 3. We further let �̂k
A be

the set of vertex paths in �k
A that do not visit v, and similarly define �̂k

A,∗.
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We bound, for k ≥ 1, using the multivariate Mecke formula (see [31], Theorem 4.4) and
Lemma 5.1,

(2λ)k ·E[∣∣�̂k
A

∣∣]≤ (2λ)k
∫
h(1)<h�

· · ·
∫
h(k−1)<h�

∫
h(k)≥h�

dh(k) · · ·dh(1)

exp
{
hu

2
+ (1 − α)

(
h(1) + · · · + h(k−1))+ (1

2
− α

)
h(k)

}
= (2λ)k · Ck · exp

{
hu

2
+
(
(1 − α)(k − 1) + 1

2
− α

)
h�

}
,

(Recall that the value of C = C(α) may change from line to line, but it will never depend
on λ). Recalling that hu ≤ h′′ = H( δ

λ2 log( 1
λ
)), h� = H(λ−2) and (5.1), we see that the above

is smaller than

(2λ)kCk 1

λ2 log
(

1

λ

)(
1

λ

)4((1−α)(k−1)+ 1
2 −α)

= Ck log
(

1

λ

)
λ(4α−3)k.

Hence,

(5.7)
∞∑

k=1

(2λ)k ·E[∣∣�̂k
A

∣∣]≤ C · log
(

1

λ

)
· λ4α−3 < λε̃

for some ε̃ > 0 and λ small enough, since 4α − 3 > 0.
Next, for k ≥ 3, again by the multivariate Mecke formula,

(2λ)k ·E[∣∣�̂k
A,∗
∣∣]≤ (2λ)k · k

∫
h(1)<h�

· · ·
∫
h(k−1)<h�

dh(k−1) · · ·dh(1)

exp
{
hu

2
+ (1 − α)

(
h(1) + · · · + h(k−2))+ (1

2
− α

)
h(k−1)

}

≤ (2λ)k · k · Ck · 1

λ2 log
(

1

λ

)
·
(

1

λ

)4(1−α)(k−2)

= k · Ck · log
(

1

λ

)
· λ(4α−3)k−8α+6.

Then

(5.8)
∞∑

k=3

(2λ)k ·E[∣∣�̂k
A,∗
∣∣]≤ C · log

(
1

λ

)
· λ(4α−3)·3−8α+6 < λε̃

for some ε̃ > 0 and λ small enough, since the exponent of λ in the middle term is 4α − 3 > 0.
The bounds carried out above, yielding (5.7) and (5.8), can be repeated for the sets of

vertex paths �k
A\�̂k

A and �k
A,∗\�̂k

A,∗, with no significant differences, except that one of the
integrals involved in each of the bounds is suppressed to account for a visit to v. We omit the
details for brevity. The result now follows by taking ε0 < ε̃ and λ small. �

Bounds on infection paths through low vertices. We let (G∞, o) be the random hyper-
bolic graph on H with uniformly chosen root, and (ξt )t≥0 the contact process with rate λ on
this graph with ξ0 = {o}.

Our next goal is to prove the following.

PROPOSITION 5.9. There exists ε1 > 0 and σ > 0 such that the following holds for λ

small enough. Abbreviate

(5.9) h′ := H

(
1

λ2−σ

)
.
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Let Ē be the event that: for every infection path g which starts at o at time zero, and from
there jumps to a vertex v = (xv, hv) with hv ≤ h′, we have that g is finite and never visits a
vertex with height above h′. Then

P(Ē) ≥ 1 − λ4α−1+ε1 .

Before proving this result, we need to give some definitions, and state and prove a lemma.
We continue abbreviating h� = H( 1

λ2 ). We leave σ ∈ (0,1) fixed for now, with h′ as in (5.9)
and we define the random vertex set

A= Aσ := {v = (xv, hv) ∈ G∞ : v �= o,hv ≥ h′}.
Next, define �A = �A(G∞, o) and �A,∗ = �A,∗(G∞, o) as in (5.2); also let

�̃A := �A\�1
A =⋃

k≥2

�k
A

and

�0 = {(o,u, o, v) : u, v ∼ o
}
.

LEMMA 5.10. Assume σ ∈ (0,1). If no infection path g with g(0) = o has γg ∈ �0 ∪
�̃A ∪ �A,∗, then the event Ē of Proposition 5.9 occurs: any infection path g with g(0) = o

and γg(1) /∈ A is finite and never enters A.

PROOF. Assume that the realization H of the graphical construction of the contact pro-
cess is such that no infection path started at o at time zero has ordered trace in �0 ∪ �̃A∪�A,∗.
Then it is readily seen that, for any infection path g (starting from time zero),

(5.10) if g(0) = o, γg(1) /∈ A, then g does not intersect A,

and also

(5.11) if g(0) = o, γg(1) /∈ A, then no u �= o appears in γg more than once.

(Indeed, if an infection path g : [0, t] → G∞ with g(0) = o and γg(1) /∈ A violated either
property, we could obtain s ≤ t so that the restriction g̃ of g to [0, s] would have γg̃ ∈ �0 ∪
�̃A ∪ �A,∗.)

Now, let H ′ denote the graphical construction obtained by removing from H all Poisson
processes associated to vertices of A, and edges that intersect A. Then (5.10) implies that
the set of H -infection paths g with g(0) = o, γg(1) /∈ A is equal to the set of H ′-infection
paths g with g(0) = o. Moreover, (5.11) implies that the contact process (ξ ′

t )t≥0 obtained
from H ′ and ξ ′

0 = {o} is thin outside o, so by Lemma 5.4, this process dies out. In particular,
any H ′-infection path g with g(0) = o is finite. �

PROOF OF PROPOSITION 5.9. Recalling that ho denotes the height of the root o, we start
by bounding

(5.12)

P
(
Ēc)≤ P

(
ho > h′)+ P

(
Ēc ∩ {ho ≤ h′})

≤ P
(
ho > h′)+E

[
1
{
ho ≤ h′} · ∑

γ∈�0∪�̃A∪�A,∗

(2λ)|γ |
]
,

where the second inequality follows from Lemmas 5.1 and 5.10. We will bound the terms on
the right-hand side separately. We start with

P
(
ho > h′)= ∫ ∞

h′
αe−αho dho

(5.1),(5.9)≤ C

(
1

λ

)−2(2−σ)α

< λ4α−1+ε1(5.13)

for σ > 0 and ε1 > 0 small enough, and then λ small enough.
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Next, we bound (again using the multivariate Mecke formula):

(2λ)3 ·E[|�0| · 1{ho ≤ h′}]
≤ (2λ)3

∫ h′

0
α

∫ ∞
0

∫ ∞
0

dho dh(1) dh(2) exp
{
(1 − α)ho +

(
1

2
− α

)(
h(1) + h(2))}

≤ λ3 · C · exp
{
(1 − α)h′}≤ C · λ3−2(2−σ)(1−α).

Now, since

3 − 2(2 − σ)(1 − α) > 3 − 2 · 2 · (1 − α) = 4α − 1,

we obtain

(5.14) (2λ)3 ·E[|�0| · 1{ho ≤ h′}]< λ4α−1+ε1

for some ε1 > 0 and λ small enough.
We now bound, for k ≥ 2, one more time using the multivariate Mecke formula,

(2λ)k ·E[∣∣�k
A
∣∣]= (2λ)k

∫ ∞
0

∫
h(1)<h′

· · ·
∫
h(k−1)<h′

∫
h(k)≥h′

dh(k) · · ·dh(1) dho

α exp
{
(1 − α)

(
h(1) + · · · + h(k−1))+ (1

2
− α

)(
ho + h(k))}

≤ λk · Ck+1 · exp
{(

(1 − α)(k − 1) + 1

2
− α

)
h′
}

≤ Ck+1 · λk−2(2−σ)[(1−α)(k−1)+ 1
2 −α].

Thus, if σ is small,

(5.15)
∞∑

k=2

(2λ)k ·E[∣∣�k
A
∣∣]≤ C · λ2−2(2−σ)[(1−α)(2−1)+ 1

2 −α] < λ4α−1+ε1,

where for the last inequality we assumed that ε1 > 0 is small enough depending on α, and
σ = σ(ε) is small enough. Indeed, this can be accomplished, since if we had σ = 0, then the
exponent of λ in the middle term would be 8α − 4, which is strictly larger than 4α − 1 when
α > 3

4 ; by continuity, this strict inequality still holds for small σ > 0.
The last term we have to treat is, for k ≥ 3 (again using the multivariate Mecke formula)

(2λ)k ·E[∣∣�k
A,∗
∣∣]≤ (2λ)k · k

∫ ∞
0

∫
h(1)<h′

· · ·
∫
h(k−1)<h′

dh(k−1) · · ·dh(1) dho

α exp
{(

1

2
− α

)(
ho + h(k−1))+ (1 − α)

(
h(1) + · · · + h(k−2))}

≤ λk · Ck · exp
{
(k − 2)(1 − α)h′}≤ Ck · λk−2(2−σ)(1−α)(k−2).

Then

(5.16)
∞∑

k=3

(2λ)k ·E[∣∣�k
A,∗
∣∣]≤ C · λ3−2(2−σ)(1−α)(3−2) < λ4α−1+ε1

for small ε1 > 0: if we had σ = 0, then the exponent of λ in the middle term would be
precisely 4α − 1 and, moreover, this exponent is increasing in σ .

The proof is now completed by using the bounds (5.13), (5.14), (5.15) and (5.16) back in
(5.12). �
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We are now prepared to complete the proof of Proposition 5.3.

PROOF OF PROPOSITION 5.3. We recall the definition of h�, h′′ and h′ in (5.4), (5.5)
and (5.9). We now give several additional definitions. We let

N = {v = (xv, hv) ∈ G∞ : v ∼ o,hv ≥ h′}, N = |N |.
On the event {N = 1}, we define û = (xû, hû) as the unique element of N . Next, let M

denote the number of transmission arrows that appear from o to vertices of N before the first
recovery mark at o. On the event {N = 1,M ≥ 1}, define τ as the first time a transmission
arrow occurs from o to û. Further, define on {N = 1,M ≥ 1}, the process (ηt )t≥τ as the
contact process on G∞ started from time τ , with a single infection at û; this process is
defined with the same graphical construction as that of the original process on G∞. In other
terms, recalling the notation from Section 2.2, we set

ηt (v) = 1
{
(û, τ ) � (v, t)

}
, v ∈ G∞, t ≥ τ.

Lastly, we define the event

Ê := {N = 1,M = 1, ηt �= ∅ for all t ≥ τ }.
Recall the definition of the event Ē in Proposition 5.9. We now claim that, if neither of the

four events

(5.17) (Ē)c, {N ≥ 2,M ≥ 1}, {N = 1,M ≥ 2}, Ê

occurs, then ξt = ∅ for some t . To prove this, we first observe that, by the definition of Ē,
on the event Ē ∩ {M = 0} we have that every infection path started at o at time zero is finite,
and hence (ξt ) dies out. Having this in mind, if neither of the four events in (5.17) occur, the
only remaining situation in which we need to rule out the survival of (ξt ) is when N = M = 1
and (ηt )t≥τ dies out: this is the area painted blue in Figure 3. In that case, we can argue as
follows: given an infection path g started at o at time zero, if we have γg(1) �= û then g is
finite (because Ē occurs), and if γg(1) = û, then the jump from o to û must be through the
only transmission arrow from o to û before the first recovery at o; then the rest of g is an
infection path available to (ηt ), so it is finite since (ηt ) dies out.

Hence, the proof of the upper bound will be complete once we show that the four events in
(5.17) have probability smaller than C λ4α−1

log(1/λ)2α−1 , for some C > 0. For (Ē)c, this is already
given by Proposition 5.9. We proceed to bound the other ones in order.

FIG. 3. The four bad events defined in (5.17) are painted grey. In the regions painted white and blue, the contact
process dies out.
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• Probability of {N ≥ 2,M ≥ 1}. We bound

(5.18) P(N ≥ 2,M ≥ 1) = E
[

λN

1 + λN
· 1{N ≥ 2}

]
≤ λ ·E[N · 1{N ≥ 2}].

The law of N conditioned on ho is Poisson with parameter

(5.19) e
ho
2

∫ ∞
h′

exp
{(

1

2
− α

)
h

}
dh ≤ C · e ho

2 · λ(2−σ)(2α−1),

so we can bound

E
[
E
[
N · 1{N ≥ 2} | ho

] · 1{ho ≥ H(1/λ)
}]

≤ E
[
E[N | ho] · 1{ho ≥ H(1/λ)

}]
≤ C ·

∫ ∞
H(1/λ)

e−αho · (e ho
2 · λ(2−σ)(2α−1))dho ≤ C · λ(3−σ)(2α−1).

Next, when ho < H(1/λ) the expression on the right-hand side of (5.19) is smaller than
C · λ(2−σ)(2α−1)−1 � 1 if σ is small (and λ is small), since α > 3

4 . We then use the bound,
for Z ∼ Poisson(β) and β small,

E
[
Z · 1{Z ≥ 2}]= E[Z] −E

[
Z · 1{Z = 1}]= β − βe−β ≤ β2

to obtain

E
[
E
[
N · 1{N ≥ 2} | ho

] · 1{ho < H(1/λ)
}]

≤ C ·
∫ H(1/λ)

0
e−αho · (e ho

2 · λ(2−σ)(2α−1))2 dho

= C · λ(2−σ)(4α−2)−2(1−α).

Now the expression on the right-hand side of (5.18) is smaller than

C · (λ(3−σ)(2α−1)+1 + λ(2−σ)(4α−2)−2(1−α)+1).
If we had σ = 0, the exponents of λ inside the parentheses would be 6α − 2 and 10α − 5,
both of which are larger than 4α − 1 when α > 3

4 . This shows that

P(N ≥ 2,M ≥ 1) ≤ λ4α−1+ε′

for some ε′ > 0, if σ is small enough (and λ is small).
• Probability of {N = 1,M ≥ 2}. This is easier to handle. We first have (by the multivariate

Mecke formula)

P(N = 1) ≤
∫ ∞

0

∫ ∞
h′

exp
{(

1

2
− α

)
(ho + h)

}
dhdho

≤ C · exp
{(

1

2
− α

)
h′
}

= C · λ(2−σ)(2α−1).

(5.20)

Then we bound

P(N = 1,M ≥ 2) =
(

λ

1 + λ

)2
· P(N = 1)

(5.20)≤ C · λ2+2(2−σ)(α− 1
2 ) < λ4α− 1

2

if σ is small enough, and then λ is small enough.
• Probability of Ê. We start with

P(Ê) ≤ P(ho > h�) + P
(
N = 1,M ≥ 1, hû > h′′)

+ P
(
N = 1,M ≥ 1, ho ≤ h�,hû ≤ h′′, (ηt )t≥τ survives

)
.
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The first two terms can be handled with some more calculations of integrals:

P(ho > h�) ≤ C · exp{−αh�} < C · λ4α,

as in (5.13), and

P
(
N = 1,M ≥ 1, hû > h′′)
≤ λ

1 + λ
·
∫ ∞

0

∫ ∞
h′′

α exp
{
−
(
α + 1

2

)
(ho + h)

}
dhdho ≤ C · λ4α−1

log(1/λ)2α−1

(this is the only term in the proof whose bound is at the sharp value). Next,

(5.21)

P
(
N = 1,M ≥ 1, ho ≤ h�,hû ≤ h′′, (ηt )t≥τ survives

)
≤ λ

1 + λ
·E[P((ηt )t≥τ survives | o, û

) · 1{N = 1, ho ≤ h�,hû ≤ h′′}].
On the event {N = 1, ho ≤ h�,hû ≤ h′′}, conditioned on the respective locations v and u of
the vertices o and û, the graph G∞ is stochastically smaller than the graph Gu,v of Proposi-
tion 5.8. Indeed, the conditioning gives no information on the graph apart from the locations
of these two vertices o, û, and some negative information about the presence of other vertices
in the region {(x,h) ∈H : |x − xo| ≤ exp{(ho + h)/2}}. Hence, Proposition 5.8 gives

P
(
(ηt )t≥τ survives | o, û

)≤ λε on
{
N = 1, ho ≤ h�,hû ≤ h′′}.

Then (5.21) is smaller than

λ1+ε · P(N = 1)
(5.20)≤ λ(2−σ)(2α−1)+1+ε.

If σ is small enough (depending on ε), this is smaller than λ4α−1+ε/2 for λ small enough, and
the proof of Proposition 5.3 is completed. �

6. Convergence of density. We prove here Theorem 1.4, that is, the convergence in
probability of the empirical density of infected sites to γ (λ). We start with the upper bound.

LEMMA 6.1. Let (tn)n≥1 be any sequence with tn → ∞. Then, for any ε > 0, and any
λ > 0,

lim
n→∞P

( |ξGn
tn |

|Gn| > γ (λ) + ε

)
= 0.

PROOF. Observe first that for any R > 0, almost surely,

P
(
ξρ
s �= ∅, ξρ

s ⊆ B∞(ρ,R) for all s > 0
)= 0.

Using the fact that (Gn)n≥1 uniformly rooted, converges locally to (G∞, ρ) by Lemma 2.2,
this yields for any sequence (tn)n≥0, with tn → ∞, and any fixed R > 0,

(6.1) lim
n→∞E

[
1

|Gn|
∑

v∈Gn

1
{
ξv
tn

�= ∅, ξv
s ⊆ Bn(v,R) for all s ≤ tn

}]= 0.
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We thus have by self-duality of the contact process (recall (2.1)),

(6.2)

P
( |ξGn

tn |
|Gn| > γ (λ) + ε

)

= P
(

1

|Gn|
∑

v∈Gn

1
{
ξv
tn

�=∅
}
> γ (λ) + ε

)
(6.1)≤ P

(
1

|Gn|
∑

v∈Gn

1
{
ξv
tn

�= ∅,∃s ≤ tn : ξv
s � Bn(v,R)

}
> γ (λ) + 3ε

4

)
+ o(1)

≤ P
(
Xn > γ (λ) + 3ε

4

)
+ o(1),

with

Xn := 1

|Gn|
∑

v∈Gn

1
{∃s > 0 : ξv

s � Bn(v,R)
}
.

We will then apply Chebyshev’s inequality in order to bound the probability on the right-hand
side of (6.2). For this, we need bounds on the expectation and variance of Xn. Concerning
the expectation, observe that almost surely,⋂

R>0

{∃s > 0 : ξρ
s � B∞(ρ,R)

}⊆ {ξρ
s �=∅ ∀s > 0

}
.

Indeed, if the process does not escape to infinity in finite time, then this is true by definition,
and if it does, then in particular infinitely many vertices get infected, which in turn almost
surely maintain the process alive for an infinite amount of time (just because for any t > 0,
almost surely at least one of them survives for a time larger than t). Therefore, for any ε > 0,
there exists R > 0, such that

(6.3) P
(∃s > 0 : ξρ

s � B∞(ρ,R)
)≤ γ (λ) + ε/4.

Fix now ε > 0, and then R > 0 as above. Using again that (Gn)n≥1 uniformly rooted con-
verges locally to (G∞, ρ), we deduce that

lim
n→∞E[Xn] = P

(∃s > 0 : ξρ
s � B∞(ρ,R)

)
.(6.4)

Then (6.3) and (6.4) show that for the above choice of R, for n large enough,

(6.5) E[Xn] ≤ γ (λ) + ε

2
.

We move now to the variance of Xn. We first notice that |Gn| ∼ n, in probability. Indeed by
definition |Gn| is a Poisson random variable with parameter μ(Rn), where we recall Rn =
[−π

2 n, π
2 n]× [0,2 logn], and from the definition of μ, one can easily verify that μ(Rn) ∼ n.

We next subdivide Rn into a disjoint union of small cubes (Bi,j )i,j of side length one. More
precisely, for i ∈ Z and j ∈ N, we set Bi,j := [i, i + 1] × [j, j + 1]. Then let

Zi,j := ∑
v∈Gn∩Bi,j

1
{∃s > 0 : ξv

s � Bn(v,R)
}
,

and

X̃n := 1

n

∑
i,j

Zi,j .
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Due to the above discussion it suffices to show that for some constant C > 0, for any ε > 0,

P
(
X̃n −E[X̃n] ≥ ε/5

)≤ Cε.

Let now hε > 0 sufficiently large, be such that

μ

([
−π

2
n,

π

2
n

]
× [hε,2 logn]

)
≤ ε2.

Noting that one can bound Zi,j by |Gn ∩ Bi,j |, whose mean is exactly μ(Bi,j ), we get using
Markov’s inequality

P
( ∑

(i,j):j≥hε

Zi,j ≥ ε

10

)
≤ 10ε.

Thus all we need to show in fact is that

(6.6) P
(
Xε

n −E
[
Xε

n

]≥ ε

10

)
= o(1) with Xε

n := 1

n

∑
(i,j):j≤hε

Zi,j .

To this end, we estimate the variance of Xε
n. Note that for any pairs of indices (i, j) and (k, �),

conditionally on Gn, Zi,j and Zk,� are independent, unless Bk,� intersects the ball of radius
2R centered at some vertex of Bi,j . Moreover, in the latter case, one can use again the trivial
bound ∣∣Cov(Zi,j ,Zk,�)

∣∣≤ |Gn ∩ Bi,j | · |Gn ∩ Bk,�|,
yielding

var
(
Xε

n

)≤ 1

n2

∑
(i,j):j≤hε

E
[
|Gn ∩ Bi,j | ·

∣∣∣∣Gn ∩
( ⋃

v∈Gn∩Bi,j

Bn(v,2R + 1)
)∣∣∣∣]

≤ C

n2

∑
(i,j):j≤hε

μ(Bi,j ) = O
(

1

n

)
,

where C = C(R, ε) = 1 + 2μ(Bn((0, hε + 1),2R + 1)), is a constant that only depends on R

and ε. Then (6.6) follows and this concludes the proof of the lemma. �

We prove now the lower bound, which is a bit more delicate.

PROPOSITION 6.2. Let (tn)n≥1 be any sequence with tn → ∞ and tn < ecn for each n,
with c as in Theorem 1.2. Then, for any ε > 0 and λ > 0,

lim
n→∞P

( |ξGn
tn |

|Gn| < γ (λ) − ε

)
= 0.

PROOF. Fix ε > 0. Using that for any R > 0, one has

P
(
ξρ
s ⊆ B∞(ρ,R), for all s > 0

)= 0,

we deduce as in the proof of the previous lemma, that for any sequence (tn)n≥1, with tn → ∞,

P
( |ξGn

tn |
|Gn| < γ (λ) − ε

)

≤ P
(

1

|Gn|
∑

v∈Gn

1
{
ξv
tn

�= ∅,∃s > 0 : ξv
s � Bn(v,R)

}
< γ (λ) − 3ε

4

)
+ o(1).
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Moreover, as before, for any ε > 0, there exists R > 0, such that

P
(∃s > 0 : ξρ

s � B∞(ρ,R)
)≥ γ (λ) − ε

4
.

Then, using the same argument as in the proof of the previous lemma, we get

lim
n→∞P

(
1

|Gn|
∑

v∈Gn

1
{∃s > 0 : ξv

s � Bn(v,R)
}≤ γ (λ) − ε

2

)
= 0.

Thus,

(6.7)

P
( |ξGn

tn |
|Gn| < γ (λ) − ε

)

≤ P
(

1

|Gn|
∑

v∈Gn

1
{
ξv
tn

=∅,∃s > 0 : ξv
s � Bn(v,R)

}
>

ε

4

)
+ o(1).

We proceed now as in the previous lemma, but this time we only need a first moment bound.
Recall the notation for Bi,j , from there, and let

Yn := 1

n

∑
i,j

1(Ei,j ) · |Gn ∩ Bi,j |,

where

Ei,j := {∃v ∈ Gn ∩ Bi,j : ξv
tn

=∅ and ∃s > 0 with ξv
s � Bn(v,R)

}
.

We claim that when R is large enough, one has almost surely,

(6.8) P(Ei,j | Gn ∩ Bi,j ) ≤ ε2.

Note that given this fact we deduce that for some constant C > 0,

E[Yn] ≤ Cε2,

and together with Markov’s inequality, we get that the first term on the right-hand side of
(6.7) is O(ε), from which the proposition follows.

Let us prove now (6.8). The basic idea is quite simple: each time the process reaches a new
shell Bn(v, i + 1) \ Bn(v, i), it has some positive probability to infect a vertex at some high
level, which will then sustain the infection for a time tn with high probability, as was shown
in the proof of Theorem 1.2. If R is taken large enough, then the process will have many
chances to do this, and thus it should happen with probability as close to one as wanted.

We proceed now with the details which require a certain care due to the hyperbolic shape
of the balls. Define h�, for each � ≥ 1, by

μ
([

0,2�]× [h�,∞)
)= ε3

2�2 ,

or equivalently by

h� = 1

α

(
(� + 1) log 2 − 3 log ε + 2 log�

)
.

Note that by Markov’s inequality, for each � ≥ 1,

P
(
Gn ∩ [0,2�]× [h�,2 logn] �= ∅

)≤ E
[∣∣Gn ∩ [0,2�]× [h�,2 logn]∣∣]≤ ε3

2�2 .
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Thus, letting

x� := x0 +
�∑

m=1

2m and D� := [x�, x�+1] × [h�+1,2 logn],

a union bound gives

(6.9) P
(
An(v)

)≥ 1 − ε3 where An(v) :=
{

Gn ∩
(⋃

�≥0

D�

)
= ∅
}
.

Let L := α+1
2α

· log 2, be as in Section 3, and then for � ≥ 0, set

Q(�) := [x�, x�+1] × [(� + 2)L, (� + 3)L
]
.

Note the important property of these boxes, which is that any vertex in Gn ∩ Q(�) is a neigh-
bor of any other vertex in Gn ∩ Q(� + 1), for any � ≥ 0 (this follows from the fact that
L > log 2). We call Cn(v) the event when all these boxes are good in the sense of Section 3,
at least for � large enough. That is, we define

Cn(v) := {∣∣Gn ∩ Q(�)
∣∣≥ C0λ

−3 for all � ≥ �0
}
,

where C0 is a positive constant to be fixed later, and �0 is the smallest integer such that

(6.10) P
(
Cn(v)

)≥ 1 − ε3.

Observe that for any 0 ≤ � ≤ m, one has (xm,hm) and (x�, h�) are neighbors in Gn, only if
m ≤ �

2α−1 + C logm, for some constant C > 0. In particular, since α > 1/2, for any fixed �,
this happens only for finitely many integers m ≥ �, and one can thus define inductively the
sequence (�i)i≥0, by �0 = 0, and for i ≥ 0,

�i+1 = inf
{
m > �i : (xm′, hm′) /∈ Bn

(
(x�i+1, h�i+1),1

) ∀m′ ≥ m
}
.

Consider now (ξv
t )t≥0 the contact process starting from only v infected, and define

Hn(v) :=
{
∃s ≥ 0 : ξv

s ∩
( ⋃

�≥�0

Q(�)

)
�= ∅
}
.

The proof of Theorem 1.2 given in Section 3 shows that (at least by taking C0 large enough)

P
(
Cn(v) ∩Hn(v) ∩ {ξv

tn
=∅
})≤ ε3.

Therefore, recalling (6.9) and (6.10), we see that all we need to show is that for R large
enough,

(6.11) P
(
Hn(v)c ∩An(v) ∩ {∃s > 0 : ξv

s � B+
n (v,R)

})≤ ε3,

where B+
n (v,R) := Bn(v,R)∪ ([−π

2 n,x0]× [0,2 logn]∩Gn). Indeed, this would show that,
for ε small enough,

P
({∃s > 0 : ξv

s � B+
n (v,R)

}∩ {ξv
tn

= ∅
})≤ 3ε3 ≤ ε2,

and as explained previously this would conclude the proof of the proposition.
We prove now (6.11). For i ≥ 0, we define the stopping time

τi := inf
{
s > 0 : ∃w = (x,h) ∈ ξv

s , with x ≥ x�2i

}
.

Note that when the rectangles D� are empty, then the first coordinate of the vertex which
is infected at time τi cannot be larger than x�2i+2 . Otherwise, there would exist m ≥ �2i+2,
such that (xm,hm) would be in the neighborhood of (x�2i

, h�2i
), and this is not possible by
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definition of the sequence (�j )j≥0. In other words, for any i ≥ 0, on the event An(v) ∩ {τi <

∞}, one has τi < τi+1.
We then consider the good events

A1
i := {∣∣Gn ∩ [x�2i

, x�2i
+ 2j ]× [jL, (j + 1)L

]∣∣≥ λ−3 for all �0 ≤ j ≤ �2i + 1
}
,

and

A2
i := {Gn ∩ [x�2i

, x�2i
+ 2j ]× [jL, (j + 1)L

] �= ∅ for all 0 ≤ j ≤ �0
}
,

and set

Ai := A1
i ∩ A2

i .

We next define Bi , as the event that τi is finite and that after this time, there exists an infection
path within the rectangle [x�2i−1+1, x�2i+1]×[0,2 logn], going from the vertex infected at time
τi up to a vertex in Q(�2i ). We also need to consider truncated versions of An(v), defined for
any i, by

Ai
n(v) :=

{
Gn ∩

( ⋃
�≤�2i+2

D�

)
= ∅
}
.

We finally consider the filtration (Gi )i≥0, where Gi is the σ -field generated by this set Ai
n(v),

the restriction of the graph Gn to the rectangle [x0, x�2i+1] × [0,2 logn], together with all the
Poisson clocks associated to the vertices in this rectangle, as well as all those associated to the
edges between them in the Harris construction. Note that by definition Ai is Gi-measurable.
Note also that by definition of the (�j )j≥0, the event Ai−1

n (v) ∩ Bi is Gi-measurable as well,
since on Ai−1

n (v), the vertex infected at time τi has a first coordinate smaller than x�2i+1 .
Moreover, by definition

Bi ⊆ Hn(v) for all i ≥ 1,

and, therefore, for any integer r ≥ 1,

(6.12) Hn(v)c ⊆⋂
i≤r

Bc
i .

On the other hand, a straightforward computation shows that there exists a constant p1 > 0,
independent of i, such that almost surely,

P(Ai | Gi−1) = P(Ai) ≥ p1,

using for the first equality that Ai is independent of Gi−1, by definition.
Now we claim that on the event Ai ∩ Ai−1

n (v) ∩ {τi < ∞}, the vertex infected at time
τi , or the one who infected it, has a neighbor (possibly itself) in one of the boxes occurring
in the definition of A1

i or A2
i . Indeed, let vi = (xi, hi) be the vertex infected at time τi and

v′
i = (x′

i , h
′
i ) be the one who infected it. By definition, one has xi ≥ x�2i

, and x′
i < x�2i

. Since
vi and v′

i are neighbors, one also has |xi − x′
i | ≤ e(hi+h′

i )/2. Assume first that hi ≥ h′
i , and

let j ≥ 0 be such that jL ≤ hi < (j + 1)L. Note that one can assume xi > x�2i
+ 2j , as

otherwise there is nothing to prove (since in this case vi already belongs to one of the boxes
appearing in the definition of A1

i and A2
i ). Now by definition on the event Ai there exists

v′′
i = (x′′

i , h′′
i ) ∈ Gn, such that x�2i

≤ x′′
i ≤ x�2i

+ 2j+1, and (j + 1)L ≤ h′′
i ≤ (j + 2)L. Note

that one has either x′
i < x′′

i ≤ xi , or 0 ≤ x′′
i − xi ≤ 2j < xi − x′

i . Hence, in all cases it holds∣∣x′′
i − xi

∣∣≤ ∣∣xi − x′
i

∣∣≤ e(hi+h′
i )/2 ≤ e(hi+h′′

i )/2,

and thus vi and v′′
i are neighbors, which proves our claim when hi ≥ h′

i . If on the other hand
hi ≤ h′

i , then we can use a similar argument: assume jL ≤ hi < (j +1)L, for some j ≥ 0, and
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again that xi > x�2i
+ 2j , as otherwise there is nothing to prove. Pick a vertex v′′

i = (x′′
i , h′′

i )

in Gn ∩ [x�2i
, x�2i

+ 2j+1] × [(j + 1)L, (j + 2)L]. If xi > x′′
i , then∣∣x′

i − x′′
i

∣∣≤ ∣∣x′
i − xi

∣∣≤ e(hi+h′
i )/2 ≤ e(h′

i+h′′
i )/2,

which implies that v′
i and v′′

i are neighbors. If xi < x′′
i , then∣∣xi − x′′

i

∣∣≤ 2j ≤ ejL ≤ e(hi+h′′
i )/2,

using for the second inequality that L > log 2, since 1+α
2α

> 1, for any α < 1. This proves the
claim in the case hi ≥ h′

i as well.
It follows that after time τi , the vertex vi will infect another vertex in one of the cubes

occurring in the definition of A1
i or A2

i , with probability at least (λ/(1 + λ))2. Once infected,
it will propagate the infection up to Q(�i) within the boxes appearing in the definition of A1

i

and A2
i with positive probability, uniformly bounded from below by a constant independent

of i (this last point following from the same argument as in the proof of Theorem 1.2).
Therefore, there also exists a constant p2 ∈ (0,1), such that on Ai−1

n (v),

P
(
Ai ∩ Bc

i ∩ {τi < ∞} | Gi−1
)≤ p1p2.

As a consequence, there exists p ∈ (0,1), such that on Ai−1
n (v), one has

(6.13) P
(
Bc

i ∩ {τi < ∞} | Gi−1
)≤ 1 − p for all i ≥ 1.

The conclusion follows: indeed, let first r be some integer such that (1 − p)r ≤ ε3/2, and
note that for R large enough,{∃s > 0 : ξv

s � Bn(v,R)
}⊆ {τr < ∞} ∪ {τ−r < ∞},

where we denote by τ−r the first time when there is an infected vertex with x-coordinate
smaller than −x�2r

. By symmetry, we can consider only the event {τr < ∞}, but then (6.13)
and an immediate induction give

P
(
An(v), τr < ∞,

⋂
i≤r

Bc
i

)
≤ ε3/2,

from which (6.11) follows using also (6.12). This concludes the proof of the proposition. �

7. Discussion and outlook. In this paper, we gave a complete picture of metastability for
1
2 < α < 1. Naturally, one might wonder how the contact process evolves outside this regime:
on the one hand, for α < 1

2 , the total number of edges of Gn is superlinear, and hence, we do
not expect metastability in this case (and there is no natural infinite graph either); a similar
phenomenon could also arise in the case α = 1

2 . On the other hand, for α > 1, the largest
component is of order n1/(2α) � √

n, roughly corresponding to the maximum degree (see
[18]). Therefore, this component is roughly like a star, with a few extra edges. The same proof
given therein can be used to show that most other components are star-like, and there should
be of the order n1−2αβ such star-like components of size nβ for any 0 < β ≤ 1/(2α). Hence,
the expected component size in the infinite graph is of order

∫ 1/(2α)
β=0 n2−2α dβ , which is finite

for α > 1. Thus, the component of the root is almost surely finite, and the contact process
cannot survive. For α = 1, for ν sufficiently large (see [21]) there exists a giant component,
and the study of the contact process in this regime is subject to further work.
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