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We study the contact process on a dynamic random d-regular graph with
an edge-switching mechanism as well as an interacting particle system that
arises from the local description of this process called the herds process. Both
these processes were introduced in (da Silva, Oliveira and Valesin (2021));
there it was shown that the herds process has a phase transition with respect
to the infectivity parameter A, depending on the parameter v that governs
the edge dynamics. Improving on a result of (da Silva, Oliveira and Valesin
(2021)), we prove that the critical value of A is strictly decreasing with v.
We also prove that, in the subcritical regime, the extinction time of the herds
process started from a single individual has an exponential tail. Finally, we
apply these results to study the subcritical regime of the contact process on the
dynamic d-regular graph. We show that, starting from all vertices infected, the
infection goes extinct in a time that is logarithmic in the number of vertices
of the graph, with high probability.

1. Introduction. This paper is a follow-up to [12], which studied the contact process
on a dynamic random d-regular graph with an edge-flip mechanism introduced in [10]. The
work [12] mainly focused on proving the existence of a supercritical regime, where the extinc-
tion time of the process grows exponentially with the number of vertices of the graph. Here
we show that there is a phase transition between two regimes, where the order of magnitude
of the extinction time switches abruptly from logarithmic to exponential, as the infection pa-
rameter crosses a critical value. The highlight of our analysis is that it allows us to establish
that this critical value of the infection parameter is a strictly monotone function of the rate of
the edge-flip mechanism.

1.1. Contact process on static finite graphs. The contact process on a graph G is an in-
teracting particle system in which the vertices of the graph can be either healthy or infected.
Healthy vertices get infected at rate A times the number of infected neighbors, where A > 0
is a fixed parameter of the model, while infected vertices become healthy at rate 1, indepen-
dently of each other. When the graph G is infinite, a quantity of interest is the critical rate
Ac(G), defined as the supremum of the values of A for which the process started from any
finite infected set dies out (reaches the all-healthy configuration) almost surely.

In the case when G is finite, the all-healthy configuration is always reached almost surely
(regardless of 1). The extinction time t¢ is the hitting time of the all-healthy configuration,
for the process started from all infected. It has been observed in several cases that, when
(Gn)n>1 1s a sequence of finite graphs which converges locally to some (rooted) infinite
graph G, typically the extinction time 7, grows logarithmically with n when A is smaller
than A.(G) and grows exponentially with n when A is larger than A.(G). For instance,
this has been shown when G, is a d-dimensional cube {0, ...,n}? [8, 14, 15, 29, 33], a d-
regular tree up to height n [11, 36], or in the case which interests us more here, when G, is a
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random d-regular graph with n vertices [23, 30], in which cases G o is, respectively, Z¢, the
canopy tree, and the d-regular tree T¢.

1.2. Contact process on a dynamical random d-regular graph. We present now the dy-
namical version of the random d-regular graph first introduced and studied in [10]. Through-
out the paper we fix the degree d > 3, and whenever we talk about a d-regular graph with n
vertices, we assume that nd is even. We allow our graphs to contain loops (edges involving
the same vertex twice) and parallel edges (multiple edges between the same two vertices),
but we will keep writing “graph,” instead of some other terminology such as “multigraph.”

Let G be a d-regular graph with n vertices and e, ¢’ be two of its edges; let u, v be the
vertices of e and u’, v’ the vertices of ¢’. We can define two possible switches of these edges
by replacing them with either: (1) edges with vertices {u, u’} and {v, v’} or (2) edges with
vertices {u, v’} and {v, u’}. We then define a continuous-time Markov chain (G;);>o on the
space of d-regular graphs on a fixed set of n vertices, as follows. The initial graph Gg is
distributed according to the uniform distribution on the set of d-regular graphs. Then, given
the state G, at time ¢, we prescribe that any of the 2 - (“25‘) possible edge switches occurs
on this graph with rate %, where v > 0 is a positive parameter. It is readily seen that the
uniform distribution on random d-regular graphs is stationary with respect to this dynamics
and, moreover, that any fixed edge is involved in a switch at a rate which converges to v, as
n — oo. It is also interesting to note that a d-regular graph on n vertices sampled uniformly
at random is connected with high probability as n — oo (see [4], Section 7.6).

We next consider the process (G, & );>0, where (G,);>0 is as above and (§;)>¢ is a contact
process evolving on the dynamic graph. As previously mentioned, the process starts from the
configuration where all vertices are infected, and our main interest is in the time 7(g,) when
the process reaches the all-healthy configuration. The following result was proved in [12]. In
both this theorem and in Theorem 1.2 below, the probability measure [P includes the random-
ness of both the random dynamic graph and the contact process.

THEOREM 1.1 ([12]).  For each v > 0, there exists A(v) € (0, Ao(T%)) such that the fol-
lowing holds. For any A > A(v), there exists ¢ > 0 such that

P(z,) > expicn}) 2= 1.

Note, in particular, the interesting feature that (V) is strictly smaller than Ae(T9), which
means that the dynamics of the graph helps the contact process to survive for a longer time
than in the static model.

1.3. Main results. In this paper we complete the picture by proving the following result.

THEOREM 1.2. For each v > 0, there exists L(V) € (0, ,(T9)) such that the following
holds:

(i) Forany ) > L (V), there exists ¢ > 0 such that
P(t(G,) > exp{cn}) 7.
(ii) For any ) < L (v), there exists C > 0 such that

P(T(G,) > Clogn) m) 0.

As in the static case, the value A (V) corresponds to the critical value for the contact process
on a limiting model, which in our case is called the herds process. This was introduced and
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analyzed in [12], where, in particular, a phase transition delimited by a positive and finite
parameter A(v) was established. Here we improve upon this result by showing that the herds
process exhibits a form of sharp threshold phenomenon, namely, that the tail distribution of
the extinction time decays exponentially fast in the whole subcritical regime (see Lemma 3.2
below). An informal description of the herds process is given in the next subsection, and a
precise definition is given in Section 2.

Our second result answers a question of [12] concerning the monotonicity of (V).

THEOREM 1.3.  The mapping v — A(V) is strictly decreasing.

By combining Theorems 1.2 and 1.3, we see that, for any v| < vp, there exist values of A
such that the contact process on the dynamic graph (G;) dies out in logarithmic time at pa-
rameter values (A, vi) and survives exponentially long at parameter values (A, v2). A natural
direction of investigation would be to show that, when v; < v, and A > A(v1) (so that A is
supercritical for both speeds), the typical (“metastable”) density of infection in the graph is
larger at (A, vp) than it is at (A, vi). Using elementary duality properties of the contact pro-
cess, this problem is related to proving strict monotonicity of the extinction probability of the
herds process with respect to v. Since our methods do not involve direct comparison through
coupling between processes with different choices of v, we are unable to settle this issue; see
also the discussion in Remark 2.4 about this difficulty. In fact, when 0 = v; < v, a coupling
between the two processes entailing stochastic domination can be defined, and this was used
in [12] to show that A(v) < A(0) = A.(T%), for any v > 0, but this is a very special case.

1.4. Methods of proof and organization of the paper. Asin [12], the proof of Theorem 1.2
relies on a detailed analysis of the herds process. Informally, this process evolves as a contact
process on a family of d-regular trees, where the number of trees also evolves with time. On
each tree the process obeys the same rules as the usual contact process, regarding infection
and recovery (though we adopt a slight change of terminology: the vertex states “healthy” and
“infected” here are called “empty” and “occupied by a particle,” respectively). In addition,
each edge in any of the existing trees splits the tree into two pieces at a constant rate v. When
this happens, the two disjoint pieces of the tree are extended to form two new copies of a
d-regular tree.

The value A(v) is defined as the threshold for the infection parameter A above which the
process has a positive probability of surviving forever, when starting from a single tree with a
single particle. The heart of the proof is to show that, when X is smaller than this threshold, the
probability to survive for a time larger than ¢ decays exponentially fast with ¢. This is obtained
using some coupling argument with a two-type herds process, which allows to show that the
expected number of infected particles at time ¢, denoted (in this section only) F (A, v, t), is a
submultiplicative sequence (as a function of the time parameter); see Section 2.2. Using this,
we can define the rate of exponential decay of this function, ¢ (4, v), and then the proof boils
down to showing that it is strictly increasing with respect to both parameters. This is obtained
via a kind of Russo’s formula; see Proposition 3.7, which in our setting is quite involved,
compared to the original formula from percolation theory. Moreover, the strict monotonicity
of ¢(A, v) also proves Theorem 1.3.

Another important ingredient is to control the higher moments of the number of infected
particles, which requires some serious additional technical work, due to the nonlinearity of
these functionals; see Section 3.3. Bounding higher moments is needed to control the total
number of particle births (or in the usual contact process terminology, infections) up to the
extinction time, which in turn allows one to couple the contact process on a large dynamic
d-regular graph with the herds process, up to this extinction time. This coupling argument is
explained in Section 4, where we complete the proof of Theorem 1.2.
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1.5. Related works. The study of the phase transition for long vs. short time extinction
for the contact process on finite graphs and the closely related question of metastability in
the supercritical regime has been studied intensively over the past years, in particular, as we
already mentioned on finite boxes of 74 [8, 14-16, 29, 33], finite d-regular trees [11, 36],
and random d-regular graphs [23, 30], but also in a number of other examples, such as the
configuration model with power law degree distribution [7, 9, 28], or with general degree-
distribution [3, 19], preferential attachment graphs [2, 5], Erd6s—Rényi random graphs [3],
inhomogeneous random graphs [6], or hyperbolic random graphs [25]. There are also results
concerning some general classes of finite graph sequences [27, 32].

On the other hand, the study of the contact process on dynamical graphs started more
recently; see, for example, [12, 13, 18, 20-22, 26, 31, 34, 35].

The phenomenon identified in our Theorem 1.3—roughly put, “more rapid graph dynamics
helps the infection survive”’—should not be expected to be universal for the contact process
on dynamic graphs. In graphs where degrees are highly heterogeneous, high-degree vertices
(“stars”) play a crucial role in maintaining the infection when the infection rate is small, and
this mechanism can be compromised by rapid breaking of edges. This is the case, for in-
stance, in the power law graphs studied in [21]: in Theorem 1 there, there are situations when
increasing the parameter 1, which controls the speed of graph updates, causes a fast extinc-
tion regime to appear, thus in the opposite direction as in our setting. It would be interesting
to investigate situations where degrees are heterogeneous but not as drastically as in a power
law random graph, for instance, when degrees are bounded. Presumably, in such a setting, an
analysis of a limiting graph dynamics could still be carried out, and our methods involving
differential inequalities could be helpful.

2. Preliminaries on the herds process. In this section we give a formal definition of
the herds process and introduce notation. We also present some tools that will be employed
in the analysis of this process in later sections, namely, stochastic domination by a pure-birth
process and a submultiplicativity inequality for the expectation of the number of particles.

2.1. Definition and construction. Throughout this paper we fix d > 3 and let T denote
the infinite d-regular rooted tree. The root is denoted by o, and we write u ~ v when two
vertices u and v are neighbors.

DEFINITION 2.1. Let

P(T%) :={A c T?: Ais finite and nonempty}.

We call each A € Py(T¢) a herd shape and each x € A a particle of A. Given a herd shape A
and an edge e = {u, v} of T¢ with u closer to the root than v, in the graph distance of T,
define

Ac1:={w e A:wiscloser to u than to v}, Acnr:i=A\A. 1.
We say that e is an active edge of Aif A, 1 # @ and A, » # @.

DEFINITION 2.2. Define the set of herd configurations
S:= {S : P(T?) — Ny with ZS(A) < oo}
A

In a herd configuration & € S, £(A) is interpreted as the number of herds with shape A.
Given A € Pf(’]I‘d), we let 54 denote the herd configuration such that §4(B) =1 if B = A,
and §4 (B) = 0 otherwise. An enumeration of £ € S is a sequence A1, ..., A, € P;(T¢) such
that £ =", 84,.
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We will generally denote deterministic elements of S by the letter £ and random elements
of S by E.

DEFINITION 2.3.  The herds process (&;);>o with birth rate A > 0 and splitting rate v > 0
is a continuous-time Markov chain on & whose dynamics is given by the following descrip-
tion of possible jumps and corresponding rates:

(a) Death in herds with more than one particle: For each A with |A| > 1 such that £(A) >
0, and for each x € A, with rate §(A), the process jumps from & t0 & — 84 + 64\ (x}-

(b) Death in herds with one particle: For each A with |A| = 1 such that £(A) > 0, with
rate £(A), the process jumps from & to £ — 4.

(c) Birth: for each A such that £(A) > 0, and for each y € T9 with y ¢ A, with rate A -
[{x € A:x ~y}|-&(A), the process jumps from & to & — 64 + Sauyy)-

(d) Split: for each A such that £(A) > 0, and for each active edge e of A, withratev-£(A),
the process jumps from & t0 & — 84 + 84, , +94,,-

REMARK 2.1. A priori, it could be the case that the above description gave rise to an
explosive chain, that is, a chain that jumps infinitely many times in a bounded time interval.
So, strictly speaking, the process is only defined up to the explosion time (the infimum of
times ¢ > 0 such that infinitely many jumps happen in (0, #)). However, we will show shortly
(see Corollary 2.2 below) that the chain is, in fact, not explosive.

REMARK 2.2. Our choice for the state space S of the herds process makes it so that, in
case there are multiple herds with the same shape A (meaning that £(A) > 2), then these herds
are indistinguishable. An alternative choice was made in [12]: there, a state of the process was
an index set 7 and a mapping from J to Py(T%) so that each i € J represented a different
herd. This alternative choice requires heavier notation but has some advantages; for instance,
when a particle is born in a herd, it makes sense to consider the herd before and after the
birth (since it keeps the same index). Although here we will adopt the leaner description of
Definition 2.3, we will sometimes pretend that a richer description is available. For instance,
in one of our arguments (see Lemma 3.3), we fix a particle in a herd at time 0, and consider
the evolution of the cardinality of the herd containing that particle for times ¢ > 0.

We let PP be a probability measure under which the herds process is defined and E the
associated expectation. When we want to be explicit about the parameters, we will write [Py
and [E, . When no explicit mention regarding the initial configuration is made, we assume
it to consist of a single herd with a single particle placed at the root vertex. We may
write P) v(-|Ep = &) (and similarly, E, y[-|E¢ = &]) to specify some other initial configu-
ration £ € S.

DEFINITION 2.4. Given & € S, we let
(D X&) = > |Al-£(A),
AeP(T9)

where | - | denotes cardinality; that is, X (§) is the total number of particles among all herds
in £. We also let

) &)= > |{active edges of A}|-&(A),
AeP(T9)

the total number of active edges among all herds of &. For the herds process (&;);>¢ (started
from an arbitrary configuration), we write

3) X = X(Ey), & = E(8y),
with X and & as in (1) and (2), respectively.
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We now state a useful stochastic domination result. The proof involves a quick inspection
of transition rates, and we omit it.

LEMMA 2.1 (Domination by pure-birth chain). For the herds process (8;);>0 with pa-
rameters A, v and some initial configuration & € S, let N; denote the number of birth events
until time t. Let (Z;)>0 be the continuous-time Markov chain on N with Zo = X (§) and jump
rates

(4) gl,i+ D) =dxri, ql, j)=0 forj#i+1.

Then (N;);=o is stochastically dominated by (Z; — Zy);>0. In particular, P(N; < 00) >
P(Z; <o00)=1foranyt.

COROLLARY 2.2. The herds process is nonexplosive.

PROOF. As above, let N; denote the number of birth events of the herds process until
time ¢. The number of death events in [0, ¢] is necessarily smaller than X (Eq) + N;. Moreover,
the number of splitting events in [0, ¢] is at most & (E¢) + N; (indeed, births cause the number
of active edges to increase by at most one, while deaths and splittings cannot increase the
number of active edges). This shows that the total number of jumps of the process in [0, 7] is
at most X (Eg) + &(Eog) + 3N;. Since N, is almost surely finite, we conclude that the number
of jumps alsois. [l

We also have the following important consequence concerning the processes (X;) and (&;)
defined in (3).

COROLLARY 2.3. Forany A >0,v>0,T >0, and k > 1, there exists ¢ > 0 such that
the herds process (E;);>0 with parameters A, v and arbitrary (deterministic) initial configu-
ration & satisfies

E[ max (X))*|8o=£] <X (©)F

0<t<T

and

E[OlgtaixT(@)k]Eo =£|<e(x®+6®)".

PROOF. Again, let N; denote the number of births in the herds process until time . Note
that
(5) max X; < Xo+ Nr and max & <&y+ Nr;

O<t<T 0<t<T

to justify the latter, we observe that deaths and splits can only decrease &;, while a birth can
increase &; by at most one.

Let (Z;);>0 be the pure-birth chain of Lemma 2.1, started with Zp = X¢o. By that
lemma, (Z; — Zo);>0 stochastically dominates (N;);>0. Then

B[ max (X020 = ] < B[(Xo + N1 20 = ] <E[Z).

where the last expectation is with respect to the probability measure under which (Z;) is
defined (note that Zy = X is fixed and deterministic). Next, the law of Z7 is equal to the
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law of ZZZZO | g}i ), where ({,(1)), cee ({,(ZO)) are independent pure-birth processes with rates as
in (4), each started with a population of one. Using Minkowski’s inequality,

Zo
1/k iNk71/k
E[z5]"" < 3 E[() 1" = cXo.
i=1
where ¢ := E[({}l))k]l/k, which by [1], Corollary 1, page 111, is finite and only depends

on A, k and T'. This completes the proof of the first bound. For the second one, we start using
the second bound in (5),

E| max (6)"80 =& | <E[(& + N1)|80 = §] <E[(& + Zr — Z0)'1Z0 = Xo].
and then complete the proof as in the previous case. [

We now present three properties of the herds process (in Lemmas 2.4, 2.5, and 2.6 below).
In all three cases, the proof is elementary and omitted.

LEMMA 2.4 (Invariance under tree automorphisms). Let ¥ : T¢ — T¢ be a graph auto-
morphism. Fix A € Pi(T?), and let (E)i=0 and (E});>0 be herds processes started from 85
and 8y (), respectively. Then the process

> EiA) Sy, t=0
AeP(T9)
has the same distribution as (E});>0. In particular, the processes (X (E;));>0 and (X (8}));>0

have the same distribution.

LEMMA 2.5 (Decomposition into independent processes). Let & € & with enumera-
tion § =31 84, where Ay, ..., A, € Pf(Td). Then the herds process, started from &, has

the same distribution as (Efl) 4+ + 85”))@, where (E;l))tzo, e (E;”))tzo are indepen-
dent herds processes, started from 64, ..., 84, , respectively.

Before stating the third property, we define a partial order on S.

DEFINITION 2.5. Given two herd configurations & and &', we write § < &’ if there exist
enumerations

m n
E=) 84, &= 0u
i=1 j=1

such thatm <n and A; C A}, fori=1,...,m.

LEMMA 2.6 (Attractiveness). If & < &', then (E;)>0, started from &, is stochastically
dominated (with respect to <) by (E});>0 started from §'.

We now give a definition pertaining to extinction vs. survival of the herds process and
introduce the value A(v) that appears in the statements of our main theorems.

DEFINITION 2.6. We say that the herds process survives if the event {d_ 4 E,(A) > 0 Vt}
occurs, that is, the process always has particles; otherwise, we say that the process dies out.
For any v > 0, we define A(v) as the supremum of the values of A for which the process with
parameters A and v dies out with probability 1.



760 B. SCHAPIRA AND D. VALESIN

It is easy to see that A(v) > 1/d. Indeed, when A < 1/d, the rate at which existing parti-
cles die always exceeds the rate at which new particles are born, so the process eventually
reaches the empty configuration. A moment’s thought, using, for instance, a comparison with
a branching process, shows that (V) < o0.

REMARK 2.3. The critical value A(0) is just the critical rate separating between the ex-
tinction and the (global) survival regimes on the (static) infinite d-regular tree. It is known

that d - A(0) d_)—oo> 1 (see [24], p. 135, (5.4)). We can then also conclude that, for any v > 0,

we have d - X(_v) L 1, by combining the bound A(v) > 1/d mentioned above with the
bound A(v) < A(0), which was already given in [12], Theorem 3.

2.2. Submultiplicativity of number of particles. The goal of this section is to prove the
following inequality. Recall that X; denotes the number of particles in the herds process at
time . Also, recall that, whenever the initial condition of the herds process is omitted (say,
as in the expectation in the right-hand side of (6) below), it is equal to §{,).

PROPOSITION 2.7. Foranyt>0,p>1and & €S, we have
(6) E[X[ |20 =£€] < X(§)” - E[X[].
Consequently, forany t,s >0, p > 1and £ € S, we have
(7) E[X/ |80 =&] <E[X!|Eo=¢] E[X/].

This proposition will be a consequence of the following lemma.

LEMMA 2.8. Let A, B € Pi(T%) be disjoint and p > 1. Then

E[X! |80 =8aup)"” <E[X[ |80 =84]""" +E[X]|E = 55]"'".
We postpone the proof of this lemma and, for now, show how it implies the proposition.

PROOF OF PROPOSITION 2.7.  We claim that, forany p > 1, A € Pf(Td ),and t >0,
(8) E[X]|80=064]"" <|Al-E[x]]"".

We prove this by induction on |A|. For |A| = 1, the above holds with an equality by
Lemma 2.4. For the induction step, we assume that |A| > 2, take u € A and bound, using
Lemma 2.8, Lemma 2.4, and the induction hypothesis,

E[X/|Z0 = 8a]""" <E[X/|E0=8mu]"" +E[X/ 180 =61]"”
< (|A\G))) - E[XP1VP + E[xF]?
= |A|-E[x7]"/7.

Now, take £ € S with enumeration £ = )"/ | 84,. Let ("‘(1)) (E,(m)) be independent
herds processes, started from 64,, ..., da,,, respectively. By Lemma 2.5 we have

g x|
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Minkowski’s inequality gives

o )] g

By (8) the right-hand side is smaller than

m

1Al -E[x1V7 = x @) - E[x]]'7.

i=1
We have thus proved (6). To prove (7), we use the Markov property. Let s, >0 and £ € S;
we have

E[X!\|Bo=&]= Y E[X! B =¢&] -P(E;=¢&|Eo=¢)
£'eS
<> X(E)-E[X]]-P(E,=¢&|Eg=§)
E'eS
=E[X?|Ey=&]-E[X]]. O

To prove Lemma 2.8, we will define an auxiliary process, which informally describes two
herds processes that evolve almost independently, except that they share the same splitting
events. We start by defining the state space of this process.

DEFINITION 2.7. Let
P2(T?) :={(A,B): A, B C T, AU B finite and nonempty}

and

Sy:=1&: Pa(T9) — No with Y E(A, B) < oo}.
(A,B)

We interpret an element (A, B) € Pf’z(Td ) as a two-type herd, that is, there are two species
of particles, one of which occupies A and the other B. We emphasize that A and B need not
be disjoint, and one of them, but not both, can be empty. We will also need some projection
functions from S; to S.

DEFINITION 2.8.  We define 7, 7, 2 : Sp — S by setting, for &’ =37 | §(a, B,):

7@ =Y daup, mE= Y 8., mE= )Y .

i=1 i1A#D i:Bi#0
This definition is illustrated in Figure 1.

DEFINITION 2.9. The two-type herds process (E,);zo (with rates A and v) is a
continuous-time Markov chain on S, with transitions described as follows. At any time ¢ > 0,
and for any (A, B) with E,(A, B) > 1, both A and B are subject, independently of each other,
to death and birth mechanisms, as in the original herds process (in particular, if either of them
is empty, it stays empty). However, they are subject together to the same splitting events: an
edge e is said to be active if (AU B),.1 # & and (AU B), 2 # @. Then a split occurs at any
active edge e with rate v, and when this happens, (A, B) is split into the two pairs (A¢,1, Be,1)
and (A¢ 2, B.2). Incase A=, welet A, | = A, » = & and similarly for B).
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FI1G. 1. A two-type herds configuration £ is depicted on top, with the two types represented in blue and red (it
is assumed that in the four herds of this configuration, no particle is present other than the ones depicted). The
projections 7w (£€), w1 (&) and 7o (&) are shown in the second, third, and fourth rows, respectively.

We record two observations about the two-type herds process in the following lemma. The
proof is done by comparing jump rates, and we omit it.

LEMMA 2.9. Let (A, B) € P(T%) x P(T%), and let (E)IZO be the two-type herds process
started from 84 py:

(a) The processes (71 (ﬁ =0 and (712(§ 1))=0 are herds processes started from 4
and §p, respectively.

(b) The herds process started from & aup is stochastically dominated (in the sense of the
partial order <) by (JT(EI));Z().

PROOF OF LEMMA 2.8. Fix p > 1 and disjoint sets A, B € Pf(Td). Let (ﬁt)tz()Ndenote
a two-type herds process started from (4, p), defined under a probability measure P (with
expectation operator [£). By Lemma 2.9(b) and the fact that X (-) is monotone with respect to
the partial order <, we have

E[X? |80 = 8aun] < E[X(n(E))"].
Next, noting that X(T[(E;)) < X(m (é,)) + X(nz(ét)), we have
E[X (7(E))"] < E[(X (m1(ED) + X (m2(ED)"].

Putting these inequalities together (raised to the power 1/p) and using Minkowski’s inequal-
ity, we obtain

E[X! |80 =8aus]"" < E[X(m1(E)"]"" + E[X (r2(E0)"]".
By Lemma 2.9(a) the right-hand side equals
E[X/180=064]"" + E[X] |8 =55]"".
This completes the proof. [
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REMARK 2.4. It is worth mentioning a curious fact here, which is the main reason for
introducing the two-type herds process. Let A, B € P{(T%) be disjoint. Then a natural guess
would be that the number of particles in the herds process starting from §4 + §p should
stochastically dominate the number of particles in the process starting from 54y, since in
the former case there is a priori more space for the particles to spread. However, there seems
to be no simple proof of this fact, and it is not even clear whether it should be true or not. In
a natural choice of coupling, one would try to map particles of the process started from §4up
injectively into particles of the process started from 64 + §p, and make it so that, when a
particle of the former process dies or gives birth, its image under the injective mapping does
the same. However, this does not work. For instance, when starting from 84y p, it could be
that at a later time, a single split would separate more particles than in the process starting
from 84 + 8p, which in turn could, after another birth event, give rise to a larger number of
particles in the process starting from §4up.

REMARK 2.5. The notion of two-type herds process can, of course, be generalized to a
multitype herds process. Given any integer k > 1, the k-type herds process is the continuous-
time Markov chain on

Sy = {%‘:Pf,k(Td)%No, with Z ‘S;“(Al,...,Ak)<OO},
(At Ag)

where

k
Pf’k(Td) ::{(A],...,Ak)ZA],...,AkCTd, UAJ-;ﬁ@}
j=1

and where, like in the two-type herds process, every type obeys birth and death mechanisms,
as in the original herds process, ignoring the other types, but they all share the same splitting
events. Naturally, an analogue of Lemma 2.9 holds as well in this general setting. This remark
will be used in the proof of Lemma 3.17 below.

3. Analysis of the herds process through a growth index.

3.1. Definition and properties of growth index. We start by stating and proving a conti-
nuity result that will be useful throughout this section.

LEMMA 3.1. Foranyt >0, (A,v) —= E, v[X;] is continuous.

PROOF. Fix ¢ > 0. We start with a truncation. Assume that the herds process (Eg)s>0
starts from §{,}, and let K; denote the number of jumps performed by the process until time ¢.
Note that K; equals the number of births (denoted N;) plus the number of deaths plus the
number of splits until time 7. The number of deaths is at most N; + 1, and the number of
splits is at most N;. This gives the bound K; < 3N; + 1. We then bound

Eyv[X: - {K; > n}] <Epy[(1 4+ Np) - L{K; > n}] <E o[(1+ Np) - L{N; > (n — 1)/3}].

Using the stochastic domination by a pure-birth process given by Lemma 2.1, the right-hand
side tends to zero as n — oo, and this convergence is uniform over (v, A) in sets of the
form [0, co) x [0, Ag], for any A9 > 0. Hence, for any A9 > 0,

(100 Euu[X;-1{K, <n}] == E, [X,] uniformly over (v, 2) € [0, 00) x [0, Ao].
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Next, write

Exv[Xi - K, =n}]= > m-Pry(X;=m, K, =n).

m<n-+1

Note that (A, v) — P, v(X; =m, K; = n) is continuous for any m, n, due to the fact that the
jump rates of the herds process depend continuously on A and v, and there are only finitely
many possible trajectories involving »n jumps. This implies that

(11) (A, v) > E, y[X;-1{K; <n}] is continuous.

The desired continuity statement now follows from (10) and (11). U

For any p > 1, define the growth index of order p as
(12) 0p=pp(v) = Inf B [X]'".

In case p = 1, we omit the subscript so that

@ i=q.
Note that we have
(13) ¢, <E[X/], t=0,p=1.
Moreover, (7) implies that
(14) E[X/ ] <E[X!]-E[XP], t,5s>0,p>1,
and Fekete’s lemma then ensures that
(15) lim E[X/]"" =g, p=z1.
It will also be useful to observe that
(16) [1,00)> pH— (p,l/p is nondecreasing.

To see this, let p > g > 1. We bound, for any ¢ > 0,
E[X/]=E[(x{)""] = E[x{]""
by Jensen’s inequality. Hence,
(B[X/]/")" = (B[x{]/).

By taking t — oo and using (15), we obtain (p}/ P> w;/ . as desired.

For the rest of this section, we focus on the growth index with p = 1. We will analyse
higher values of p in Section 3.4.

We state a lemma with an upper bound that, apart from a constant prefactor, matches (13)
in the case p = 1.

LEMMA 3.2. There is a constant C = C(A,v) > 0, depending continuously on X and v,
such that, for any t > 0,
(17) E[X,1<C-¢.

Before proving this, we state and prove an auxiliary result, concerning the expected num-
ber of herds containing a single particle, after one time unit of the dynamics has elapsed.
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LEMMA 3.3. There is a constant p = p(A, V) > 0, depending continuously on X and v,
such that, for any § € S, we have

(18) B ¥ mwizi=¢]zoxe.

A:Al=1

PROOF. By Lemma 2.5 and the linearity of expectation, it suffices to show that there
exists p > 0 (satisfying the stated continuity property) such that, for any A € Py(T¢),

E| Y @i(4)iE=b4]zp- 1AL
Al A =1
To prove this, fix A € P;(T%), and note that the left-hand side above is larger than

Y E[E1({u})|Bo=684] = Y _ P(E1({u}) > 0|E0 =84).

UeA UEA

It is easy to see that there is a constant p > 0, depending continuously only on A and v, such
that the probability in the sum in the right-hand side is larger than p (for any A and u). This
is achieved by prescribing that the particle present at u# at time 0 does not die or give birth
until time 1, and moreover, this particle becomes separated through successive splits in the
edges that are incident to u, of any other particle in its herd. This shows that the right-hand
side above is larger than p|A|, completing the proof. [

PROOF OF LEMMA 3.2. For any s, ¢t > 0, we have

E[X/ | F]1=) Es(A)-E[X;[Eo=5a]= Y. &(A) E[X,],
A A:lAl=1

where the equality follows from Lemma 2.5 and the Markov property and the inequality from
Lemma 2.4. Then by taking expectations, we obtain that
E[X, 4] > E[ ) &(A)] ELX,].
A:lAl=1

In case s > 1, by Lemma 3.3 and the Markov property, the right-hand side is larger than

p-ElXs—1]-E[X/].
Further, by Proposition 2.7, letting « := 1/E[X], the above is larger than

«p - E[X,]-E[X/]

(note that « is strictly positive and depends continuously on A and v by Lemma 3.1).
Using this recursively, we obtain, for any # > 0 and n € N,

E[Xu 1> (kp)" ! - E[X,]"

so that

E[X,] < (cp)"7 - E[Xult = (0p) "7 - (E[Xpe]?

=

)l
Using (15), we obtain

.. -l 1
E[X,] < l}lrggéf((/cp) . (E[Xm]m)’) —C-¢,

. 1 .
with C = %5 proving the lemma. [
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COROLLARY 3.4. The function (A, V) — @(X, V) is continuous.

PROOF. Putting together (13) and (17), we have, for any ¢ > 0,
COv) By W XY <o, v) < By y[X1Y1
Then for any ¢ > 0, using the continuity of (A, v) = C(X,v) and of (A, Vv) — E; y[X/],

CONVEuXAV = lim [C(/ V)TV By [XY]
’ RN RY) ’

< liminf ¢@(A/,v)< limsup ¢(1,V)
W V)—>A,v) W V)= (V)

< lim Ey (XY =K, (X"
A V)= (A,v)
Noting now that
lim (CO.,v) "By y[X1Y) = Tim By o[X 1Y =9, ),
—0o0 =00

the proof of continuity is complete. [

We now obtain the following simple characterization of the supercritical regime. Recall
the definition of A(v) from Definition 2.6.

LEMMA 3.5. Forany A > 0 and v > 0, the following are equivalent:

(a) The herds process survives with positive probability;
(b) ¢>1;
©) E[X,] == .

Consequently, for any v > 0,

(19) (A (v),v) = 1.

PROOF. The fact that (b) and (c) are equivalent follows from the fact that, for any ¢ > 0,
¢' <E[X;]<C¢".

Now, if (a) holds, then we must also have X, %% 5o with positive probability, as other-
wise, using the conditional Borel-Cantelli Lemma and a standard argument, we would get a
contradiction. Then (c¢) follows from Fatou’s Lemma.

Conversely, assume that (c) holds. Let Z; := > _ 4. 4|=1 E:(A) denote the number of herds
in E; with a single particle in them. By Lemma 3.3 we have E[Z; 1] > p - E[X;]. It follows
that there exists some 7 > 0 such that E[Z7] > 2. Since different herds evolve independently
of each other, we deduce that (Z,7),>0 dominates a supercritical branching process and,
therefore, survives forever with positive probability. Since it is dominated by (X, 7)n>0, We
get that (a) is satisfied.

Having established the equivalence between (a) and (b), the equality (19) follows from the
continuity of ¢. [

3.2. Strict monotonicity of growth index. Our goal in this section is to prove the following
result.

PROPOSITION 3.6.  The map (A, V) — @(X\, V) is strictly increasing in both arguments.

Before discussing the proof of this, let us see how it allows us to prove Theorem 1.3.
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PROOF OF THEOREM 1.3. LetV > v > 0. We have

P(A(V).V)=1=9(LV),v) < p(A(v),V),

where the two equalities are given by (19) and the inequality by the strict monotonicity
of ¢. Again, using the strict monotonicity of ¢, we conclude from @(A(V'), V') < p(A(v), V')
that A(V) < A(v). O

The proof of Proposition 3.6 will require several steps. We start with a definition.

DEFINITION 3.1.  Fix the parameters v and X of the herds process. Given £ € S and t > 0,
we let

20) g 0= D &A Y (Ewv[X/|Bo=06a,, +da.,] —Exv[X;|E0=384l),

AR gaete,

and

Q) hE =), A Y (EaulXi|Bo=38aupy] — Eav[Xi|Eo = 84l)
AePy(T9) xeﬁﬂf‘*’

(we omit A from the notation for g,, and we omit v from the notation for ;).

The functions gy and &, give a measure of the total impact on the number of particles at
time ¢ of splitting the herds of £ at time zero and having a birth at time zero, respectively.

PROPOSITION 3.7. Forany T > 0, we have

8 T

(22) OB, J[Xr]= / E; J[g(Er, T — )] dt
ov 0

and
] T

(23) By Xr] = /0 By o[hn (80, T — 0] dr.

The proof is postponed to Section 3.3, and we now prove another intermediate result.

LEMMA 3.8. Let &' consist of a single herd with exactly two particles, which are neigh-
bors, and &" consist of two herds, each containing a single particle. Then there exists y > 0
(depending continuously on A and v) such that, for any t > 1,

E[X:|80=¢&"] = E[X/|Eo =¢&'] + ¥ - E[X/|X0 = 8{0})-

PROOF. Fix v ~ o. Without loss of generality, we assume that &’ consists of the
herd {o, v} and &” consists of the herds {o} and {v}. We define a coupling of the two herds
processes (E}) and (E)) starting, respectively, from &’ and £”: first, we take independent
random variables, as follows:

7, and T, both ~ Exp(1);

for each u ~ o0, 7, , ~ Exp(});
for each u ~ v, 7, , ~ Exp(X);
Tsplit ™~ Exp(v).
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Additionally, let " denote the minimum of all these random variables, and t := min(1, ’).
Now, the coupling is defined as follows. In all cases we let (2, E)) = (&', &") for s € [0, 7);
the definition of (Z, E”) will be split into several cases, but after time 7, we let E' and E”
continue evolving independently as two herds processes with split rate v. The definition of

=/

E7, BY) is as follows: if t =1 < 7/, then (E, EY) = (§', §”). Otherwise:

o If t =1, then 8, = E] = similarly ift =1, then 87 =87 =)

° Ifforsomeu~o, r_royu,then B, =8{o,u,v) and E _S{OM}—I—S
e If for some u ~ v, T = 1y 4, then E/T = 8{o,u,v} and B u =8{o} + S{u,v
o If T = 74, then B =B =080} + Su)-
We let P denote a probability measure under which this coupling is defined and E be the
associated expectation operator. Also, let (F;);>0 denote the natural filtration of (E}, E/);>0.
Fix t > 1. Using Lemma 2.5 and 2.8 and inspecting all cases concerning t, it is easy to
check that

(24) E[X(&/)IF:] = E[X (E})I F].

Deﬁne the good event E := {t = 7,,} U {t = 15,0}, and note that, on this event, E7 con-
tains E plus an additional herd with a single particle in it. Hence,
(25) E[X(E))|F;]-1g = (E[X(E))|F:]+ F(t — 1)) - 1p,

where F(s) :=E[X|Ep = §{0}].
We now write

E[X,|80 =¢"] = BX(&))] = E[B[X (&)1 7] - 1¢ + B[X(E])I 7] - L]
and using (24) and (25), we bound the right-hand side from below by
BB[X(E)IF] + F( - ) - 1g + B[X(2))1F:] - 1]
E[X(2))] +B[F( —1)-1¢]
> E[X,|E0 =¢'] + P(E) -t_r{lsi?g F(s).

v

Using (7), we have that F(s) - F(t —s) > F(¢) for any s € [t — 1, t], which gives

. . _]
min  F(s) > F(t) - (013121 F(r))

t—1<s<t

The lemma is thus proved with y := @(E) - (minp<s< Fry~ ' O

PROOF OF PROPOSITION 3.6. We only prove the strict monotonicity in v; the argument
for the strict monotonicity in A is entirely similar. We start with some basic observations.
Let X ; denote the number of herds in the herds process at time ¢, which contain exactly two
particles, these particles being neighbors. We claim that

(26) E[X;]>c-E[X,—i] foranys>1,

with ¢ some positive constant depending continuously on v. To see this, recall that if we de-
note by Z; the number of herds of E; that contain a single particle, then (as in the proof of
Lemma 3.3) one has E[Z;_1,2] > ¢ - E[X,_1], for some constant ¢; > 0, depending contin-
uously on v. Since in any half unit of time a herd with a single particle can be transformed in
a herd with two neighboring particles, at a constant price (depending continuously on v), this
gives the claim (26).
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Recalling the definition of g, in Definition 3.1, by Lemma 2.8 applied with p = 1 and
Lemma 3.8, we have

gv(Bs,t—s5)>y- X; -E[X,—].

Together with Proposition 3.7 and (26), this gives, for any v > 0 and any ¢ > 1, with F (v, t) =
EV[XI ] s

oF !
Sz ey [(BIX ] ElX]ds
Applying then Proposition 2.7 gives, for t > 2,
oF ,
—W,t)=>c -t-F(v,t),
av

where ¢’ > 0 depends continuously on v (noting that F (v, — 1) > F(v, t)/F(v, 1) by Propo-
sition 2.7 again). This implies that, for any fixed 0 < v| < v»,
F(v2,1)
og—=—"=>p-t-(v2 —Vq),
T (v2 — V1)
for some p > 0. Thus, by taking the limit as t — oo and using (15), we get

@(vi, 1) <e P27V L g(vy, ). O

3.3. Proof of derivative formulas. We now turn to establishing (22) and (23). The proofs
are entirely analogous, so we only do the former. A few of the more technical points of the
proof are done in the Appendix.

Recall the definition of the function g, (&, ¢) in (20). We now define the closely related
function,

gueE )= Y EA) Y. (BavselXi|B0=04,, +da4,,]

d e active
(27) AeR(T?) edge of A

— Exv[X:180 = 64),

where v > 0 and ¢ > 0. Note that the expression for gy . only differs from that for g, in that, in
the former, the first expectation that appears in the right-hand side is under parameters A, v+ ¢
rather than A, v.

The following integrability result will be useful. The proof is done in the Appendix.

LEMMA 3.9. Forany T > 0and k > 1, we have

- k — k
EA,V[OréltafxT|gv(a,, T —1) ] <00 and EA’V[OI;I;EXTBV’S(GZ’ T —1) ] < 00.

The following definition will give an alternative expression for g, and gy . in (28) and (29)
below.

DEFINITION 3.2. Given & € S, let G(&) denote the set of all herd configurations &’ that
can be obtained by performing a single split on &. Given &’ € G(&), let A be the (unique) herd
shape that is split into two to obtain & from &; let m(&, &’) := &(A).

To further clarify this definition, fix an enumeration § =)_7* | 84, of &. Then G (&) is the
set of £’ € S with

§'= ZSAi + S(Aj)e,l + S(Aj)e,Z’
i#]



770 B. SCHAPIRA AND D. VALESIN

where j € {I,...,m} and e is an active edge of A;. For &', as in the above display, we
have m(§,&") =&(A)).

We now observe that, using Lemma 2.5, we can rewrite

(28) g D= Y mE &) (B [Xi|Bo=¢]—Erv[X,|E0=£])
£'eG(§)

and

(29) gueE D= Y mE &) (Brvre[Xi|Bo=£"]—Epv[ X180 = &)).
£'eG(§)

Fix v> 0, A > 0 and ¢ > 0. We will now construct a coupling (V;, W;);>0 under a prob-
ability measure P (with dependence on v, A, ¢ omitted) so that (V%) is a herds process with
parameters A, v, and (WV;) is a herds process with parameters A, v+ ¢; both of these processes
are started from a single herd with a single particle (at the root of T%).

DEFINITION 3.3 (Coupling (V;, W;)). Take a probability space with probability mea-
sure PP under which a herds process (V;);>0 with parameters A, v is defined, started from §y,.
Assume that the split jumps of (V;) are given as follows: splitting instructions arise with
rate v + ¢ (rather than v), but they are rejected with probability % Let

Tsep := Inf{r > 0 : a splitting instruction is rejected at time 7}.

We define (WV;);>0 as follows. For 0 <1 < tgep, we set W, = V. At time Tgep, this process
obeys the splitting instruction that was rejected by (V;). We then let (Wt)tzrsep continue
evolving from Wrsep as a herds process with parameters A, v + ¢, independent of (1) 1> Tep-
Finally, we let

X=X, Vi=XWy), t>0.
For the rest of this section, we fix 7 > 0.

DEFINITION 3.4. We define the process (A;)o<;<7 as

Ap =1z <1} -E[Vr — X7 Fy, ], 0<t1<T.

That is, in the event {zsp, > T'}, we have A; = 0, whereas in {zsep < T'}, this process takes
just two values: A, =0 for ¢ € [0, 7gep) and A, = E[YVr — Xﬂ]—}sep] for 7 € [Tsep, T']. Our
interest in this process stems from the fact that

Ep vielX7] = By y[X7] = B[Vr — A7)
(30) =E[r — A7) L{zsep < T}]
=E[E[(Vr — X71)|Fry,] - Ursep < T} =E[Ar].
We now compute the right derivative with respect to time of the conditional expectation of A;.
This lemma is where the function gy . enters the picture.

LEMMA 3.10. Foranyt €[0,T), on the event {Tsp > t}, we have

d~
(3D d_E[At—l-sl]:t] =¢-gveWVr, T —1).
) s=0+
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PROOF. We abbreviate (29) by writing
gue€. )= ) m(E.&) BE.E.s),
§'eg(®)

where

,3(5,5/,5) = EA,V+£[XS|EO :%'/] _EA,V[XS|EO = S]s 5 € S’Sl € g(é)’s > 0.

Fix s >0 sothat t +s <7, and fix § € S. Let N;;4+ denote the number of jumps
of (Vr, Wr)t<r<t+s- On the event {75 > 1, E; =&}, we have

ElA; 15| Fi] — BLANF) = Bl A | F = B[ Ay - 1{Ny s = DF ]+ 0(s),

where the o(s) term (which, of course, refers to when s — 0) comes from events where there
are multiple jumps in (z, t 4+ s]. The conditional expectation on the right-hand side equals

3 B[y 1{Npgs = 1, Tiep € (8,1 + 5], Wey, =€} F7]
&'eG(é)

Z E[ﬁ(é‘-» 5/’ T — Tsep) : ]l{Nt,t+s = 1’ Tsep € (f, t +S], Wrsep = ij/}|f}]
§'eg®)
For each &' € G(&), let E(&') be the event that:
® Tyep € (1,1 +5],

o the first jump of (V;, W, )r<r<s+s 1s the one that occurs at time Tgep, and
° Wtsep =&

Note that {N; ;15 =1, Tsep € (£, 1 + 5], W, = &'} C E(&'), and in fact, the two events only
differ because E (£') allows for more jumps between typ and 7 +s. We have thus proved that,
on the event {tsep > 1, B, =&},

El A4 F1—ElAIFTI= > E[lpe) - BE.E. T — tsep) | Fr] + 0(s).
£'eG(®)
The above sum equals

Y BE.E.T—1) PEE)F)
£'eG(§)

+ Z E[ILE(S,) : (IB(E’ g/v T - Tsep) - ﬁ(éj—? 5/7 T - t))IE]
§'eG(8)
We will treat the two sums separately. The absolute value of the second sum is bounded by

(s B8 T —u) - BT -0)])- Y BEE)IF).
§'eG(&),ue(t,t+s] §'eG(&)

(32)

As s — 0, the supremum tends to zero, and the sum is O(s), since P(zsep € (¢, + s]|F7) =
O(s), so the whole expression is o(s).
We now turn to the first sum in (32). As s — 0, we have

B(EE)IF) = (v+e)- ——-m(E.8) s +o(s) =es - m(E.£) +0(s).
so the sum equals
es Z BEE.T—1)+o(s)=es-gue€, T —1)+0(s).
&'eG(é)



772 B. SCHAPIRA AND D. VALESIN

We have thus proved that
Wtsep > 1) - (BLA 45171 — BLANFD) = Uraep > 1} - (5 - gv.c Vi, T — 1) + 0(s)),
so (31) follows. [

Next, we obtain the expression for the derivative with respect to time of the (noncondi-
tional) expectation of A;.

LEMMA 3.11. Fort €[0,T), we have

d ~
(33) EE[At] =¢ .]E[]l{‘l,'sep >1}-gueOV, T — t)]

The first step in establishing this lemma is noting that, for0 <t <t +s < T,
E[A 5] — E[A/] mAﬂmq
s 9

N

=E[]1{rsep >t}-

since A;4s = A; on {Tsep < 1}, and A; =0 on {7sp > t}. We would now like to take s to zero
(from the right only, at least at first) and use Lemma 3.10, but we need to exchange the limit
and the expectation; formally,

I{7gep > 1} - Tlim

ﬂAMﬂq_ﬂ E&Mﬁq
S - —0+ S '

(34) lim I’E[n{rsep >t}
s—0+

The justification of this exchange is done with a standard dominated convergence argument,
but an additional bound is required, so we postpone the full proof of Lemma 3.11 to the
Appendix.

PROOF OF (22). Fix ¢ > 0. Using (30) and Lemma 3.11, we have

E X7]—-E,v[X T __
avrel T]g avl T]:/O E[1{rsep > 1} - gv.e Vi, T —1)] dr.

By Fubini’s theorem (which we can use since we have the integrability condition given in
Lemma 3.9), the right-hand side above equals

R Tsep AT
E[/ gvvg(V[,T_t)dt}.
0

We write this as

T
E[[ sV, T —1) dt}
(35) .

I rT R
+E|:/(; (gv,e(vt, T—t)—gWV, T — l‘)) dt] — E|:/

sep/\T

eV, T — t)dt]
Note that, since the law of ();) under P equals the law of (E;) under PP, y, we have

~rT T
E[/ gv(Vt7T_t)dt:|:E)\,v|:/ gv(Et»T_t)dt]
0 0

Hence, the proof will be completed once we prove that the second and third expectations
in (35) tend to zero as € — 0.
It is straightforward to show that, for any £ € § and any ¢ € [0, T'],

gve(&,1) io) gv(&, ).
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Combining this with the dominated convergence theorem (using Lemma 3.9), we obtain

-~

T e—>0
E[]O (gv,s(vt» T—1)— gv(Vt, T — l)) dt:| — 0.

Next, using the Cauchy—Schwarz inequality, we bound

R T
B[ eont-nal

sep/\

~ NT1/2 ~ 12
<7 -B[(max [see 0. T =0 ) [Pl < )7
The expectation on the right-hand side is finite by Lemma 3.9, and it is straightforward to

check that @(fsep <T) 20 0. This completes the proof. [J

3.4. Analysis of higher moments. Throughout this section we fix A and v with A < A(v)
(recalling the definition of A(v) in Definition 2.6).

We now analyse the growth index ¢, for p possibly larger than 1. Our main goal is to
prove the following.

PROPOSITION 3.12.  If A < A(V), then for every p > 1, we have

(36) pp <1

and

(37) supE[X!] < oo.
t>0

Note that the case p = 1 has already been proved: the fact that ¢ < 1 when A < A(v) is
given by (19) and Proposition 3.6, and then (37) follows from ¢ < 1 and (17).

In order to prove Proposition 3.12, we shall need an intermediate result, which we now
state.

LEMMA 3.13.  Let p > 2. There exists &€, > 0 (depending on A, v and p) such that, for
any s > 48 p*log(2d) v,

E[ > ES<A)-|A|P]set,,-(E[xs/z]wS).
AePf(Td)

The proof of this lemma is quite involved, and we postpone it to the next section. We now
show how to obtain Proposition 3.12 from it.

PROOF OF PROPOSITION 3.12. Fix A < A(v). Note that (37) follows readily from (36)
and (15), so we only need to prove (36).

By (16) it suffices to prove that ¢, < 1 for all p € N, and the case p =1 is already
done. We proceed by induction, fixing p € {2,3, ...} and assuming that ¢, < 1 for all g €
{,...,p—1}.

We first claim that there exist C, ¢ > 0 (which may depend on p, A, v), such that, for
allt >0and & € S,

(38) E[Xﬂao:ﬂf( )3 s<A)-|A|P)-E[Xf’]+X<s>P-Ce—“.

AeP(T)
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This bound is a refinement of Proposition 2.7. While in the proof of that proposition we used
Minkowski’s inequality, here we expand the pth power of a sum in full and bound the various
terms that appear.

To prove (38), let t > 0 and & € S with enumeration & = ) 1" | 8Al.. By Lemma 2.5

(B1)s>0 started from Eo = £ has the same distribution as (_,§ ) + -+ :ﬁ’"))m, where
(:,1)),>o, e (B )),>0 are independent herds processes, with E;° = 64, for each i. In

particular,
p
B[X/|50 =] = [(yﬂ)”

p! ~(@@)\a;
= E _. ElX(E .
: al!”.am! ie{llj,m}: [ ( t ) ]
ar+-+am=p a;>0

By the fact that E(()) = 4, and Proposition 2.7, the right-hand side is smaller than

!
(39) > P T Al B

@y Gbam!
ay+---+am=p a;>0
We break this sum as
m
p! : ;
(40) E[X7]- > 1P+ Y, ——— [ 14%-E[X/].
‘ Cay!ean! . i
i=1 (ai,...,am): ie{l,...,m}:
aj+-+am=p, a;>0

alyee,m<p
Note that the first sum can be written as
E[X]- > &A)-1AlP.
AePi(T9)

Next, the induction hypothesis that ¢, < 1 for all @ € {1, ..., p — 1} together with (15) im-
ply that there exist C,c¢ > 0 (not depending on 7) such that E[X¢] < Ce™ for any a €

{1,..., p — 1}. Hence, the second sum in (40) is smaller than
!
> T arce
ayl---ay! .
ai,...,ameNyp: iefl,....m}:
ay+--+am=p, a; >0
[ RRTE am<p

By forgetting the last condition in the summation and increasing the value of C if necessary,
this is smaller than

!
—ct | b . 4 — —ct | p
Ce > e I '|Al| =Ce . X(&)P.
ai,...,am€Np: ie{l,....m}:
al+"'+am:p Lll'>0
We have thus proved (38).
Now, (38) and the Markov property imply that, for any s, ¢ > 0,
(41) E[X7] < E[Z E5(A) - |A|P} -E[X]]+E[XF]-Ce™“.
A

Using the bound of Lemma 3.13, increasing the constant C if necessary, for any s, ¢ large
enough, we then have

(42) E[X{}] < C{E[X}?] - E[X]]+¢° - E[X[] + E[X[]-e™}.
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‘We also bound
E[X3?)=E[X}? . 1{X, > 0}]
<E[(X33PH P, > 01/
<E[X2* . P(x, #0)'/* <E[X2]V* E[X,1"* < CE[xP]/* . /4,

where the first inequality is Holder’s, the second inequality follows from 1{X; # 0} < Xj,
and the third inequality follows from X % < X? and (17). We use this bound in (42), together
with the fact that ¢ < 1, to obtain

@3 B[] < CEXIPEX!] e +E[X]] e + E[x!] o)

for suitable choices of ¢, C.
Now, assume for a contradiction that ¢, > 1. In that case, by (13) we have E[X 1> 1 for
all » > 0, and from (43) we obtain, for large enough s, ¢ with s <7,
E[X[\] < CE[XF]-E[X[]-e™.
Using this recursively, we have that, for all sufficiently large s and all n € N,
E[X!]<C" E[XP]" e~

Taking both sides to the power % and letting n — oo (using (15)) gives

9, <CYs . E[XP]'* e

c

Now, letting s — 00 and again using (15) yields ¢, < ¢, - €, a contradiction. []

Before we turn to the proof of Lemma 3.13, we want to give a consequence of Propo-
sition 2.7, namely, Corollary 3.15 below, which will be useful in dealing with the contact
process on dynamic graphs. For ¢t > 0, we denote by N, the number of birth events in the
herds process up to time 7, as in Lemma 2.1. Also, let Ny := lim;— o0 N;.

LEMMA 3.14. Let p> 1. Foranyt €[0,00] and & € S, we have
E[N/80=§] = X ()" -E[N/].
Consequently, for any s € [0, 00) and t € [0, o0],
(44) E[(Ns4r — No)P] <E[XP]-E[N/].

PROOF. First, recall Remark 2.5, which, in particular, shows that one can dominate the
number of particles in a herds process starting from & by the total number of particles in a
multitype herds process with £ := X (§) types, starting from the configuration &’ where each
particle in £ represents a distinct type. For this auxiliary process, let N,(l) denote the number
of births of particles of type i by time ¢, fori € {1, ..., £}. Then

4

E[N? |80 =] < EKZ N}m)”} 5 (,.éE[( N,<">)P]1/P)p,

i=1
where we have used Minkowski’s inequality. Now, since each type evolves a usual herds

process, we have E[(N,(i))p 1 =E[N/] for every i, so the right-hand side above equals £7 -
E[N/], as required. [

COROLLARY 3.15. IfA < A(v), then E[NL] < oo forall p > 1.
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PrROOF. Fix p>1.Forany x > 1, lett, := IIngI -log x (note that ¢ < 1 since A < A(V),
by Lemma 3.5 and Proposition 3.6). Letting T denote the extinction time of the herds process,
we first bound

P(Neo > x) <P(r > 1) + P(N;, > x).

The first term on the right-hand side is easy to bound,

a17)
P(t > 1,) <E[X,] < Co™ =Cx~PTD,
Next, we bound

[t ]—1
P(N;, > x) < Z IP(N]H_] — N > i)
k=0 Ix
< Uxil E[(Nxs1 — No)PH
- k=0 (x/tx)p—H

< tf” Lx (Pt sup E[(Ny41 — N,)p"'l].

t>0
Now, the supremum on the right-hand side is finite by (37) and (44). We have thus proved
that P(Ns > x) < C(logx)?2x= (@D for some C > 0, which implies that N, has fi-
nite pth moment. [

3.5. Bound on moments of herd sizes: Proof of Lemma 3.13. 'We will need several pre-
liminary results, starting with the following.

LEMMA 3.16. For any a > 1 and p > 1, there exists Cy,, > 0 (depending on A, v, o
and p) such that the following holds. Fix u € T?\{o}, and let (u,),>0 be a two-type herds
process with rates A and v, started from a single herd containing a type-1 particle at the root
and a type-2 particle at u, that is, Zo= 8(0).{u}- Then, letting t, := 121log(a) /v, we have

~ p .
(45) E[( Z B, (A, B)- |B|> :| < Ca.p .~ dist(0.u)

(A,B):A+D

PrROOF. Fix A, v, and «, let ¢, := 12log() /v, and fix u as in the statement. For ¢ > 0,
let Y; denote the number of herds in E; that contain both types, that is,

Y= Y Ei(A B).

(A,B):
A+D,
B+0

It will be useful to note that

(46) s<t = {Y;=0}<C{Y,=0}

Noting that
~ P ~ p
( S E.(AB)- |B|) - ( S E.(AB)- |B|) 1Y, > 0}
(A,B):A#D (A,B):A#D
and using the Cauchy—Schwarz inequality, the left-hand side of (45) is smaller than

B 2p1/2
(X zaams) | e z)'”

(A,B):A#D
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Using domination by a pure-birth process, the first term in the product above can be bounded
by a finite constant that only depends on A, p, and o. We now show that P(Y;, > 1) is smaller
than Ca 24510 for some C > 0.

Fori e {1,2} and t > 0, let K,(’) denote the set of vertices of T¢ that have been occupied
by a type-i particle in some herd for some time s < ¢, that is,

K(l) {ve']I‘d:ES(A,B)>Of0rsomes§tand (A, B) withv € A},
K(z) {ver. Es(A, B) > 0 for some s <7 and (A, B) with v € B}.

We have that K M = {0}, K, @ ={u} and t = K; M and ¢ > K; @ are both nondecreasing

(with respect to set inclusion). Moreover, K t(l) and K,(Z) are connected subsets of T¢, since
they only grow by the inclusion of vertices neighboring vertices that are already present.
Also, note that, as long as these sets stay disjoint, there can be at most one herd containing
both types. In other words, letting

o :=inf{z : KVNnk® + o},

we have, for any 7 > 0,

47 {o >t} C{Y; <1forall s <t}.
Next, let
£ =dist(o, u),
and let 0 = ug ~ uj ~ ...~ ug = u be the vertices of T¢ in the geodesic from o to u. Let
u' t=u3), o :=inf{t20:u/eK,(l)}
and
u” =23, o@ ::inf{tzO:u”eK,(z)}.

It is easy to see that
min(o(l), 0(2)) <o
Putting this together with (47), we obtain
(48) {Yy > 2 for some s <1y} C {0 <1y} C [min(c D, 0P) <1,},

so we can bound

P(Y, > 1) L Py, > 1forall 0 <s < 1)
(48)
(49) < PloV <1,) +P(c® <1,)
(50) +P(min(c D, 0P) > 1,, ¥y =1 for0 <5 <1,).

We now bound the three terms on the right-hand side separately.
Let us first consider the probability in (50). For any ¢, if min(cW,6@)>rand ¥, =1,
then a split in any of the edges
(e, upesz)e1ts {upesseis wpeszg2ts o5 {u2es3)—1, w2731}
separates the two types permanently, causing Y to drop to zero. This observation gives
P(min(c ", 0@) > 15, Yy =1for 0 <s <ty) <exp{—v-t, - (12¢/3] — [£/3])}
—2¢

’

<«

where the second inequality follows from the definition of 7.
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We now turn to the two probabilities in (49). We only bound the first one; by a sym-
metry argument, the same bound will then apply to the second. Let (W;);>0 be a growth
process on (No)Td defined as follows. We let Wy(o) = 1 and Wy(u) = 0 for u # o. We
interpret W;(v) = m as saying that there are m particles at v at time ¢. Then we define
the dynamics by prescribing that independently, for any v ~ w, a particle at v gives birth
at a particle at w with rate A (and particles never die). In particular, (3_, W;(v));>0 is a
pure-birth process in which the birth rate is dA. It is easy to see that the set-valued pro-
cess ({u € T : W, (u) > 0})+>0 stochastically dominates (K,(l)),zo, and in particular,

(51) P(oW <1,) <P(W,, («) > 0) < E[W,, (u)].
We now claim that, for any 7 > 0 and v € T¢,
(52) E[W, ()] =™ py(v),

where p;(v) := P(Z; = v), with (Z;);>0 the continuous-time random walk on T<, which
starts at the root at time zero and jumps from any vertex to any neighboring vertex with rate A.
This is a standard many-to-one formula; see [17], and see also [24], Proposition 1.21, page 40,
for a proof of an analogous inequality on Z¢. For completeness we include a brief proof. It is
simple to verify (52) using the observations that (¢, v) — E[W;(v)] is the solution to

d
ag(r, v)=A Z g(t,w), t>0,veT?

w~v

g(ov ) = 80(')7

and that the right-hand side of (52) solves this equation by direct computation.
Putting together (51) and (52), we have

P(oV <1,) <e®™ . p, (1) < e . P(Poi(dAty) > [£/3]),

where Poi(dAty) represents a random variable with the Poisson distribution with parame-
ter dit,, which is the law of the number of jumps of (Z;) until time #,. Since the tail
of the Poisson distribution is lighter than exponential, the right-hand side above is smaller
than Ca~2¢ for some C > 0, uniformly in £. This concludes the proof. [

LEMMA 3.17. Forany p > 1, there exists C;, > 0 (depending on A, v and p) such that the

following holds. Fix By < T\ {0}, and let (E,),Zo be a two-type herds process with rates A, v
started from Eo = (), B,. Also, let T, := 12plog(2d)/v. Then (uniformly over the choice
of Bo)

~ P
E[( > ETP(A,B)-(|A|+|B|)>]gcjv.

(A,B):A#D
PROOF. Let
R:i= Y Er,(AB)-(Al+IBl):
(A,B):A#Q

note that R is the total number of particles in ETP that belong to herds that contain type-1
particles.

We enumerate {0} U By = {uy, ..., U}, with u; =0 and m = |By| + 1. We now define a
multitype herds process, as described in Remark 2.5. This new process, denoted () >0, 18
taken in the same probability space that we have been considering, has rates A, v, and m types.
It starts with a single herd, with a type-1 particle at u| = o, a type-2 particle at us, ..., and a
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type m particle at u,,. In analogy with R, we let R’ denote the total number of particles in ﬁTp

that belong to herds that contain type-1 particles. That is, if we use an m-tuple (A1, ..., Ay)
to represent a multitype herd shape, then
R = > E7, (AL ..., Aw) - (IAL 4+ + | Am]).

(At Am):A1#D

Similarly as in Lemma 2.9, we see that R is stochastically dominated by R’; in particular,
IE[RP]I/P<E 1/p<Z]E 1/.0

where

=
s

|

R

7, (A1, Am) - 1A

~
~
—

Note that R| is just the total number of type-1 particles in E7,. If we ignore all types except

for type 1 in (Z;), we obtain a (one-type) herds process started from 8;,}; hence, E[(R})P]=
E[X ?p] < 00 by Corollary 2.3. Next, for j # 1, if we ignore all types except for types 1 and j

in (E,), we see a two-type herds process started from (o), (4;}, and Lemma 3.16 (with o =
(2d)?) and the definition of T}, imply that E[(R})?] < C(2d) ™7 #5:)) We then have

ZE 1/17 <E[Xp ]1/P+C1/P Z(zd)—dISt(O uj)
j=2

The second sum on the right-hand side is smaller than
o0
Z (Zd)—dist(o,u) < Zdl . (Zd)_l =1
uetTd i=1

We have thus proved that E[R”] < (E[X’T’p]l/l’ + C,l,/p)l’, so the proof is complete. [J

LEMMA 3.18. Let p > 1, and let C;; := max(C’ ,E[X;p]), where C; and T, are as in
Lemma 3.17. Then for any & € S, the herds process (B;);>0 with rates A, v satisfies

X
P(3A:|A| = x, Er,(A) > 0|Eg=£§) < C)) - x(f), x>0.

PROOF. By using Lemma 2.5 and a union bound, it suffices to prove that, for any Ag €
P(T),
. - — " |A0|
(583) IP(EIA.lA|Zx,an(A)>0|a0=8A0) C, PR x > 0.
X
We will prove this by induction on |Ag|. For the case where |Ag| = 1, we bound the left-hand
side above by

E[X7 ]

P(X7, = x|E0 =6(0) < 7

by Markov’s inequality.

Now, assume that |Ag| > 2, and let u € Ag. Let By := Ap\{u}. We consider a two-type
herds process (é,),zo with rates A, v started from 8y, p,. Using Lemma 2.9(b), the left-hand
side of (53) is smaller than

P(3(A, B) : 1Al + |B| = x, E7,(A, B) > 0).
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In turn, this is smaller than

(54) P(3(A, B): A#@,|A|+|B| > x, Er,(A, B) > 0)
(55) +P(3(A, B):|B| > x, Er, (A, B) > 0).

The probability in (54) is smaller than

/

C
IP’( 3 ETP(A,B)-(|A|+|B|)Zx)§x—Z

(A,B):A#D

by Markov’s inequality and Lemma 3.17. By Lemma 2.9(a) the probability in (55) can be
expressed using a one-type herds process; it equals

P(3B:|B| > x, Er,(B) > 0|E =08p,),

which is smaller than CZlBo|/xp by the induction hypothesis (since |Bg| = |Ag| — 1). We
have then proved that
Cp . CpllAo =1) _ CplAol

: = = P
IP’(EIA.|A|Zx,aTP(A)>O|a0:A0)§x—p+ p <= 0

PROOF OF LEMMA 3.13. Let ¢ = 4p?, and fix s > T, = 12¢log(2d)/v. Let E| be the

event that there is some herd at time s whose number of particles is larger than X o T , that is,

1
E\ := {there exists A € P(T’) with |A| = X ;. and E;(A) > 0}.
On E{ we bound

(56) > 84 |A|P<X1/2 3 ES(A)<X1/2 - X,
AeP(Td) AeP(T9)

On E; we bound

[1]

2

AePy(T9)

s(A) - JAIP < X7

These bounds give

(57) E[ 3 EA)- |A|P]<E[X X2 J+EX? - 1g].
AeP(T9)

We treat the two expectations on the right-hand side separately. For the first one, we start by
bounding

(58) E[X, - X, | =E[EIX,|F1,1- X,/ | <B[X}%. |- BlXz,),

where the inequality follows from (6) and the Markov property. We now claim that there
exists C > 0 (not depending on s) such that

(59) E[x}"%. ] < CE[x}/].

To see this, first note that each particle that is alive at time s — 7, will stay alive until time s
with probability p :=e~74. Then, defining the event

0
E2 = {X_g Z 5 : XS—Tq}v



CONTACT PROCESS ON DYNAMIC REGULAR GRAPHS 781

we have, for any m € N,
. J
P(EsFy_7,) - 1{X, 7, =m) > P(Bm(m, e E’")
(and in case m = 0, the left-hand side is trivially equal to 1). Hence,

P(EF,1,) = f = int P(Bin(m. p) = Sm) > 0.

Then
E[XS/Z] > E[X3/2 1g,] > g 'E[XS/ZT 1]
- g E[X], - P(EalFy1,)] > 2. B E[x Rey|

proving (59) with C := %. With (58) and (59) and putting together all the terms that do not
depend on s in a sufficiently large constant C, we have proved that

E[X, - X% ]<CE[X3/2]

We now turn to the second term on the right-hand side of (57). We first bound the condi-
tional expectation, given F;_7, , with Cauchy—Schwarz,

E[X? -1, |Fs—1,] < E[X2?|F_1,]'/ - P(EFo—1) 2.
Using (6) and the Markov property,
E[X}?\Fs-1,] < X;2q, - E[X7].
Using Lemma 3.18 (and again the Markov property) and recalling that ¢ = 4 p?, we have

Xs Tq C,/ X] 2p

1
P(EW|Fs-1,) =Cy - W g Xs—1, -

Then, using that X7, 1s a nonnegative integer and hence X j i qu < Xs-1,, we get

E[X? -1k |F-1,] < (C; - E[X Tq])lﬂ.XS_Tq,
SO
E[X! 1p,] < (C -B[x7')"* - BlX, 1,1 < (C] - E[x}'])/* - Co* T,

where the second inequality follows from (17). Putting together all the constants that do not
depend on s, this gives

Altogether, this gives
E Z Es(A)‘|A|pi| SC.(E[X3/2]+¢S),
AePy(T4)

as wanted. [
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4. Extinction time on a random d-regular graph with switching. The goal of this
section is to prove Theorem 1.2. As mentioned in the Introduction, the first part of the theorem
was already proved in [12], so we only prove the second part here.

This section is organized as follows. In Section 4.1 we give a detailed construction of
the dynamic random graph and the contact process which co-evolves on this graph. After
doing so, we argue that a version of the usual self-duality relation of the contact process is
satisfied here. Due to this relation, in proving quick extinction, it suffices to study the process
started from a single infection. We start this study in Section 4.2, where we introduce an
exploration process, which reveals the contact process but only reveals partial information
about the graph. In Section 4.3 we prove a general Markov chain lemma, which allows us to
couple this exploration process with (a projection of) the herds process. Finally, in Section 4.4
we take advantage of this coupling to give the proof of Theorem 4.4.

4.1. Preliminaries: Dynamic graph, joint evolution, duality. Let us define the class of
graphs in which our dynamic graph process takes values. Fix n € N, and let V,, := [n] =
{1,...,n}. The set {(u,a) :ueV,, ae{l,...,d}} is called the set of half-edges. Given a
perfect matching of the set of half-edges (i.e., a bijection o from this set to itself with no fixed
points and equal to its own inverse), we can obtain a (multi)graph by setting V), as the set of
vertices and prescribing that each pair {(u, a), (u’,a’)} with (u’, a’) = o (u, a) corresponds to
an edge between u and u’. Let G,, denote the set of all multigraphs that can be obtained in this
way. Deterministic elements of G, will typically be denoted by g, whereas random elements
of G, will be denoted by G or G; (in the case of a process).

Fix g € G,. A switch code for g is a triple m = (e, e2, 1), where eq, ey are distinct
edges of g and n € {—, +}. Fix such a switch code, with ¢; = {(u, a), (u’,a’)} and e; =
{(v,b), (v, b))} so that (u,a) < (u',a’) and (v,b) < (V/,b’) in lexicographic order. In
case n = +, we let '(g) be the graph obtained from g by replacing e; and e, by the edges
{(u,a), (v,b)} and {(u,a’), (v, b')} (and keeping all other edges intact). In case n = —, we
instead replace ey, e; by {(u, a), (v, b")} and {(v/, d’), (v, b)}.

The random graph process (G;);>¢ is the continuous-time Markov chain on G,, which
jumps from g to g’ with rate v, := -5 if g’ = I'™(g) for some switch code m of g (and
rate 0 otherwise). This chain is reversible with respect to the uniform measure on G,,. We will
always start the graph dynamics from this distribution.

We now fix A > 0 and define the contact process (& );>0 with infection rate A on the
dynamic graph (G;). Although we could do so by describing the jump rates of the joint
Markov chain (Gy, &);>0, we will instead use a Poisson graphical construction. We take a
probability space with probability measure P in which the process (G;) is defined, and also
(independently of (G,)) the following Poisson point processes (all independent) are defined:

e for each vertex u, a Poisson point process R" on [0, co) with intensity 1 (recovery times);
e for each half-edge (u,a), a Poisson point process R" with intensity A (transmission
times).

Naturally, when ¢ € R*, vertex u goes to state O (if not already there) at time ¢. Moreover,
when ¢t € R®® | there is a transmission from u to the vertex v that owns the half-edge to
which (u, a) is matched in G; (so that if u was in state 1 just before 7, then v goes to state
1, if not already there, at ). For each A C V,;, we let (SIA),ZO be the contact process on (G;)
with Sé‘ = 1 4 and obtained from this graphical construction (as usual, the graphical construc-
tion gives us contact processes started from all possible initial configurations, all coupled in
a single probability space and respecting the monotonicity of set inclusion).
The usual duality relation

(60) PEANB#2)=PEFNA£2) forallt >0,A,BCV,
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holds in this context, but it is important to note that the above probabilities are annealed in
the graph environment. Let us briefly prove (60). Fix t > 0 and A, B C V,,. Letting (gs)o<s<:
be a possible realization of the trajectory of (Gy)o<s<;, we have

P(":‘;A N B # |(Gs)o<s<r = (gs)Oisgt)
= P(EtB NA# D|(Gs)o<s<t = (Yr—s)0<s<t)-

This is verified using a standard argument involving infection paths and time-reversibility of
Poisson processes. Integrating this equality over the choice of (gy)o<s<; and using the fact
that (Gs)o<s<s has the same law as (G;—s)o<s<; gives (60).

Letting iz € V,, be arbitrary (and deterministic) and writing £ instead of ét{"}, we have

6)  PE"#£2)< Y PE"W=1)=n-PE"@=1)=n-PE"+2),

ueVy,

where the equalities follow from symmetry and duality, respectively. Due to (61), the analysis
of the extinction time of the contact process started from all vertices infected can be reduced
to the analysis of the extinction time of the contact process from a single infection at the
arbitrary vertex u. For the rest of this section, # remains fixed.

Next, we describe an exploration process, which only reveals partial information about
(G1)=0, namely, only the matching of half-edges at certain points in time on a need-to-know
basis imposed by the transmission times of the contact process.

4.2. Exploration process. Let
P={{w,a), (W' d)}:u,u €Vya,a €{l,....d}, (u,a) # (u',a’)}

be the set of all potential edges of our random graph. A set £ C P is called independent if
any two elements of £ have no half-edge in common. Let

(62) P :={€ C P: & is independent}.

In the same probability space where (G,) and the graphical construction of the contact pro-
cess are defined, we now define a process (&;);>¢ taking values in &. Intuitively, &; repre-
sents a set of edges that are known to be part of G;, having been revealed by an exploration
induced by the contact process activity. This process will have the following features:

(P1) It starts from & = @.

(P1) For any ¢, every element of &; is an edge of G;.

(P3) The pair (Sf, &1)r>0 is a Markov chain.

(P4) For any ¢, conditionally on (Sl’;, &), the distribution of the edges of G, apart from
those in &; is uniform. More precisely, the pairing in G; of the half-edges in the set {(u, @) :
(u, a) not in any edge of &;} is uniformly distributed among all possibilities.

In order to define the exploration, we will need auxiliary times. Let 77 be the first time in
which there is a transmission mark at a half-edge emanating from u; let §; = @ for all t €
[0, T7). In case T < oo, say, due to a transmission mark at the half-edge (i, a), we reveal the
half-edge (v, b) to which (u, a) is paired in G7, and include the edge {(u, a), (v, b)} in &7, .

Now, assume that we have already defined stopping times (with respect to the filtration
of (G;) and the graphical construction) 77 < 75 < --- < T and that we have defined &;
for 0 <t < Ty. In case Ty = oo, set Tx4+1 = 00; from now on, assume that {7, < oo} occurs.
Let Ty be the first time ¢ > T; when:

e cither a switch occurs involving at least one edge of &7, (call this Case 1),
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e or “the contact process tries to use an unexplored edge,” that is, a transmission mark ap-
pears at a half-edge emanating from some vertex of &, and this half-edge is not part of an
edge of &7, (Case 2).

Note that Case 1 is triggered by a switch mark and Case 2 by a transmission mark; none of
them is triggered by a recovery mark. We set & = &7, for t € (Ty, Ti+1), and &7, is defined
as follows:

e In Case 1 there are two subcases. First, assume that the switch at time Ty involves an
edge e of &7, and another edge outside &7;. Then we let &7, = &7, \{e}. Now, assume
that the switch at time Ty involves two edges e, ¢’ of &7, transforming them into the
two new edges ¢”, ¢””’. We then set &7, = (&7, \{e, €'}) U {e”, "}

e In Case 2 we reveal the half-edge that is matched at time ¢ to the half-edge having the
transmission mark at that time; letting e be the edge formed by these two half-edges, we
let ngH = &1, U {e).

This completes the description of the exploration, and it should be clear that properties (P1),
(P2), (P3), and (P4) listed earlier are indeed satisfied.

Our next step is to use the exploration process as a tool to couple the contact process (Sf)
with a herds process.

4.3. A Markov chain lemma and its application. We now prove a general result about
coupling two continuous-time Markov chains.

LEMMA 4.1. Let X| and X, be countable sets, and let r1 : X1 x X1 — [0,00) and ry :
Xy x Xy — [0, 00) be functions defining the jump rates for continuous-time (nonexplosive)
Markov chains on X| and X, respectively. Assume that there is a subset Xl/ C X and func-
tions W : X{ — X and f : X{ — [0, 00) such that the following two conditions hold:

(63) Z ri(x,y) < f(x) forall x € X]
YEX\X]
and

(64) Z r(¥(x),z) — Z rl(x,y)‘ff(x) forall x € Xj.

eXs, p—l
Z;\ll(zx) e @

Fix x € X|. Then there exists a coupling (A;, B;);>0 on X1 x X5 with the following properties:

(a) Ap=x, and (A;)i>0 is a Markov chain on X\ with jump rates ry;
(b) Bo =W (x) and (B;);>0 is a Markov chain on X, with jump rates ra;
(c) letting

o :=inf{t: B; # W (A)}
and, for any a > 0,
T, :=inf{t: f(A;) > a}l,
we have, for any t > 0,
Plo <t AT,) <2at.
PROOF. We will define a continuous-time Markov chain (A;, B;, W});>0 taking values
in the set

(65) {(r, W(x), 1) :x € X} U{(x,y,0):x € X,y € An},
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starting from (x, W(x), 1). The pair (A;, B;) will satisfy the properties in the statement. The
third coordinate process (VV;) will be a nondecreasing process (it jumps at most once, from 1
to 0) with the property that, for all ¢ < inf{s : W, = 0}, we have B, = W(A4,;). So we inter-
pret W; as the indicator of the event that “the coupling still works at time ¢.”

In order to define this chain, we need to specify the jump rates. When the third coordinate
equals zero (meaning that the coupling is already broken), the first and second coordinates
move independently, according to the chains defined by r; (on X7) and r; (on X3), respec-
tively. More precisely, from any triple of the form (x, y, 0), the chain jumps as follows:

e For each x’ € X, it jumps to (x', y, 0) with rate ri(x, x’).
e Foreach y’ € A%, it jumps to (x, y’, 0) with rate r2(y, y').

We now need to specify the jump rates from points in the first set in the union in (65). In
order to do so, we first introduce some notation. For each x € Xl’, we let

[x]:= ¥ (W(x) C A
For each x € X and each S C X, we write

ri(x, S) = Zrl(x, y).

yeS

Now, fix x € X|. The following list describes all the possible jumps that the chain can take
from (x, W (x), 1) (this starting location is kept fixed throughout the list), and their respective
rates:

o A and B jump together, stay coupled: for each y € X[\[x], jump to (y, ¥(y), 1) with rate

(s YD AR (P), W)
ri(x, [yD ’

A jumps alone inside [x], stay coupled: for each y € [x]\{x}, jump to (y, ¥(y),1) =
(v, W(x), 1) with rate 1 (x, y);

A jumps alone leaving X, break coupling: for each y € X1\ X|, jump to (y, W(x), 0) with
rate r1(x, y);

A jumps alone inside X|, break coupling: for each y € X{\[x], jump to (y, ¥(x), 0) with
rate

ri(x,y)

’

S (1 i@ D Ar (), w(y)))
t r(x, D]

B jumps alone, breaks coupling: for each z € X3, jump to (x, z, 0) with rate
ra(¥(x),z) — (r1(x, \IJ_I(z)) A2 (W(x), 2)).

It is straightforward to check that the marginal rates for (A;) and (B;) are correct, so that
items (a) and (b) in the statement of the lemma hold.

For each x € &7, let R(x) denote the rate at which (A;, B;, W;) jumps from (x, ¥(x), 1) to
the set X x X x {0}, where the coupling is broken. From the above rates, and then using (63)
and (64), it can be seen that

(66) R@) =ri(x, Y\X) + > |r(x, ¥7'@) = ra(¥(x), 2)] <2 ().
7€X,,

z#W(x)
Next, let o’ := inf{z : W, = 0}, and recall that T, := inf{z : f(A;) > a}. The process

tAne AT,
(67) M; :=]l{a’§t/\Ta}—/ R(A)ds, t>0
0
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is a martingale. Let us give an informal justification of this (a formal proof is not too difficult,
but we omit it for brevity). We argue that

(68) E[Mt+e|(As, Bs, Ws)Ofsgt] =M; +o0(e) ase— 0+,

which implies that %E[M,Jrel(fls, Bs, Wy)o<s<tlle=0+ = 0. Assume we are given the infor-
mation of the trajectory of the chain until time . First, assume that neither o’ nor 7, have
passed by time 7. In that case the indicator in (67) is still equal to zero. The rate at which
it may jump from zero to one in the immediate future is R(A;): this would happen if the
coupling got broken, with VW jumping from 1 to 0. This value R(A;) is the same as the rate
with which the integral in (67) is increasing in this scenario, so the integral compensates the
indicator function, and we obtain (68). Now, assume instead that either o’ or T, has already
passed by time ¢. In that case the indicator in (67) is no longer going to change (it is either
going to stay equal to O or equal to 1 forever after ), and the integral is also not changing
after 1.
Now, for any ¢ > 0,

tAc' AT,
0=My=E[M;]=P(c’' <t AT,) —EU R(As)ds:|
0

(66)
> P(o’ <t AT,) —2at.

Now, recalling that o := inf{r : B; # W(A,)}, we have that o’ < o, so
Po <t AT,) <P(oc’' <t AT,) <2at. O
In the application we have in mind for this lemma, the first Markov chain is the pair (&, &;)
consisting of the contact process and the exploration process in the random dynamic graph,
as described in the previous subsection (recall that this pair is a Markov chain). The second

Markov chain is a certain function of the herds process. We will need to give some definitions
for both, as well as for the mapping ¥ between them.

4.3.1. First Markov chain: Contact and exploration process. The process (&, &1)i=0
(contact process and exploration process on the dynamic random graph (G;)) takes values
in the state space

X1 :={(A,&):AC[n], € e P},

where we recall the definition of & in (62). We denote by r (-, -) the function giving the
jump rates of this chain.

Given (A, &) € &1, we define the graph induced by (A, £), denoted by Graph(A, £), as
follows. First, enumerate £ = {eq, ..., €5}, with

e1 ={(ui,a1), (u},a})}, e em = {(Um, am), (U, a,,)}.

Then Graph(A, &) is the graph with vertex set A U {uy, u/l, ooy, u,} and edge set €.

4.3.2. Second Markov chain: Herds process modulo automorphisms. Recall the defini-
tion of the set P;(T?) of herd shapes from Definition 2.1. For A € P;(T¢), define

[A] = A’ € Pi(T9) : there is a graph isomorphism v : T4 — T¢
T such that yr(A) = A’

This decomposes P«(T%) into equivalence classes.
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(4,6)

FIG. 2. Illustration of the mapping V. Above, the pair (A, E) is depicted (red vertices are those that belong
to A, and black vertices are those that belong to Graph(A, ) but not to A). Below, the herd configuration modulo
automorphisms W (A, £) is shown. Note that one of the connected components of Graph(A, £) has no counterpart
in W (A, E), because none of its vertices belongs to A.

Recall the definition of the set S of herd configurations S from Definition 2.2. Given & € S,
define [£]: {[A]: A € Pf(’]I‘d)} — Ny by setting

[E1([A]) = D> &(A).

A’e[A]
We then define

Xy = {[5]: £ €S},

the set of herd configurations modulo automorphisms. Letting (E;);>¢ be the herds process,
we note that, by Lemma 2.4, the process ([E;]);>0 is a Markov chain on &>. We let ra (-, -)
denote the function giving the jump rates of this chain.

4.3.3. The mapping V and the error bound f. Now that we have defined the pairs (X7,
r1) and (&>, rp) that we will use in our application of Lemma 4.1, we will also define the
sets X and the functions W : X — &, and f : X| — [0, oo) that appear in the assumptions
of that lemma.

We start with

(69) X|:={(A, &) € X : Graph(A, &) is a forest}.

The mapping W is easy to understand (Figure 2 provides an instant explanation) but
somewhat clumsy to define. Fix (A, &) € Xl’ . Let 41, ..., 6, be the connected components
of Graph(A, £) that contain at least one vertex of A. For i € {1,...,m}, let A; be the set
of vertices of A that intersect %;. Since %; is a tree in which all vertices have degree at
most d, there exists an isomorphism v; between % and some connected subgraph of T¢ (in
fact, there are infinitely many such isomorphisms, but we choose one in some arbitrary way).
Then £(A, E) := /" 8y, (a;) is a herd configuration, and we let

W(A,E):=[E] € Ao

It is now straightforward to verify that there exists a constant Cy > 0 such that condi-
tions (63) and (64) are satisfied with the choice
(1Al +1ED?
f(AE):=Cy " .
We omit the details.

We now have all the ingredients to apply Lemma 4.1. Given an initial condition (A, €) €
X, { for the exploration process (which will often, but not always, be equal to ({u}, &)), we can
obtain the coupling (A;, B;);>o started from ((A, £), V(A, £)) and satisfying the properties
guaranteed by that lemma.



788 B. SCHAPIRA AND D. VALESIN

4.4. Proof of Theorem 1.2. For the rest of this section, we assume that A < A(v). By (61)
it suffices to prove that, for C > 0 large enough, we have

n- IED(Sg'logn a @) m) 0.

Let us explain our strategy to prove this. We take advantage of the coupling with the herds
process from the previous section. The probability that the contact process, started from {u},
survives until time C logn (with C some large constant), and moreover, the coupling remains
good (meaning that B, = W(A;)) for time C’logn (with C’ < C but still large) is o(1/n),
since this would imply survival of the herds process, which is subcritical, until C"logn. How-
ever, the probability that the coupling turns bad before extinction is not o(1/n), so we have
to deal with that event. The most problematic case is that the coupling turns bad due to the
exploration process finding an edge that causes the explored graph to no longer be a forest.
In that case, apart from events of probability o(1/n), this problematic edge is deleted after
a short amount of time due to a switch (with no other problematic edges appearing in the
meantime), and the explored region goes back to being a forest. At this moment when a for-
est reappears, we can start a brand new coupling between the exploration process (starting
from its current state (&, &})) and a herds process (starting from W (&;, &7)). Now, this second
coupling also turning bad has too low probability (when we consider this event together with
the already low probability of the breaking of the first attempt). It is also unlikely that this
second coupling stays active for a long time without turning bad, for the same reason as for
the first one.

The above explanation shows that the argument is naturally structured in three stages (of
course, not all of them necessarily occur): the first coupling attempt, then the period until a
problematic edge is removed, and then the second coupling attempt. We encapsulate Stages 2
and 3 in two lemmas in reverse order: Lemma 4.2 below deals with Stage 3, and Lemma 4.3
with Stage 2. Having these two lemmas in place, we are able to tell the full story from the
beginning of Stage 1, concluding the proof.

LEMMA 4.2. Let (A,&) € X{, where X[ is as in (69). Assume that |A| + |E] < nl/e.
Let (&, &})1>0 be a contact process and exploration process started from (&, &p) = (A, E).
Then, letting T denote the extinction time of the contact process and ¢ = ¢(A, V) be the growth
index of the herds process (as in (12)), for n large enough we have

2 1
(70) ]P’(r > lo n) < —.
lloggl ° N

PROOF. Let (A;, B;);>0 be the coupling obtained from Lemma 4.1, started from (Ap,
Bo) = ((A, E),V(A, E)). Recalling from the statement of Lemma 4.1 that

o :=inf{t: B; # V(A)}, T, :=inf{t : f(A;) > a}

and abbreviating
|log ¢| dt,/n 8/nlogn
we bound the probability on the left-hand side of (70) by

(71) P(r > ty,0 > 1,) + P(0 <ty ATo) + P(To, <0 <ty).

By Lemma 4.1 we have

Plo <t ATy,) <2tiay =

1
2/n’
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By the definition of o, on the event {t > t,, 0 > t,} we have that 3;, is not empty. Then P(t >
tx,0 > t) is smaller than the probability that a herds process started with fewer than n'/
particles is still alive by time #,. By (6) and (17), we obtain

_ 1
(72) P(t > tx,0 > 1) <Cn'/0 . o™ =Cn'/® . 2<m
if n is large enough.
It remains to bound P(7,, < o <t,). Recalling that f(A;) = C r(|&] + &2 /n,if T, <
o0, we have

|7, | +167,,1 = (na./Cp)'72.
Since |£o| + |&y| < n'/®, we obtain that, for n large enough,
on {T,, <00}, &z, |+ 167, | — (1€l +1&l) = (nax/C )12 = n'/0 > n'P.

Now, the process (£ 4 |4;]) only changes at times when (A;) = (&, &;) changes. If A4, has
a new infection appearing at time ¢, then |&;| + |&;| may increase by at most 2 at that time.
On the other hand, if A; performs a jump of any other kind, then |&| + |&;| stays the same or
decreases. Hence, for any 7, we have

& + 16| — (150l + |€0]) <2|{s <t:& =& +1}.
Putting these observations together, we see that
on{T,, <o <t}, |[{s<o:&=&_+1}> n'3 2.

Moreover, before time o, whenever a new infection appears in (A4,), a new particle is also
born in (B;). Letting N denote the number of particles ever born in (B;) (even after time o),
we obtain the bound

E[NE]

1/5 S

P(Ty, <o <t) PN 2n'/7/2) < )

for any p > 1, by Markov’s inequality. Recalling that By has at most n!/6 particles and using
Lemma 3.14 and Corollary 3.15, the right-hand side is smaller than

Cp(”l/é)p_ 1 —p/30
@sjr — e

for some constants C), Cfv > (. Taking p > 15 and then n large enough, this is smaller
than ﬁ, completing the proof. [

LEMMA 4.3. There exist ¢ > 0 and § > 0 such that the following holds. Let (A, &) €
X1\X] (so that Graph(A, &) is not a forest). Assume that |A| + |E] < n®. Also, assume that
there is an edge e in £ such that (A, E\{e}) € X/, that is, Graph(A, £) would become a forest
if e were removed from E. Letting (&, &;)1>0 denote the contact and exploration process
started from (A, E) and letting T denote the extinction time of (&), for n large enough we
have

2
(73) ]P’(r > (5 + )10gn> <n~%.
[log ¢|

PROOF. Let U denote the time when the edge e disappears, due to being involved in

a switch. The rate at which this happens equals v, = - times the number of other edges

in the graph, which is % — 1, times 2 (switches can be positive or negative). So this rate

isv(l — %). Hence, U has exponential distribution with parameter v(1 — 2:l—d).
Denote by B the event that:
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e Forall 7 € [0, U) we have (&, & \{e}) € X|; that is, it stays the case that the removal of e
from the set of edges turns Graph(&;, &;) into a forest.
e Graph(&y, &y ) is a forest.

We fix § > 0 and & > 0 for now; their values will be chosen at the end of the proof. We
define

T :=inf{r: |&|+|&| > in'/%).

We bound the probability in (73) by

(74) P(U > §logn)
(75) +PU <dlogn, T <U)
(76) +P({U <8logn, T > U}N B°)
2
(77) +P<{U§510gn,T>U}ﬂBﬂ{r><5+ >logn}).
[log ¢|

We bound these four terms separately, starting with the first and last, which are the easiest.
We have

1
P(U > §logn) = exp{—v(l — —)BIOgn} — V(=38
2nd

Next, letting B’ := {U < §logn, T > U} N B and letting (F;);>0 be the natural filtration
of (&, &), the probability in (77) is

P(B/m {’ g (‘H uofm)“g”})

=E|:]13/ -E|:‘L' > <8+

)lognl]:UH <P(B’)- % < %

|log @]

where the first inequality follows from Lemma 4.2.

To bound (75), we note that |&| 4 |&;| can increase by at most two units at a given jump
time, and a jump that causes such an increase happens with rate at most Ad|&,|. We can thus
stochastically dominate (& |+ |&;|)r=0 by a pure-birth process (Z;);>0 on N, which starts
from Zo = [n®] and jumps from k to k + 2 with rate Adk (and has no other kind of jump).
Then the probability in (75) is smaller than

1/6
P(,_max (&l +I15]) > ')
- E[Zs10gn] 17 - exp{2Addlogn} - opEt2rds—L

<P(Zstogn >n'"°) < a6 nl/6

We now turn to (76). For the process (&;, &7);>0, let us say that a “bad jump” is a jump time
when either: (a) a contact process transmission occurs which causes the inclusion in the ex-
ploration process of an edge between two vertices that were already present in Graph(&;, &;)
or (b) a switch involving two edges that were already in &;. The point is that, as long as
there are no bad jumps, it remains true that Graph(;, &;) would become a forest if e were
removed, and in particular, if U is not a bad jump, then Graph(&y, &) is a forest. Hence,
letting S denote the time at which the first bad jump occurs, we have

P{U <é8logn, T >U}NB°) <P(U <élogn, T >U,S <U).
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Now, let R; denote the rate at which a bad jump occurs from the present state (&, &;). It

o )2
is straightforward to check that there is C > 0 such that R; < C W Moreover, the
process

tASAT
Y,::]l{Sft,SfT}—f Rsds, t>0
0

is a martingale. For a sketch of proof of this, fix + > 0. On the event {S§ A T < ¢}, for ev-
eryt’ >t,wehave 1{S <, S <T}=1{S <¢,S < T} and ft’//\/gsA/}T Ruydu=0,s0Yy =Y,
almost surely, so E[Y,|(&, &5)o<s<:] = Y;. On the other hand, on the event {S A T > t}, we
have 1{S <t,S < T} =0, and the rate at which this indicator jumps to one from the cur-
rent configuration at time ¢ is Ry;; this is exactly compensated by the increase in the integral,
showing that E[Y,,|(&, &5)o<s<:] — Y: = o(r) when r — 0+-. This shows that, in all cases,
SEY 115 Eo<s<illr=01 =0.
Then
(n1/6)2

0=E[Yo] =E[Ys510gn] > P(S <dlogn,S<T)—4dlogn-C .
n

Then we have
P(U <8logn, T >U,S<U) <P(S<8logn, S <T)<C8logn-n"%/>3.

Putting now all our bounds together, we have proved that the probability in (73) is smaller
than

n—v(l—ﬁ)s+n—1/2+2n6+2kd6—%+C610gn.n—2/3‘

By first choosing § small and then choosing ¢ much smaller, this expression is smaller
than n~* when n is large enough. [

PROOF OF THEOREM 1.2. Let ¢ and § be as in Lemma 4.3. Define
. 4
 |logy|

+ 4.

We will prove that

n—oo

P(gﬁvfogn + &) 0.

By (61) this will follow from proving that
nli)ngon : IP)(S/Lﬁllogn 7& @) =0,

where u is a deterministic vertex. In order to prove this, we take the coupling (A;, B;)>0
from Lemma 4.1, with Ay = (&, &) = ({i}, @) and By = W (Ap). Recall that o := inf{zr :

B # W (A}
Let 7 be the extinction time of (&) (which starts from {u}), and also define
2
Bo :=
|log ¢|
and

T :=inf{r : |&| + |&| = n®}.
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We bound
P(r > Blogn)
(78) <P(r > Blogn,o > Bologn)
(79) +P(o < Bplogn, T <o)
(80) 4+ P(t > Blogn,o < Bologn, T > o).

To bound (78), we give the same argument as we have used to bound (72); here it gives

P(r > Blogn, o > Bylogn) < Ceholoen — =2,

To bound (79), we observe again that |&| 4 |&;| can only increase by 2 at any given jump
time, and it only increases when there are contact transmissions generating new births. More-
over, before time o, any time when there is a birth for (&, &;), there is also a particle birth
for ;. These considerations allow us to bound

P(o <Bologn, T <o)

<P(o < fologn, |{t <o :|&|=1&-|+1}| = n*/2)

§P<‘7 < pBologn, |{t <o : & =&+ 1} > % —2)

&
< P((,%’t) has more than % -2 births).

By Corollary 3.15 this is smaller than

né -p
c,,(7 - 2)

for any p > 1. Hence, by taking p > 1/(2¢) and n large enough, it is smaller than 1/n?.
We now turn to (80). Let us first bound, using Lemma 4.1,

(n°)?

(81) P(o < Bologn, T >0o) <Cy -
n

- Bologn = C¢Bon~ " logn.

Letting (F;);>0 be the natural filtration for (A, B;);>0, we write
P(t > Blogn,o < Bologn, T > o)
<E[l{o <Bologn,T > o} -P(r > Blogn|Fy)]
(82) =E[1{o <Bologn,T >0, Ay ¢ X{}-P(x > Blogn|Fy)]
(83) +E[1{oc < pologn, T >0, A, € X{} - P(x > Blogn|Fy)].

To bound (82), we note that, on the event {o < fologn, T > o, Ay ¢ X[}, we have that A, =
(&5, &) satisfies the assumptions of Lemma 4.3, and then that lemma implies that, on this
event, P(t > Blogn|Fy) < n%. Together with (81), this implies that (82) is smaller than

Cf/gon—1+2€ logn . n—48 < n—l—é‘

if n is large enough.
Next, Lemma 4.2 implies that on {0 < Bplogn,T > o, A, € X{}, we have P(t >
Blogn|Fy) < n—1/2; combining this with (81) shows that (83) is smaller than

Cfﬁon_l+28 logn . n—1/2 < n—5/4

for n large. This completes the proof. [J
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APPENDIX: PROOFS OF LEMMA 3.9 AND LEMMA 3.11

PROOF OF LEMMA 3.9. The proof is the same for the two functions, so we only treat the
first. We use the simple bounds that come from comparison with a pure birth process,

E[X|E0=64,, +84,,] < |A] - e,
together with the expression (20), to obtain

gu(E, 1) < e Zé(A) -]AJ - [{active edges of A}
A

< M. (ZS(A) . |A|> <Z§(A) - |{active edges of A}|)
A A

<M (XE+ @)
The statement now readily follows from Corollary 2.3. [

The following preliminary result will allow us to perform the exchange of limit and expec-
tation in (34).

LEMMA A.4. There exist c1,cy > 0 (depending on A, v, €) such that, for any 0 <t <

t+s<T,on{tsep > t}, we have
[ELA | | < ct(X V) +EWV))? 5.

PROOF. We fix s, ¢, as in the statement, and let N denote the number of jumps of the

process (V, W) in [t, t 4+ s]. We have
Ljryyor) - [E[ A5 F ]

(84) < frpot)  [E[Ljrpzrts.n=t1) - ELVr — X7 |Fe IF]|
(85) + Liryor) * [E[Djrgp=i4s.n=2) - EIVr — X Fr 117]].

We will treat the terms (84) and (85) separately. For both, it will be useful to bound, using
domination by a pure birth process,

E[X71Fr,] <™ X(Ve), ElVrIFrg,l <e®XWe,,) =T X (Ve,),
which gives
(86) E[Yr — X711 F;

We start bounding (84). On the event {f < Tsep <7+s, N =1}, wehave X (V;) = X(W,) =
X (Vrsep) =X (Wfsep) (since in this event the only jump of (V, W) in [¢, t + s] is a split which
causes the separation of the processes, so there is no change in the number of particles). Then,
using (86), we obtain that (84) is smaller than

Loty €T X V) - Plrsep <t +5, N > 1|F).

sep]| S ed}LTX(V‘L'sep)-

The rate with which the process jumps away from the state (V;, W;) is at most
pi(V) = dr+DXV) + (v+e)EV),
so the probability above is at most

1— eXP{—Ml(Vz) : S} <1 (V) -s.
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We have thus proved that (84) is bounded by the desired expression.
We now turn to (85). We start using (86) to bound (85) by

]l{rsep>t} : edAT : E[]l{rsepgt-i-s,NEZ} : X(Vrsep)LFt]

< Lyrp>ry - €T E[H{sz} | max, X(Vu)u:t]-

By Holder’s inequality the expectation on the right-hand side is smaller than

~ ~ 1/3
(87) Lgr) - €7 BV 2207073 max x0*17]”.
uelt,T]

Corollary 2.3 and the Markov property imply that

1/3
|7 =exon.

(88) E[ max X (V)| 7,
uelt,T]

Let
ua(Ve) :=2(dr+ D(XV) + 1) +2(v+ &) (EVy) + 1).

In the event {75 > 1}, the process (V, W) jumps away from (V;, W;) with rate smaller
than ©1(V;) (as previously observed), and after performing a first jump, it performs a sec-
ond jump with a rate that is smaller than uy(V). Indeed, after the first jump, the number
of particles or active edges of VV and VW increase by at most 1, and the factors 2 in the def-
inition of u(V;) account for the possibility that the first jump is the separation of the two
processes. Letting (Z;);>0 be a Poisson process with constant rate j2();), we bound (on the
event {Tgep > 1}),

BN > 21F) <P(Zy > 2) =1 —e #2005 _ 1y (V)5 - e 2008
< w2 V)s — ua(Vy)s - e 20
< (1200s)*.
Plugging this bound and (88) back in (87) gives the desired bound. [

PrROOF OF LEMMA 3.11. Fixt €[0,T). For any s € (0, T —¢t], we have

E[ A1) F;
]1{fsep>t}.#

= ]l{Tsep >t}-cl (X(Vt) + g(vt))cz'

The random variable on the right-hand side is integrable by Corollary 2.3. This and the dom-
inated convergence theorem justify the exchange of limit in (34). As explained before (34),
this implies that

- ELA 4
E[n{rsep>t}- lim Al ] 'f’]}
s—0+ N

. E[A 5] — E[A]
m

s—0+ Ky

& - E[1{tsep > 1} - gu.e Vi, T —1)].

Finally, any function g : [0, co) — R which is continuous and has a continuous derivative
from the right is necessarily differentiable (with derivative equal to the derivative from the
right), so the proof is complete. [
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