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Exponential rate for the contact process extinction time

BRUNO ScHAPIRA (V) AND DANIEL VALESIN (?)

ABSTRACT. — We consider the extinction time of the contact process on in-
creasing sequences of finite graphs obtained from a variety of random graph models.
Under the assumption that the infection rate is above the critical value for the pro-
cess on the integer line, in each case we prove that the logarithm of the extinction
time divided by the size of the graph converges in probability to a (model-dependent)
positive constant. The graphs we treat include various percolation models on increas-
ing boxes of Z? or R in their supercritical or percolative regimes (Bernoulli bond
and site percolation, the occupied and vacant sets of random interlacements, excur-
sion sets of the Gaussian free field, random geometric graphs) as well as supercritical
Galton-Watson trees grown up to finite generations.

RESUME. — Nous étudions le temps d’extinction du processus de contact sur
des suites de graphes finis, issus de familles de graphes aléatoires classiques. Sous
I’hypothése d’un taux d’infection supérieur a sa valeur critique sur Z, nous montrons
que le logarithme du temps d’extinction divisé par la taille du graphe converge en
probabilité vers une constante positive (dépendant du modéle considéré). La famille
de graphes considérés inclut divers modeles de percolation, en régime surcritique, sur
des sous-boites croissantes de Z% ou R? (percolation de Bernoulli par site ou par aréte,
ensemble des entrelacs aléatoires et son complémentaire, ensemble d’excursions du
champ libre gaussien, graphe aléatoire géométrique), ainsi que les arbres de Galton-
Watson surcritiques tronqués a une hauteur finie.

1. Introduction

In this paper, continuing our earlier work [27], we present a robust method
allowing to prove the existence of an exponential rate of convergence of the
contact process extinction time on various models of random graphs, when
the infection parameter is large enough.

In the contact process, each vertex of a graph is at any point in time either
healthy (state 0) or infected (state 1). The continuous-time dynamics is
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defined by the specification that infected vertices become healthy with rate
one, and transmit the infection to each neighboring vertex with rate A > 0.
We refer to [15] for a standard reference on the contact process.

The configuration in which all vertices are healthy is absorbing for the dy-
namics, and in finite graphs it is reached with probability one. In certain
situations, the dynamics stays active for a very long time before reaching
this absorbing state, and this behavior can be understood as an instance
of metastability. To be more precise, let T¢ be the hitting time of the ab-
sorbing, “all-healthy” (or “empty”) state when the process is started from
the configuration in which all vertices are infected. The distribution of t¢
depends on the graph G and the infection rate A. One typically considers
a sequence of graphs (G,,) (which could be deterministic and nested, or an
increasing sequence of random graphs from the same random graph model),
fixes A > 0 and studies the asymptotic behavior of tg, . For a variety of
sequences (Gy,), it is known that, if A is large enough, then there exists ¢ > 0
such that

n—oo

P (tg, > exp{c|Gal}) 222 1, (1.1)

where for any graph G we let |G| denote its number of vertices (see for
instance Theorem 3.9 in Section 1.3 of [15], Theorem 1.3 in [18] and The-
orem 1.5 in [9]). Evidently, the meaning of “X large enough” depends on
the chosen sequence of graphs. For instance, for certain random graphs with
power law degree distributions, A > 0 suffices, whereas for boxes of Z?, one
must take \ larger than \.(Z?), the critical value for the d-dimensional con-
tact process, defined as the supremum of values of A for which the process
on Z started from a single infection almost surely reaches the empty con-
figuration. Recently, in [18] and [27], it has been established that for values
of the infection rate above \.(Z) — the critical value of the one-dimensional
contact process —, statement (1.1) (or at least a slightly weaker result in
which exp{c|G,|} is replaced by exp{c|G,|/(log|G,|)*T¢}) holds for arbi-
trary sequences of connected graphs (G,,) with |G| — oo.

A natural refinement of (1.1) is the statement that (7 -logTg, converges
(in some sense) to something positive as n — oco. The first result of this kind

was given in [12]: there it is proved that for A > A.(Z) and (G,,) given by
line segments of length n, there exists a constant v € (0, 00) such that

1 n o0 . o1
G log(Tg, ) === « in probability. (1.2)
This was generalized in [17] to boxes of Z¢ (with A > A\.(Z%)), and the same
result was proved in [9] for d-regular trees truncated at height n (with A

larger than the upper critical value of the contact process on the infinite d-
regular tree; see [15] for the definition).
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Our goal in this paper is to establish results of the type (1.2) for sequences (G,,)
obtained from random graph models. As we rely on techniques developed in
our previous work [27], where the assumption A > \.(Z) was crucial, we also
need this assumption here, though we do not believe it to be sharp in any
of the settings we consider. This being said, our method is quite robust, and
depends essentially on the graphs G,, possessing some kind of self-similar
structure which allows for a recursive decomposition.

Let us list the choices of sequences of random graphs (G,,) covered by our
main theorem. For now we only refer to these random graph models by
their names and the assumptions we place on their defining parameters; in
Sections 3 and 4, we will present each model in detail. We abuse notation and
denote by B,, both the set {—n,...,n—1}? C Z¢ and the set [-n,n]¢ C RY,

(1) For d > 2, perform supercritical Bernoulli bond percolation on B,,
and let G,, be the resulting maximal component (that is, the con-
nected component with largest cardinality).

(2) For d > 3, perform supercritical Bernoulli site percolation on B,
and let G,, be the resulting maximal component.

(3) For d > 3 and u > 0, let Z, be the occupied set of random inter-
lacement with intensity u on Z%; let G,, be the maximal component
of the subgraph of Z¢ induced by Z, N B,,.

(4) For d > 3 and u > 0 sufficiently small, let V,, be the vacant set of
random interlacement with intensity u on Z%; let G,, be the maximal
component of the subgraph of Z¢ induced by V, N B,,.

(5) For d > 3, let ¢ = (pg)zeze be the Gaussian free field on Z<.
Let EZ" = {x € Z* : ¢, > h} for h € R small enough, and
let G,, be the maximal component of the subgraph of Z¢ induced
by Ef kN B,.

(6) For d > 2, consider the supercritical random geometric graph on B,,
and let G,, be the resulting maximal component.

(7) Let v be a probability measure on N with ), kv(k) > 1 and
>k k*v(k) < co. Let G be a Galton-Watson tree with offspring dis-
tribution v and either conditioned on being infinite, or conditioned
on reaching generation n. Let G,, be the subgraph of G induced by
the set of vertices at distance at most n from the root.

THEOREM 1.1. — For any A > A.(Z) and any of the choices of (G,,) listed
above, there exists a (deterministic) constant v € (0,00) such that the ex-
tinction time of the contact process on Gy, with rate X and started from full
occupancy satisfies:

Gl -logta, 2220 ~ in probability.
n
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Our main tool to prove Theorem 1.1 is Proposition 2.3 below, which was
proved in our previous paper [27]; it states that on any (deterministic) graph,
and for any A larger than A.(Z), the expected extinction time is larger than
the product of the expected extinction times on any collection of disjoint
connected subgraphs, up to some correction term. This result allows us to
use a block decomposition in the same vein as in the proof of Mountford [17]
in the case of boxes of Z<.

As we hope to illustrate, the method we employ is quite robust and can be ap-
plied without too much specificity to the underlying graph model. The main
graph property which is required is some kind of self-similarity, namely that
at each scale n, the graph G,, can be decomposed as a union of subgraphs,
which are copies (in law) of the original graph at a smaller scale. Most of
the graph properties we need for cases 1-6 in the list above are already avail-
able in the literature. Our list does not include the case of two-dimensional
Bernoulli site percolation because one of the estimates we employ, (3.3) be-
low, has been explicitly obtained in the literature for two-dimensional bond,
but not site, percolation (to the best of our knowledge). Although it is likely
that the estimate also holds true for site percolation, we prefer not to make
any statement for this case.

Few results are available for the contact process on random graphs ob-
tained from percolation-type models; see for instance [2, 7, 33] and references
therein. The contact process on the supercritical random geometric graph
has also been previously considered by Ménard and Singh [16], who proved
that the critical infection rate is positive, and by Can [5] who obtained sharp
bounds on the expected value of the extinction time on G,, when the radius
of connectedness goes to infinity. The contact process on Galton-Watson
trees has been studied by Pemantle [19].

Finally, let us mention that for several important random graph models,
it would be interesting to obtain results of the form (1.2), but our present
techniques are not applicable (at least not directly). These include the con-
figuration model, the Erdés-Renyi random graph, random planar maps, and
Delaunay triangulations of the plane (provided that in each case, the param-
eters defining the graph and the value of X yield a regime of exponentially
large extinction time).

The paper is organized as follows. In the next section we gather known
important results for the contact process. In Section 3, we consider all the
percolation-type models we treat (models 1 to 6 in the list above), starting
with those which are subgraphs of Z?. In this case, very similarly to [11]
and [26], we list a number of general conditions under which the conclusion of
Theorem 1.1 hold true, and which are known to be satisfied in all the models
mentioned above. The case of Galton-Watson trees is treated separately
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in the last section, as the proof in this setting presents some substantial
differences.

1.1. Notation and conventions for graphs

We use the convention that a graph G = (V, E) is a collection of vertices V
and edges FE between vertices, and we assume that graphs are undirected,
with no loops, and no multiple edges. They are also assumed to be locally
finite, meaning that any vertex has only finitely many neighbors (or edges
emanating from this vertex).

We denote by |V] and |E| respectively the number of vertices and edges
in the graph, and use the convention that |G| also denotes the number of
vertices in the graph.

If G = (V,E)and V' C V| the subgraph of G induced by V" is the graph G’ =
(V' E'’), where E’ is the set of edges of F with both extremities in V".
Finally, we use the notation Z9 to refer both to the set of d-dimensional
vectors with integer coordinates, and to the graph with these vectors are
vertices, and edges connecting vectors at /1-distance one from each other.

We also often use the notation C' to denote a constant, whose value might
change from line to line.

2. Prelimaries on the contact process on finite graphs

For a full account of the contact process on Z¢ and other locally finite graphs,
we refer the reader to the book of Liggett [15]. Here we merely recall some
bounds on the expected extinction time of the process on finite graphs. We
start with the following basic fact, which provides a general upper bound,
and indicate its short proof for the reader’s convenience.

LEMMA 2.1. — For any A > 0, and any finite connected graph G = (V, E),
E[tg] < exp(|V] + 2\|E)).

Proof. — The probability that extinction occurs before time 1 is larger
than the probability that all vertices recover and no transmission occurs
before time 1, which is at least exp(—|V| — 2A|E|). Then, ¢ is stochasti-
cally dominated by a random variable following the geometric distribution
with parameter exp(—|V| — 2A| E|); the expectation of this random variable
is exp(|V| + 2\ |E)). O
On the other hand, general lower bounds were provided in [18] and [27]:

THEOREM 2.2. — Assume A > A\.(Z).
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[18] For any d > 0, there exists ¢ > 0 such that for any connected graph
G with degrees bounded by d, we have
Eltc] > exp{c|G|}.

[27] For any € > 0, there exists ¢ > 0 such that for any connected graph
G with at least two vertices, we have

¢|lG
Elra] > exp { (log |G])T } '

Next, let us recall the general result from [27] alluded to in the introduction,
which is also our main tool.

PROPOSITION 2.3 ([27], Proposition 2.9). — There exists a constant co > 0,
such that for any finite connected graph G and any X > \.(Z), the following
holds: for any N > 1, and any finite collection of disjoint connected subgraphs
G1,...,GNn C G, one has

Elte] > 2|0|3 |GV HETG

We note that this result was stated and proved for trees only in [27], but the
identical statement, with the same proof, works for general graphs.

Finally, the following is useful in turning bounds on expectations into bounds
on probabilities:
LEMMA 2.4 ([18], Lemma 4.5). — For any t > 0,
t
Elte]

P(tg <t) <

3. Percolation-type models
3.1. General lattice model

We consider here random graphs obtained from percolation-type models on
Z% (models 1-5 in the list before Theorem 1.1). Rather than treating model
by model, we will be able to treat them all at once by following an approach
similar of that of [11] and [26]. That is, we will first present a list of four
properties to be satisfied by a probability measure P under which a random
subgraph G of Z? is defined. Next, letting G,, be the maximal component
of G N B, we will prove the statement of Theorem 1.1 by only making use
of the mentioned properties. Finally, at the end of this subsection, we will
give formal definitions of the aforementioned five models (Bernoulli bond and
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site percolation, occupied and vacant set of random interlacements, excursion
set of the Gaussian free field), and provide references that show that each
model satisfies the four properties (at least for some choices of their defining
parameters).

We let Q = {0,1}°, where S is either the set of vertices or edges of Z<
(as usual, elements of ) can be identified with subsets of the vertex (or
edge) set of Z?). In the percolation terminology, given w € Q, a vertex (or
edge) is said to be open if its w-value is one, and to be closed otherwise.
A configuration w € € then defines a subgraph G = G(w) of Z¢ in the
standard manner. That is, if S is the set of vertices of Z%, then G is the
subgraph of Z? induced by {z : w, = 1}, and if S is a set of edges, then G
has all the vertices of Z? and the set of edges {e : w. = 1}. (The second
situation is only needed to include the case of Bernoulli bond percolation).
We endow €2 with the o-algebra generated by the coordinate maps, and note
that any probability measure P on {2 then defines a random subgraph G
of 7.

Our two first assumptions on P are the following:

PP is translation invariant and ergodic with respect to spatial shifts of Z¢
(3.1)
and

P-almost surely G has a unique infinite connected component, denoted by Gae.

(3.2)
Under these hypotheses, for any n > 1, we let G,, be the maximal connected
component of G intersected with the box B,, := {-n,...,n —1}% (with the
convention that if there are more than one maximal connected component,
one chooses G,, among them in an arbitrary way).

Our next assumption ensures that with high probability, connected compo-

nents of G N B,, distinct from G,, have small diameter. So under (3.2), we
consider

there exists a constant A > 0, such that for all n large enough,

G N By, # 0, and any two
P | connected components of G N B,, with diameter | > 1 — exp(—(logn)

larger than % are connected in Bsy,

1+A)-

(3.3)

Note that when the above assumption holds, one can easily derive the fol-
lowing useful fact: for all n large enough,

P ( any two connected components of G, N B,

>1— _ 1+A )
are connected in By, > > 1 —exp(—(log2n) ™7)

(3.4)
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Indeed, any connected component of G, N Ba, intersecting B,, necessarily
has a diameter larger than n, so that one can apply (3.3) in Ba,. Let us also
mention that for our purposes this hypothesis (3.3) could be weakened, for
instance a super-polynomial decay as in Section 5 of [30] would be sufficient.

Finally our last assumption gives a bound on the decay of correlations for
events depending on the configurations inside two disjoint boxes, as the
distance between the two boxes diverges. Note that we have not tried to find
an optimal condition for the proof here, and so we assume that the decay of
correlations is at least polynomially fast. Indeed this is good enough for the
proof, and it is satisfied by all the models of interest to us here. We let || - ||
be the Euclidean norm. Then we consider

there exists a constant Cj such that for any = € Z? such that the boxes

B,, and z + B,, are disjoint, and any events A and B depending only on

the configuration inside B,, and x + B,, respectively, one has:

Co(fi)®2 ifd>3;

|Cov(T4,15)| < { |

0 if d=2.
(3.5)
We restate now Theorem 1.1 in this general setting.
THEOREM 3.1. — Let P denote a probability measure on {O,l}Zd, d > 2,

satisfying (3.1), (3.2), (3.3) and (3.5), and let (Gy,)n>1 and Goo be as defined
above. Consider now the contact process on G, with infection rate A >
Ac(Z), starting from full occupancy, and denote by tg, its extinction time.
There exists v € (0,00) such that

(prob.)

1

Before proving the result, let us start with some preliminary facts concerning
the sizes of the connected components inside B,,.

PROPOSITION 3.2. — Let P denote a probability measure on {0, 1}Zd, d>
2, satisfying (3.1), (3.2), and (3.3). Then with the above notation, for any
e € (0,1) there exists § > 0 such that for n large enough the following holds
with probability higher than 1 — exp{—(logn)'*°}:

G N By, has a single component of cardinality larger than n®=¢;  (3.7)
all other components of G N B,, either have cardinality smaller (3.8)

than n® or are contained in Bp\Bp_pe.

Proof. — Fix ¢ > 0, and define ¢, = |n°/?/2]. Given a connected graph
G C Z¢, we say G crosses an annulus = + (By, \By, /4) if the vertex set of G
intersects both = + By, /4| and x + (By,, )°.
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By (3.3), (3.4) and a union bound, there exists 6 > 0 such that, for n large
enough, the following conditions are satisfied with probability at least 1 —

exp{—(logn)'**}:

e for any x € B, the graph G, N (z+ Bz, ) has a unique component
% (x) that crosses x + (By, \ By, /4);

e for any x € B, any connected component of G N (z + By, ) with
diameter larger than ¢,,/10 is connected to €(z) in = + Bz, ;

e for any z,y € B, with x ~ y, we have that €(z) and ¥ (y) are
connected together in Gy, N (z + Byy,).

In particular, all the graphs € (z) for € B,,_ge, are subgraphs of a single
component ¢* of G, N B,,. Noting that ¢* intersects all boxes = + By,
for x € B,,_ss,, it follows that €* has at least [(n — 8,)/(¢,)?] > ni—¢
vertices.

n?

Now, let € be some component of GN B,, distinct from €*. Then, ¢ cannot
cross any annulus x 4 (B, \ By, /4) with 2 € B,,_gg, . It thus follows that at
least one of the following two conditions hold:

e ¢ has diameter smaller than ¢, (so |€| < n®);
e ¢ is contained in B,\B,_os, C Bn\Bpn_ne (50 || < 2d-n?1.9¢,).

This also shows that €™* is the unique component of G N B,, with cardinality
above n?~¢, completing the proof. O

As a corollary, one obtains the following result, interesting in itself.

COROLLARY 3.3. — Under the hypotheses of Proposition 3.2,

|Gn| (prob.) L

Proof. — Fixe € (0,1). Also fix n € N and assume that (3.7) and (3.8) hold.
Then, G, is a component of G, N B,,.

If ¥ is any component of G N B,, distinct from G,,, then we must have
either |€| < n® or € C B, \Bn_ne. If we also assume € is a component
of Go, N By, it must be the case that ¢ intersects the boundary B,\B,_1
(since G is connected), so we necessarily have € C B, \ By —n-. Then,

Goe N B =[Gl = > €] <[Bp\Byn:| = o(n).
% component
of GooNBy:
C#G,
The desired result now follows from noting that, by ergodicity, |GooNBy|/|Bn|
converges in probability to 6 as n — oco. (|

We are now in position give the proof of Theorem 3.1.
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Remark 3.4. — In the above paragraphs and result, the symbol P has been
used to denote a probability measure on {0, 1}Zd. Without risk of confusion,
in what follows we will use the same symbol to denote a probability measure
under which the contact process is also defined on percolation clusters ob-
tained from the percolation configuration on {0, 1}Zd, such as G,,. The same
abuse of notation will apply to the expectation operator E.

Proof of Theorem 3.1. — Define

1
Xn = ﬁ IOgE[TG" | Gn] (310)
and
7 = limsup E[X,,]. (3.11)
n—oo

By Lemma 2.1, the (X,,)n,>1 are bounded random variables, and thus ¥
is finite. We claim that it is also positive. Indeed by Theorem 2.2 (noting
that Gy, is by definition connected and has degrees bounded by 2d), for n
large enough,

1 0
E[X,) > = B [logE[’th Gl 1 {|Gn| > |Bn|H
) (3.12)
1 ef(2n) 0 B9 _ o
z —- P nl > 5 |Bnl | = c02°7°.
iR (CHES A R

Now we prove that (X,,)n,>0 converges in probability to 7. Fix ¢ > 0, and
let ng be such that E[X,, ] > 7 — ¢/2. In what follows we will also assume
that ng is large enough (depending on ¢). We now write for k € N,

k
3k —k Z
ne = (no) s Er = 2 g, gk = Ei-
i=1

We proceed by induction. Fix & > 0, and assume that we have already proved
that

EX,. 27— Ert1- (3.13)
Then we show that for any n € [ng41, nk42], we have
~ Ek
P(Xn <7 = Ekg1 — €rg3) < %37
~ Ek ~ ~
50 E[X,] > (7 — Ekt1 — €kt3) - (1 - $3> >75— 2513 — Epr1 =7 — Epao.

(3.14)

To this end, fix n € [ng41,nkr2]. We split the box B,_,, into N :=
(In/nx| — 1)? disjoint boxes of side length 2ny, and denote by (G®);¢;<n

~10 —
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the maximal connected components inside each of these boxes. Define the
event

A= {all the (G");<;<n are subgraphs of Gn} . (3.15)
By Proposition 2.3, on A we have
N
Elta, | Ga] > M% ' ZHl]E[TGm G,
so that, with X := (1/nf)logE [tqw | GW],
N
X, 14> <(7::)d.;X(i)_CWb5§G"|)>.]1A, (3.16)

for some constant C' > 0. Now note that, by the definition of N,

CN log(|Gal) _ Cdn?log(2n) < eres

~
nd néd - nd

at least for ng large enough. Moreover, Lemma 2.1 implies that all the X (®)
are bounded. Therefore,

(2~ (%)) x0 <o (1-n(2))

d
n—2n, ng
o1 (222 2)Y <o
N n

for some positive constants C; and Cs and ng large enough. Using these
estimates and the fact that 2ej45 = €44 in (3.16) we get

N
1 .
Xp-1a2 (N : E xX® _5k+4> -1 4.

i=1

Consequently,

N
P(X, <7 — &1 — €kys) S PAY)+P <]1[ . ZX(i) <Y —Ekg1 —Ekta | -
i=1
(3.17)
Let us bound P(A€) first. We apply Proposition 3.2 in each of the boxes and
deduce that for some § > 0, with probability at least 1 — exp{—(logn)**°},
all the G() have cardinality larger than nz_l and are subgraphs of G.
Note also that the G(*) are by definition at distance at least nj, from the
boundary of B, since they all belong to B,,_,, , and by hypothesis one has
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ni > n'/?. Thus by applying again Proposition 3.2 in the box B, we get
that for ng large enough, and for some § > 0,

P(A°) < exp{—(logn)i*s} < Kt (3.18)

v

We now bound the second term in (3.17) using the hypothesis (3.5). To
this end we discretize the random variables (X );<x, which we recall are
bounded by a constant C; > 0. Set

~ [C1/ek+5]

X(l) = Ek+5 Z H{X(l) >£5k+5}~

=0
Note that
X0 < X0 < X0 4,y

Moreover, by (3.1), all the (X®);<y have the same distribution as X,,, , so

(3.13)
E[X(l | > E[X( )] —€kts5 2 Y —Ekt1 — Ekts- (3.19)

We then have

N N
1 N 1 i
P <N : ;:1 XD <F — &1 — eM) <P (N STXDLF g - gM)

i=1

<P (i{ : zi:: ()?(i) ~E[X® ]) —€k+5> ,

(2
where the second inequality follows from (3.19) and the fact that x4 =
2¢k45. Using Chebyshev’s inequality, we obtain

N

P(N' E x® <7—5k+1—€k+4> N E [Cov(X™, X0))|.
i=1 E+5  1<ij<N

(3.20)

We now bound the covariances using (3.5). First assume d > 3. Note first
that by using the bilinearity of the covariance and (3.5), we get that for all
07,
2(d-2)
‘COV( Z) X () )| COCQW7
where by d(i, j) we mean the distance between the two boxes containing G *)
and GU). We deduce that for any fixed i < N, for some constant C' > 0,

ST ICov(XD XD < omp@P N ;2 < Cnd=2 N?/4,

d—
Sy veto. vraya (HEllnE)
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Summing next over i, and using that n > nj, we obtain

2 L N N d—2"
1<i,j<N

-2 2
1 3 |Cov(j(i)’j(j))|<c.nk(n> <C- 1

In case d = 2, (3.5) gives

Combining these covariance bounds with (3.20) gives

N
1 ) _ C Ek4d
P|—- X(Z)<7—5k+1—5k+4 < < —,
(N ; €i+5 . (nk)max{d72,1} o

if ng is large enough. Together with (3.17), (3.18) and ei+3 = 2ck44, this
proves (3.14).

One can then conclude that (X,,),>0 converges in probability to ¥ using a
general argument, which we recall for completeness. For n > 1 and € > 0,
let @, () :=P(X,, <% —¢€) + €. For n large enough we have

Y+ e ZE[X,]
>F+Vea@) P (X > 7+ Veul@) + (G- 2)
P (-2 < Xn <T+V0u(0))
>5(1 = ¢u(e)) + Veu@) - P (X0 > 7+ Vieu(0)) — ¢,

which gives

P (X0 > 7+ Vpu(@) < 26(pu(e) 77 +3(pn(e) V>

Together with (3.14) this gives the convergence in probability of X,, towards
.

The proof of the theorem is almost finished now. Fix € > 0. On the one
hand, the Markov inequality entails

2
+e~(ton’ g [TG"I[ {E[Tcn | G < e/’ H

1 _
P(dlog’tgn >§+5) <]P’(Xn >7+5)
n

<P (Xn >+ %) +exp{—gnd}.
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On the other hand, Lemma 2.4 gives
1 ~
P (nd logtg, <7 — 5)

1

g =~ d
< <vF -2 (v=en® gl -
<P(X.<F-5)+e E[n«:[mnmn]

i {Elre, | G,] > e/}

< IP(Xn <F - %) +exp{—%nd}.

Together with (3.9) this completes the proof of (3.6) with v = 5/6. The
proof of the theorem is now complete. O

3.2. Description of lattice models and verification of assumptions

As mentioned earlier, we now give definitions of five models that fit in the
above framework, and indicate references where proofs of all the hypotheses
of the theorem are given for each of them.

Supercritical Bernoulli bond percolation, d > 2. This is the basic per-
colation model defined by the prescription that each edge of Z% is declared
open with probability p and closed with probability 1 — p, independently for
all edges, where p € [0, 1]. It is thoroughly studied in the standard reference
of Grimmett [13]; there it is shown that there exists p.(d) € (0,1) such that
there is no infinite component if p < p. and there is a unique infinite com-
ponent if p > p.. Here we assume that p > p.. Proofs of (3.1) and (3.2) can
be found in [13]. Condition (3.3) is proved in [21] in dimension d > 3, and
in [8] for d = 2. Condition (3.5) follows readily from independence.

Supercritical Bernoulli site percolation, d > 3. This is defined as
above, except that vertices, rather than edges, are declared to be open
of closed. Site percolation is also covered in the book [13]. Again, a crit-
ical value p.(d) € (0,1) separates a non-percolative phase from a phase
where there is almost surely a unique infinite component. Here we assume
that d > 3 and p > p.(d). All the references and observations provided above
for supercritical bond percolation are also valid for supercritical site perco-
lation, except that (3.3) has not been established for the case d = 2, which
is why we exclude it.

Occupied set of random interlacements, d > 3. The model of random
interlacements has been introduced by Sznitman in [29], and detailed expo-
sitions are available in [6] and [10]. It arises as a local limit of the trace of
a simple random walk on a d-dimensional torus run for an amount of time
proportional to the volume of the torus. The proportionality constant u > 0
and the dimension d are the two parameters of the model; as the random

— 14 —
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walk is required to be transient, one takes d > 3. An equivalent definition of
the occupied set of random interlacements is the following: it is the unique
random set of vertices Z% C Z¢ satisfying

P(ZNK = @) = exp{—u - cap(K)}

where K is any finite set of vertices of Z¢ and cap(K) denotes the discrete
capacity of K (see Chapter 6 of [14]). The density of Z" is thus an increasing
function of u. Here we take any d > 3 and any v > 0. Our four conditions are
proved in the following references. Conditions (3.1) and (3.2) are given re-
spectively by Theorem 2.1 and Corollary 2.3 in [29]. Condition (3.3) follows
from Proposition 1 in [24], and condition (3.5) is equation (2.15) in [29] (one
also needs the fact that the capacity of B,, is of order n?~2; see Section 6.5
in [14]).

Vacant set of random interlacements in strongly percolative regime,
d > 3. For d > 3 and v > 0, the vacant set V" of random interlacements is
defined as the complement of Z%. There exists us € (0,00) such that V* has
an infinite component if v < u, and no infinite component if u > u, (][29],
[28]; see also [23] for a short proof). Conditions (3.1) and (3.5) follow from
the same conditions for Z", for which references were given above. For d > 3
and u € (0,u,), condition (3.2) is proved in [31]. Condition (3.3) is only
known for w small enough (in the so-called strongly percolative regime of
the vacant set), so we assume this regime is in force here. The proof is given
n [32] for d > 5 and in [11] for all d > 3; see Theorem 3.5 in the latter
reference.

Excursion set of Gaussian free field in strongly percolative regime,
d > 3. The Gaussian free field in Zd, d > 3, is the centered Gaussian
field ¢ = (¢z)zeze With covariances E[g,¢,] = g(z,y), where g denotes the
Green function of simple random walk in Z¢. Its excursion sets are the sets
th ={xe€Z: ¢, > h} for h € R. There is again a critical value h, € R
so that Eih almost surely has an infinite component when A < h, and only
finite components if h > h, (in fact it is also known that h, > 0). This has
been proved in [4] for d = 3 and in [25] for any d > 3. Our condition (3.1) is
proved in the paragraph preceding Lemma 1.5 in [25], and (3.2) is verified
in [25], Remark 1.6. Condition (3.3) is included in Theorem 3.7 in [11]; again
this is only known in a strongly percolative regime where h is smaller than
a constant i < h., so we assume this regime is in force here. Finally, (3.5)
is given in Proposition 1.1 in [22].

3.3. Random geometric graph

The random geometric graph in R%, d > 2, is the random graph whose vertex
set is a Poisson point process of intensity one, and the edge set is defined with
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the rule that two vertices are connected by an edge if and only if they are
at Euclidean distance smaller than some fixed constant R > 0. It has been
shown that there exists a critical value R, > 0 such that the graph almost
surely has only finite components if R < R, and a unique infinite component
if R > R.. This result and an in-depth treatment in the model can be found
in the book of Penrose [20]. (We observe that the model is parametrized
in a different manner there than the one we take here: the author fixes the
radius for connectivity R = 1 and takes the intensity of the Poisson process
of vertices as the parameter of the model, which is denoted A throughout
the book. This choice is equivalent to ours after a rescaling of R?).

As mentioned in the Introduction, we assume d > 2, R > R, and let G,,
be the connected component with highest cardinality in the graph restricted
to B, = [-n,n]%. Here we will prove that the statement of Theorem 1.1
holds for these graphs. The proof is very similar to that of Section 3.1, so
we will only describe the points in which the proofs differ.

Below we state a proposition that contains all the properties that we will need
concerning the graphs G,,. Before doing so, let us give two definitions. First,
the metric diameter of a graph embedded in R? is defined as the supremum
of the /.-distance between vertices of the graph. This is not to be confused
with the graph-theoretic diameter. Second, consider the modified version of
the random geometric graph on R such that a vertex is artificially placed at
the origin (and other vertices and edges are placed as before); let g be the
probability that the vertex at the origin is in an infinite component. Then
(see Chapter 9 of [20]), we have 6 > 0 if and only if R > R,.

PROPOSITION 3.5. — For anyd > 2, R > R, and € > 0, there exists 6 >
0 such that for n large enough the following holds with probability larger
than 1 — exp{—(logn)**°}. The mazimal component G,, of the random geo-
metric graph with parameter R on B, has metric diameter larger than n
and |G, |/(2n)? € (1 —¢€) - Or, (1 4 ¢€) - Or). Moreover, any other component
has metric diameter smaller than (logn)? and cardinality smaller than en?.

Proof. — This follows from putting together Proposition 10.13, Theorem 10.19,
and Theorem 10.20 in [20]. O

Note that Proposition 3.5 immediately gives

|Gn| (prob.)
(2n)d noso Or-

We define X,, and 7 as in (3.10) and (3.11). We would now like to show
that 7 > 0. However, unlike the lattice models considered earlier, here no
universal upper bound is available for the degrees in G,,. To remedy this,
we use the following result.
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LEMMA 3.6. — For any d > 2 there exists K > 0 such that G,, has a
spanning tree with degrees bounded by K.

The above statement for d = 2 (and K = 5) is Lemma 2.12 in [3]. The proof
easily generalizes to any dimension (with dimension-dependent K). The idea
is to take the spanning tree of G, in which the sum of the lengths of the
edges is the smallest possible, and to show that this tree has degrees bounded
by a dimension-dependent constant. For this, one argues by contradiction:
if the tree had a vertex whose degree was too large, then the edges in the
ball of radius R around this vertex could be rearranged so as to produce a
spanning tree with smaller total edge length.

With this result at hand, we prove that 7 is positive with the same compu-
tation as in (3.12), replacing G, by its spanning tree with bounded degrees.
From this point on, the proof of Theorem 1.1 for (G,,) proceeds in the same
way as the one we gave for the lattice models; the only difference is that,
in giving a lower bound to the probability of the event A defined in (3.15),
we use Proposition 3.5 instead of Proposition 3.2 (also note that the compu-
tation involving covariances is unnecessary in this case, since graphs inside
disjoint boxes are independent).

4. Galton-Watson trees

In this section we consider a supercritical Galton-Watson tree with offspring
distribution having a finite second moment. This means that if v is the
law of the number of individuals at the first generation of the tree, then
m =Y, .y kv (k) is larger than one, and Y°, - k*v(k) is finite. We let Z =
0 and for n > 1, we let Z,, be the number of individuals at generation
(height) n, and let G,, be the subtree of individuals belonging to the first n
generations (including the root, which is in generation zero). In particular
|Grn| =1+ 214+ Z,. We also denote the whole tree by G,. The events
of non-extinction (or survival) and extinction are defined respectively by

Swrv = {|Goo| = 0}, and Ext = Surv® = {|G| < oo} .

Letting v, = 14+m+---m", it is well known that there exists a nonnegative
random variable W, satisfying
Z, G
— = W, (Gl

— W, almost surely and in L?, (4.1)
m Up

and moreover,
PWe =0]Ext) =1, and P (W4 >0]|Surv)=1. (4.2)
The convergence of Z,,/m™ (almost surely and in L?) and the two equal-

ities in (4.2) are proved in Chapter 1 of [1]. The almost sure convergence
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of |G| /vy is then immediate, and the convergence in L? of |G, |/v, can be

obtained from Minkowski’s inequality:
1/2
Zi 2 n—o00
(&))" e
m’L

Gl N &
E nl _ m
() ]) exi (e
=0
_logE[tg, | Gy

‘We now define
b Xn - b
|G

Y, = logE[tg, | Gx]
mn
and

7 :=limsup E[Y,,].

n—oo
We first show the following;:

n—oo,  ~

Cramm 1. — E[Y,] —— 7 > 0.

Proof. — On {Z; = k} for k > 0, let GM, ... G®* denote the subtrees
that descend from the vertices in the first generation. We have using Propo-
sition 2.3 that

Zn
logE[ta, | Gnl > > logE[tgm | Gn] — CZ1 log |G|,
i=1

with the understanding that the right-hand side is zero when Z; = 0. Hence,

n—1 Z1 )
o e [Z 1ogE[TC:L<:>1 Gn]] . {Zl lognGn|]
m'™ im1 m m
=E[Y,_1]-C-E {Zlkﬁlc"’"] '

Using Cauchy-Schwarz inequality, we have
1/2
E (21 10g|Gnl] < (E[Z}] - Ellog? |Gal)) "

Next, noting that (e, 00) 3 s +— log®(s) is concave, we use Jensen’s inequality
to bound

Ellog? |G,|] < E [log® (|G| + €)] < log® (E[|G,[] +e).
These bounds show that, for n large enough,
E[Z;log |G,|] < n®.

We thus have, for n large enough,
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which can be used recursively to yield, for n large enough,

4
E[Y,,] > E[Y,] - > # for all ny > n. (4.3)
j=n+1

Next, using (4.1), (4.2) and the fact that v, > m", we can choose € > 0 such
that, for n large enough,

P(|G,| >em™) > e.
Then, if n is large, using Theorem 2.2,

logE[tg, | Gr)
mn

E[Y,] > u«:{ 1[G > Em”}}

1 &Gyl )) } ¢
>~ E|l L)) |G| > em™Y > —,
— {og (exp (10g2 e {IGn| > em™} 3

(4.4)

for some constant ¢ > 0.
Now, combining (4.3) and (4.4) we have, for n € N large enough that
4

it e
Y imnt1 w7 < Es

E[Y,,] > 2—:12 for all ny > n.
This shows that 7 > 0. It is then easy to use (4.3) together with the definition
of 7 to obtain E[Y,] == 7. O
Define next
m—-1 _
Y=————7
m

CLAIM 2. — For alle > 0,

P(Xp <v—¢|Zy#0) 2220 and P(X, <~y —e|Surv) 2225 0.

n— oo

Proof. — Since P({Z,, # 0}\Surv) —— 0, any of the above convergences
follows from the other; we will prove the first one. For n € N, we write

n' = |n/2], n" =n-n'

On Z, =k >0,let GO ... G® denote the subtrees that descend from
the vertices in generation n’. On {Z,, # 0}, we have

1 Zn’

Zn log |G,
o> S Bl | G - Lol
=1

|Gl

G
(4.5)

|Grl v mY Z

Uy m" Zn/ 1 % log E[TG(i)
- mn// ‘Gn|

Gn} cZy log |Gn|

=1
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Conditionally on {Z, = k} for k > 0, the random variables (m™ )~! .
logE[tgw | Gul, for i = 1,...,k, are independent and all have the same

distribution as Y,,~. Hence, for any € > 0,

. ( G,
n' — o0

l i log E[tqa)
Since for any k > 0 we have P(Z,, < k| Z,» # 0) —— 0, we obtain

L mn// - ]E[Yn”] >é€ €2k

%:ngmﬂ,

Z .1
1 “\ logE|[taai G7 n’—oo
P Zﬂ;g[ﬂj;zt]_mn”] sel zu 20| ==,

Further using the fact that E[Y,] 2= 3 and P(Z,, = 0 | Z, # 0) 2= 0,
the above gives

Z,r
1 HlogEltgw | Ga] - :
P yoleblteo [Gul 210 17 20| “==0 o)

Zn/ . mn//
=1

The desired result now follows from (4.5), (4.6) and the facts that

n
m" noee m—1 |Gn| n—o00 W Ly n—oo W
I ? (e n’ (oo}
Un m Un a.s. m a.s.

and
lim P(Wy =0 Z, #0) =0.

n— oo

CLAM 3. — For alle > 0,

n—oo n—oo

P(X,>v+¢e|Z,#0) ——0 and P(X, >~v+¢e]|Surv) —— 0.

Proof. — We will prove the second convergence. Assume by contradiction
that there exists € > 0 such that, for some increasing sequence (ny) with
ng — 090,
P(X,, >v+¢e|Surv) > e. (4.7)

Fix a small § > 0 to be chosen later. Define the events

Bi1 =Survn{X,, <~y -4},

Bro=SurvnN{y—-9¢ < X, <v+e¢},

By sz =SurvN{X,, >y+e}

Also define
G, G, .
qk,0 = E |:| k| . ]lExt:| 3 qk,j = E |:|vk| . ]lBkyj:| y J € {1a2a3}
Nk Nk
Note that
Q0+ qe1 + qr2 +qes =1 (4.8)
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By (4.1) and (4.2) we have

Gn oo
s
Similarly, we bound
‘Gnk| k—oo
qk1 <E - Wel|| +E Wy - 1p,,] —— 0; (4.10)
Nk
k—o0

the convergence follows from the fact that P(B;1) —— 0, by Claim 2.
Next,

Gl

Un,,

a3 >E[Ws 15, ,] —E [

W H .
Noting that (4.7) gives P(By,3 | Surv) > ¢ for every k, we have
likrg'géf Qe =€ = iréfE[Woo -1p], (4.11)
where the infimum ranges over all sets B with
Beo({Z,:n>0}), BCSurv, P(B|Surv)>e.

Since the law of W, conditioned on Surv has no atom at zero, we obtain
e’ > 0.

We now put these estimates together. We start computing

|G|

3
v |G|
ElY,,] = mtfk | E X, - v:: .]1Ext} +) E {X"k o g,
: = ;

Un
> mnkk ey =96) a2+ (v +e) - qrgs]
(4.8) Up
= mnkk . [FY + qk,3 " € + qk,3 * 0—0+ (q;€70 + Qk,l)(5 — 'y)] . (412)

Using (4.9), (4.10), (4.11) and the convergence v,,/m™ — m/(m—1), by first
choosing § small enough and then assuming k is large enough, the expression
in (4.12) is larger than ™5 (v + €’¢/2). This gives

liminf E[Y,,,] > 7,
k—oo

contradicting E[Y,,] == 7. O

The proof of Theorem 1.1 in the case of Galton-Watson trees now follows
from Claims 2 and 3 by the same estimates as in the last paragraph of
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Section 3.1. Letting P(-) denote either P(- | Surv) or P(- | Z, # 0) (and
similarly for E), we have

_ 1
P (logTGn > ’y—l—e)
|G|

<P (Xo>7+3) +E[P(1q, > %1 | G) 1{X0 < v+ 1]

<P (Xn >+ g) 1E {e—(we)\en' ‘Eltg, | Gy

']1{]E[Tc;n | G, < e('v+%)|Gan 7o

and

_ 1
Pl —logtg, <v-—¢
(|Gn| G =T )

<P (Xn <5y - g) +E {}P’ (TGn < erm9IGal | Gn) ~IL{Xn = - *H
( [

Xy <y=5)+E [0 B, | G,

~11{1E[TGW, 1G] > e(w—%)\cnl}] nzoo .

Acknowledgements

We would like to thank Baldzs Rath for directing us to several references
on the models we study, leading to a wider applicability of our results. We
would also like to thank Tobias Miiller for helpful discussions and references
on the random geometric graph. Finally, we would like to thank the two
anonymous referees of Annales de la Faculté des Sciences de Toulouse for
their careful reading of the manuscript and helpful suggestions.

Bibliography

[1] K. B. ATHREYA & P. E. NEY, “Branching processes”, 2004, Courier Corporation.

[2] D. BErTACCHI, N. LANCHIER & F. Zucca, “Contact and voter processes on the infinite
percolation cluster as models of host-symbiont interactions”, Ann. Appl. Probab. 21
(2011), no. 4, p. 1215-1252.

[3] A. BEVERIDGE, A. DUDEK, A. FRIEZE, T. MULLER & M. STOJAKOVIC, “Maker-breaker
games on random geometric graphs”, Random Structures Algorithms 45 (2014), no. 4,
p- 553-607.

[4] J. BrioMmoNT, J. L. LEBowITZ & C. MAES, “Percolation in strongly correlated sys-
tems: the massless Gaussian field”, J. Statist. Phys. 48 (1987), no. 5-6, p. 1249-1268.

[5] V. H. CaAN, “Super-exponential extinction time of the contact process on random
geometric graphs”, Comb. Probab. Comput. 27 (2018), no. 2, p. 162-185.

— 9292 —



(6]

[7

(8]

9

(10]
(11]
[12]
(13]
[14]

[15]

[16]

(17]

(18]

[19]
[20]
21]
(22]
(23]
24]
(25]
[26]
27)

(28]

Exponential rate for the contact process extinction time

J. CERNY & A. Q. TEIXEIRA, From random walk trajectories to random interlace-
ments, Ensaios Matemdticos [Mathematical Surveys], vol. 23, Sociedade Brasileira de
Matematica, Rio de Janeiro, 2012, ii4+-78 pages.

X. CHEN & Q. YAO, “The complete convergence theorem holds for contact processes
on open clusters of Z% x Z*”, J. Stat. Phys. 135 (2009), no. 4, p. 651-680.

O. CouroNNE & R. J. MESSIKH, “Surface order large deviations for 2D FK-
percolation and Potts models”, Stochastic Processes Appl. 1183 (2004), no. 1, p. 81-99.
M. CRANSTON, T. MOUNTFORD, J.-C. MOURRAT & D. VALESIN, “The contact process
on finite homogeneous trees revisited”, ALEA Lat. Am. J. Probab. Math. Stat. 11
(2014), no. 1, p. 385-408.

A. DrREWITZ, B. RATH & A. SAPOZHNIKOV, An introduction to random interlace-
ments, SpringerBriefs in Mathematics, Springer, 2014, x+120 pages.

, “On chemical distances and shape theorems in percolation models with long-
range correlations”, J. Math. Phys. 55 (2014), no. 8, p. 083307, 30.

R. DURRETT & R. H. SCHONMANN, “The contact process on a finite set. 117, Ann.
Probab. 16 (1988), no. 4, p. 1570-1583.

G. GRIMMETT, Percolation, second ed., Grundlehren der Mathematischen Wis-
senschaften, vol. 321, Springer, 1999, xiv+444 pages.

G. F. LAWLER & V. Limic, Random walk: a modern introduction, Cambridge Studies
in Advanced Mathematics, vol. 123, Cambridge University Press, 2010, xii+364 pages.
T. M. LIGGETT, Stochastic interacting systems: contact, voter and exclusion pro-
cesses, Grundlehren der Mathematischen Wissenschaften, vol. 324, Springer, 1999,
xii+332 pages.

L. MENARD & A. SINGH, “Percolation by cumulative merging and phase transition for
the contact process on random graphs”, Ann. Sci. Ec. Norm. Supér. (4) 49 (2016),
no. 5, p. 1189-1238.

T. MOUNTFORD, “Existence of a constant for finite system extinction”, J. Statist.
Phys. 96 (1999), no. 5-6, p. 1331-1341.

T. MOUNTFORD, J.-C. MOURRAT, D. VALESIN & Q. YAO, “Exponential extinction
time of the contact process on finite graphs”, Stochastic Processes Appl. 126 (2016),
no. 7, p. 1974-2013.

R. PEMANTLE, “The contact process on trees”, Ann. Probab. 20 (1992), no. 4, p. 2089-
2116.

M. PENROSE, Random geometric graphs, Oxford Studies in Probability, vol. 5, Oxford
University Press, 2003, xiv+330 pages.

A. P1sSzTORA, “Surface order large deviations for Ising, Potts and percolation models”,
Probab. Theory Related Fields 104 (1996), no. 4, p. 427-466.

S. Porov & B. RATH, “On decoupling inequalities and percolation of excursion sets
of the Gaussian free field”, J. Stat. Phys. 159 (2015), no. 2, p. 312-320.

B. RATH, “A short proof of the phase transition for the vacant set of random inter-
lacements”, Electron. Commaun. Probab. 20 (2015), no. 3.

B. RATH & A. SAPOZHNIKOV, “On the transience of random interlacements”, Electron.
Commun. Probab. 16 (2011), p. 379-391.

P.-F. RODRIGUEZ & A.-S. SZNITMAN, “Phase transition and level-set percolation for
the Gaussian free field”, Commun. Math. Phys. 320 (2013), no. 2, p. 571-601.

A. SAPOzZHNIKOV, “Random walks on infinite percolation clusters in models with
long-range correlations”, Ann. Probab. 45 (2017), no. 3, p. 1842-1898.

B. ScHAPIRA & D. VALESIN, “Extinction time for the contact process on general
graphs”, Probab. Theory Related Fields 169 (2017), no. 3-4, p. 871-899.

V. SIDORAVICIUS & A.-S. SZNITMAN, “Percolation for the vacant set of random inter-
lacements”, Commun. Pure Appl. Math. 62 (2009), no. 6, p. 831-858.

—923 -



Bruno Schapira and Daniel Valesin

[29] A.-S. SzZNITMAN, “Vacant set of random interlacements and percolation”, Ann. Math.
171 (2010), no. 3, p. 2039-2087.

, “Disconnection and level-set percolation for the Gaussian free field”, J. Math.
Soc. Japan 67 (2015), no. 4, p. 1801-1843.

[31] A. TEIXEIRA, “On the uniqueness of the infinite cluster of the vacant set of random
interlacements”, Ann. Appl. Probab. 19 (2009), no. 1, p. 454-466.

[32] ———, “On the size of a finite vacant cluster of random interlacements with small
intensity”, Probab. Theory Related Fields 150 (2011), no. 3-4, p. 529-574.

[33] X. XUE, “Critical value for contact processes on clusters of oriented bond percolation”,
Phys. A 448 (2016), p. 205-215.

(30]

— 924 —



	1. Introduction
	1.1. Notation and conventions for graphs

	2. Prelimaries on the contact process on finite graphs
	3. Percolation-type models
	3.1. General lattice model
	3.2. Description of lattice models and verification of assumptions
	3.3. Random geometric graph

	4. Galton-Watson trees
	Bibliography

