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Abstract

The percolated random geometric graph G, (A, p) has vertex set given by a Poisson Point Process in
the square [0, ﬁ]z, and every pair of vertices at distance at most 1 independently forms an edge with
probability p. For a fixed p, Penrose proved that there is a critical intensity A = A.(p) for the existence
of a giant component in G, (A, p). Our main result shows that for A > X, the size of the second-largest
component is a.a.s. of order (log n)2. Moreover, we prove that the size of the largest component rescaled
by n converges almost surely to a constant, thereby strengthening results of Penrose.

We complement our study by showing a certain duality result between percolation thresholds
associated to the Poisson intensity and the bond percolation of G(A, p) (which is the infinite volume
version of G, (A, p)). Moreover, we prove that for a large class of graphs converging in a suitable sense
to G(A, 1), the corresponding critical percolation thresholds converge as well to the ones of G(1, 1).
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1. Introduction

The theory of percolation was introduced by Broadbent and Hammersley [5] more than
60 years ago. In the most classical setting, one is given a subgraph of Z? for some d > 2
where every edge appears with probability p € [0, 1], independently of all other edges. While
the model has a very simple definition, it undergoes a phase transition for the existence of an
infinite component which is not completely understood to this day.

Several years after Broadbent and Hammersley, Gilbert [11] proposed a new mathematical
model of wireless networks, which gave rise to the field of continuum percolation. His model,
known as the Random Geometric Graph, is defined as follows: given A, R > 0, the vertices
of the graph are given by a Poisson Point Process with intensity A in R?, and whose edges
are given by the pairs of points at distance at most R. In fact, as mentioned in his paper, one
of the two parameters A and R may be put to 1 by a suitable homothety of the plane. Later,
Meester and Roy [18] generalized Gilbert’s model by connecting randomly and independently
pairs of points in the Poisson process with a probability depending on their relative positions,
thus introducing the random connection model. In this paper, we aim at studying a particular
example of the random connection model obtained by performing standard Bernoulli bond
percolation on top of Gilbert’s model, often called soft random geometric graph or percolated
random geometric graph.

1.1. Formal setup and our results

For A > 0, denote by Po(%) a Poisson Point Process in R? of intensity A. Then, we define
G(X, 1) as the random geometric graph with vertex set Po(A) and edge set the set of pairs of
vertices at Euclidean distance at most one. Given p € [0, 1], we further define G = G(A, p)
as the graph obtained from G(A, 1) after Bernoulli bond percolation with probability p.

We will often consider Po(X) conditioned on containing the origin, that is, we add artificially
the origin to the point process (this construction is known in a more general setup under the
name Palm theory, see for instance [19]). Then, we shall denote by 8(A, p) the probability that
the connected component of the origin in G is infinite. By classical considerations from ergodic
theory (see e.g. [18]) one may deduce the existence of a deterministic threshold A € [0, oo]
(in fact, a standard coupling argument with site percolation on Z?> (see [18,19]) shows that
Ao € (0, 00)) such that:

e for all A > X, the graph G(X, 1) contains an infinite connected component almost surely,
and in particular 6(A, 1) > 0;

e for all A < Ag, the graph G(A, 1) contains no infinite component almost surely, and in
particular (A, 1) = 0.

For every p € (0, 1] we define then
Ac(p) =inf{A e R: 6(A, p) > O} 1)

Moreover, for n > 1, we consider the restriction G,, = G,(A, p) of G to the square [0, ﬁ]z.
Also, we denote by Li(G,) the number of vertices in the largest connected component of G,,.

We say that a sequence of events (£,),>0 holds asymptotically almost surely (which we
abbreviate by a.a.s.) if P(£,) — 1 as n — 00. A sequence of random variables (X,),>0 is said
to be a.a.s. of order 6, ,(f,) if there exist positive constants ¢ and C, which might depend on
A and p, such that P(cf, < X, < Cf,) > 1 as n — <.
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Our main contribution is a sharp result on the size of the second largest component of
G (X, p) restricted to a square of area n. It extends a recent result by Penrose [20] who proved
that the size of the largest connected component of G, rescaled by n converges in probability to
AO(A, p), while the size of the second-largest component divided by n converges in probability
to 0. More precisely, we have the following main theorem:

Theorem 1.1. Fix A > 0 and p € (0, 1], such that .. > A.(p). Then (n’lLl(Gn)),,Zl converges
almost surely to AO(X, p). Moreover, the size of the second-largest component in G, is a.a.s.
of order QA,p((log n)z).

The proof of the almost sure convergence for the largest component is based on estimates
for the probability of crossing large rectangles with a fixed length-to-width ratio. The main
difficulty here is that two edges that intersect (geometrically) in an interior point may still be
in different connected components because of the bond percolation. To solve this problem, we
use the classical technique of sprinkling, which consists of revealing the Poisson Point Process
in two steps with the idea to locally connect two crossing edges present after the first step with
positive probability.

The result on the size of the second-largest component is the most delicate part. Proving the
lower bound is the easier part: it consists simply in observing that in the square [0, /7]?, there
is a.a.s. a subsquare of side length of order logn with no point at distance 1 from its boundary
and that contains at least c(logn)? points for some ¢ > 0. The proof of the upper bound is more
elaborate. The main idea is the following: we begin by proving that a.a.s. every point x in the
square [0, v/n]? is surrounded by ‘many’ cycles in the giant component of G,, close to x. Hence,
if the connected component of x € G, has ‘large’ Euclidean diameter, it necessarily intersects
geometrically each of the above cycles. In this case, the argument of sprinkling that was used
for the largest component does not work directly: although adding new points would help to
connect x to the giant component, it could also create new components with large diameter.
We overcome this difficulty by using local sprinkling only rather than global sprinkling. This
allows us to prove that components with large diameter (which thus cross many cycles) must
be part of the giant component, and at the same time no new components with large diameter
are created.

Remark 1.2 (A Generalization of the Model). In fact, a careful inspection of our proof shows
that Theorem 1.1 holds for the more general random connection model mentioned above.
More precisely, denote by D the unit disc centered at the origin, and fix an even function
g : D — (0, 1] with bounded support. Then, the random graph G(A, g) may be defined as
a subgraph of G(X, 1) in which every edge between two vertices x and y is retained with
probability g(x — y), independently of all other edges. In particular, the graph G(X, p) is a
special case of this generalized setting with g constant equal to p. Then, by defining A.(g) and
6(X, g) as before, Theorem 1.1 holds for this more general setup with almost the same proof.
However, in order to keep the notation of the paper simple, we decided to present a proof in
the simpler percolated random geometric graph model only.

Remark 1.3 (Stretched Exponential Decay in the Supercritical Regime). The proof of
Theorem 1.1 easily implies that in the infinite volume setting, the origin is in a component of
size at least n without being part of the infinite component with probability at least exp(—c+/n)
for some ¢ = c¢(X, p) > 0. For more details, see Remark 5.10.
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Remark 1.4. We note that the question about the size of the second largest component of the
graph G, in dimension more than two remains open. Unfortunately, our techniques do not shed
light on this more general setting as we substantially use the properties of the planar embedding
of G,: Indeed, planarity allows to “glue” paths that intersect each other via sprinkling (see the
proofs of Theorem 5.1 and Proposition 5.2), and to use duality in an auxiliary percolation on
the Z? lattice in the proof of Corollary 5.8.

Besides the study of the largest component sizes, a second motivation for studying G(A, p) is
the following ‘duality’ question. Recalling the definition of A.(p) in (1), for every A € [X¢, 00),
we define in a similar way

pc.(A) =inf{p € [0,1]: 0(%, p) > 0}

It is natural to ask whether the two functions A.(p) and p.(A) are strictly monotone, continuous,
and inverse of each other. We give an answer to this question in the following proposition:

Proposition 1.5. For any A € (Ay, o0) and p € (0, 1), one has A.(p.(X)) = X and p.(A-(p)) =
D, respectively. In particular, L. and p. are inverse bijections, and hence continuous and strictly
decreasing.

The most difficult part of this proposition is the equality p.(r.(p)) = p, which essentially
follows from the results proved by Franceschetti, Penrose and Rosoman in [10]. Thus, our
contribution here is to prove the other equality, which is the easier part. For this, we rely on a
classical bound by Hammersley [13] stating that for any infinite locally finite graph, the bond
percolation threshold is bounded from above by the site percolation threshold, which implies
that p. is a strictly decreasing function of A.

Finally, a third motivation for analyzing the graph G(A, p) is related to Schramm’s locality
conjecture, see [3] and also [7,9,15,17] for some recent progress. Suppose that we are given
an integer k > 1 and a real A > 0. Then, remove all vertices of the random geometric
graph G(X, 1) which have degree larger than some constant k together with all the edges
emanating from them. This defines a subgraph of G(A, 1) in which all vertices have degree
bounded by k. Moreover, as k — oo, these random subgraphs (say rooted at the origin)
converge locally in the Benjamini—Schramm sense to G(A, 1) (see e.g. [2,4] for more on this
notion of local convergence). Thus, we were initially aiming to understand whether the bond
percolation thresholds on these subgraphs converge to p.(}), the bond percolation threshold of
G(X, 1). Our first main result confirms a more general version of this statement. We remark
that, while Schramm’s locality conjecture was stated in terms of vertex-transitive graphs, we
assume translation invariance of the distribution of our graphs. First, a random set embedded
in R? is said to be locally finite if for any bounded domain (2, the restriction of the set to {2
is almost surely finite.

Definition 1.6. Let K > 0 be given. We say that a random graph with a locally finite vertex
set embedded in R? is a K-dependent graph of geometric type if the following two conditions
are satisfied:

e The law of the graph is invariant by any translation of R
e For any two domains (2| and (2, at Euclidean distance at least K, the restrictions of the
graph to (2, and {2, are independent.

We also say that a graph is of geometric type if there exists K > 0 such that it is a K-dependent
graph of geometric type.
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In particular, each of the graphs G(A, p), or more generally any random connection model
is of geometric type. The example mentioned above where vertices with degree larger than a
constant k are removed is another example of a K-dependent graph of geometric type for any
K > 2. In this setting, a convenient notion of local convergence is the following.

Definition 1.7. A sequence (G )x>1 of graphs of geometric type in the sense of Definition 1.6
is said to converge locally to another graph G of geometric type if for any bounded domain
2 C R?, the distribution of the restriction of G, to 2 converges to the distribution of the
restriction of G to {2 as a sequence of finite graphs. In other words, for any finite graph H,

klgglo P((G)e = H) =P(Go = H).
Examples of graph sequences of geometric type which converge to G(A, p) include:

o G(M, pr) for any sequence (Ax)r>1 and (pi)k>1 converging respectively to A and p;

e i, obtained after removing all vertices in G(A, p) with degree larger than k;

. Q;, obtained after removing all vertices in G(A, p) with another vertex at distance at most
¢ (in RY) from them.

A natural guess is that both the bond and the site percolation thresholds are continuous for
this notion of convergence in the following sense. Fix K > 0 and any sequence (Gi)x>1 of
K -dependent graphs of geometric type converging locally to some other graph G. Denote by
pc(Gy) and s.(Gy) respectively the bond and the site percolation thresholds of G; (and similarly
for p.(G) and s.(G)). Then, one should always have

kll>ngo Pc(gk) = Pc(g) and kll>rgo sc(gk) = Sc(g)'

We are able to prove one direction of this claim for bond percolation when the limiting graph
is G(X, 1). We do not address the question of site percolation here, which is a harder problem,
see below for some comments on it.

Proposition 1.8. Fix A > Xo, K > 0, and a sequence of K-dependent graphs (Gi)i>1 of
geometric type which converges locally to G(\, 1) in the sense of Definition 1.7. Then, with
the previous notation, one has

limsup p.(Gi) < pc(1).

k— 00

If in addition Gy is a subgraph of G(A, 1) for any k > 1, then
lim pe(Go) = peh).

In particular this proposition applies to the example of the graph G, obtained after removing
from G(A, 1) vertices with degree larger than k.

Moreover, we remark that the proof works for bond percolation and not for site percolation.
The reason for this hides in the fact that, in general, comparison between bond and site
percolation fails for graphs of unbounded maximum degree. In particular, our proof technique
of sprinkling in new vertices, which might potentially have high degrees, breaks down for site
percolation. This lack of symmetry is also apparent from (the statement of) Theorem 1.1 and
Remark 3.1.
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Plan of the paper. In Section 2 we introduce notation and several preliminary results. Then,
Sections 3 and 4 are dedicated to the proofs of Propositions 1.5 and 1.8. Finally, in Section 5
we present the proof of Theorem 1.1.

2. Notation and preliminaries

2.1. Notation

Given a graph G, we denote by |G| its number of vertices, which we also call its size, and
by L(G) the size of its largest connected component. Given an event A, we denote by A the
complementary event.

We use classical asymptotic notation: for sequences (a,),en and (b,)nen, We say that
a, = 0O(by,), a, = O(b,), and a, = 2(b,) when there exist constants 0 < ¢; < ¢, < 00
and no € N such that for all n > ng, a, < c2b,, c1b, < a, < c3b,, and a, > cb,, respectively.
Moreover, we say that a, = o(b,) when lim,_,» a,/b, = 0. By default the limit variable is
n, and the constants associated to O(-), ©(-) and {2(-) are independent from the parameters of
the problem; if this is not the case, the parameters influencing the constants will be given as
lower indices, for example O,(-) or 6, ,(-).

For any x = (x1, xp) € R? and r > 0, denote A,(r) == [x; —r, x| +r] X [x2 — 1, x0 + 7],
and simply write A(r) when x = 0 := (0, 0) (the origin). Furthermore, for all n € N, we define
A, == [0, /n]* and given a domain 2 C R?, we set 32 to be the boundary of 2. We also
write ||x|| for the Euclidean norm of x € R

Given two domains 2, £ C R? and a graph G with vertex set included in R?, we denote
by 2 & {2, or simply by (2; <> 2, when G is clear from the context, the event that there is
a path in G starting from a vertex in {2, and ending at a vertex in (2. Given a domain {2 C R2,
we shall also write 2; <£> {2, the same event with the restriction that the path is contained in
{2. Furthermore, when (2| (or {2,) is reduced to a singleton {x}, we simply write x.

Now, we introduce some standard notation from percolation theory. Given a fixed graph
G = (V, E) (which in our case shall mostly be Z? or a subgraph of it), a configuration w is
an element of {0, 1}£. As usual, we often identify w with the subgraph of G with vertex set V
and edge set {e : w, = 1}. Edges from this set are called open, and the other edges of G are
called closed. For g € [0, 1], Bernoulli bond percolation with parameter ¢ on G is the product
probability measure P, for which every edge is open with probability ¢, independently of the
other edges (we omit the reference to the base graph G in this notation, as it should always
be clear from the context to which graph it applies). Note that by definition, when the base
graph G is the random geometric graph G(A, 1), the subgraph obtained after Bernoulli bond
percolation with parameter p is G(A, p). We shall either denote its distribution by [P, ,, when
we want to emphasize which parameters we consider, or simply by PP, when they are clear from
the context.

Given a fixed graph G = (V, E), a configuration w is smaller than «’ if for every e € E one
has w, < w,. An event A C {0, 1}£ is increasing if whenever @ € A and @ < &', then also
o' € A, and an event A is decreasing if A is increasing. Then, when considering the random
geometric graph G = G(%, p), we say that an event A is increasing if whenever o and o’ are
two instances of G such that w is a subgraph of o’ and w is in A, then &’ is also in A.
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2.2. Preliminaries

The following well-known inequality shows that two increasing events are positively
correlated. It applies to a wide variety of random models, and both Bernoulli percolation and
the percolated random geometric graph model are among them, see e.g. [8,20].

Lemma 2.1 (Harris Inequality/FKG Inequality). For any q € [0, 1] and any increasing events
A and B, one has

P,(ANB) > P,(AP,(B).
Similarly, for any A > 0, p € [0, 1] and any two increasing events A and B,
Py p(ANB) = PB; (AP ,(B).

A consequence of Lemma 2.1 is the so-called square-root trick: given k increasing (or

decreasing) events (.Ai)f-‘:l, and any ¢g € [0, 1],
max Py(A) = 1= (1 = Py(Ui_ A'Y, @
and similarly with P, , instead of P,.

Now, we present a couple of results concerning Bernoulli bond percolation on Z? which
will be used several times in this work. First we need a result on dependent bond percolation.
For any k € N, we say that a bond percolation on a graph is k-dependent if the states of any
two (families of) edges at graph distance larger than k are independent.

Theorem 2.2 (See Theorem 0.0 in [16]). For every k > 1 and p € [0, 1), there is gy =
qo(k, p) < 1 such that every k-dependent bond percolation measure on 72, satisfying that any
edge is open with probability q > qo, dominates Bernoulli bond percolation with parameter p.

Next, we state a result providing exponential decay of correlations in the subcritical regime.

Theorem 2.3 (/8], Theorem 3.3). For every q € [0, 1/2), there exists ¢, > 0 such that, for all
x €7

Py (0 < x) < exp(—c,llx|).

The last result we shall need on Bernoulli percolation on Z? provides some concentration
for the size of the largest component in finite volume.

Theorem 2.4 (See [21], Theorem 4). Fix n > 1, H, = Z*>N |0, ﬁ]z and q € (1/2, 1]. Denote
by H, , the graph obtained from H, after Bernoulli bond percolation with parameter q. Then,
for every £ > 0, there exists ¢ = c(q, &) > 0 such that Py(L{(H,4) < (1 — &)EL(H,,)) <
exp(—cn).

Since the vertices of our graph are given by a homogeneous Poisson Point Process, the next
formula, known under the name Campbell-Mecke formula, will be useful in our analysis. We
refer to [20] for this version of the theorem, which can simply be deduced from more standard
versions by integrating first against the Bernoulli percolation measure, conditionally on the
Poisson Point Process.
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Lemma 2.5 (Campbell-Mecke Formula). Fix A > 0, p € [0, 1], and let G = G(X, p). For
any non-negative measurable function f on the set of pairs (x, G), where G is a graph whose
vertex set is a locally finite subset of R* and x is a vertex of G, one has

E[ s, G)] = x/ E[f(x, G,)] dx
XePo(1) R?
where G, is obtained by adding x to the vertex set of G, and independently for each other
vertex y of G at distance smaller than one from x, an edge is added between x and y with
probability p.

We continue with a particular case of a theorem by Franceschetti, Penrose and Rosoman [10]
on the critical intensity for the appearance of a giant component in G(A, p).

Theorem 2.6 (See Theorem 2.3 in [10]). For every py, p» € [0, 1] such that p; < pa,
)w:(Pl) > )»c(PZ)

Finally, we state a standard Chernoff-type inequality for Poisson random variables.

Lemma 2.7. Let X be a Poisson random variable with mean A > 0. Then, for any ¢ > 0,

2
P(X — A > &) < 2exp (-ﬁ) .

3. Proof of Proposition 1.5

First, we fix A € (A9, 00) and show that A.(p.(A)) = A. We argue by contradiction, assuming
that A.(p.(A)) # A. We distinguish two cases:

o if A.(p.(X)) > A, then there is & > 0 such that A + ¢ < A.(p.(A)) and thus
O(r + ¢, pc(1)) = 0, and hence p.(A + &) > p.(A). However, p. is a non-increasing
function, so p.(A + ¢€) = p.(A);

o if A.(p.(X1)) < A, then there is & > 0 such that A — ¢ > XA (p.(A)) and thus
O(A — &, p.(A)) > 0, and hence p.(A — &) < p.(A). However, p. is a non-increasing
function, so p.(A — &) = p.(A).

In both cases, our assumption leads to the existence of Ay, Ay € (Ao, 00) satisfying A; < A,
and p.(A1) = pc(A2).

Now, set p = p.(A;) + 6 for some § > 0 to be chosen sufficiently small. It thus holds
that G(A,, p) is supercritical. On the one hand, by a classical result of Hammersley [13] the
bond percolation threshold of G(A;, p), which is p.(A;)/p, is dominated by its site percolation

threshold, which is A.(p)/A,. Hence, AZ < ;‘(()f’z 5- Hence, we find that p.(1,)/p < A (p)/kz On
A

the other hand, 6(A;, p) > 0 since p > pc(kl) s0 Ac(p) < A1. We conclude that < 2o
which rewrites as i—f < ” =1+ (x 5- Choosing § sufficiently small (and using that
pe(Az) > 0) leads to a contraélctlon Wthh proves the equality.

To deduce the equality p.(A.(p)) = p for any fixed p € (0, 1), a similar reasoning provides
two distinct py, po € (0, 1) satisfying A.(p1) = A.(p2), which contradicts the statement of
Theorem 2.6. [J

Remark 3.1. For an infinite connected graph H with site percolation threshold s., bond
percolation threshold p. and maximum degree D > 3, the equality p.(s.(p)) = p holds along
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similar lines without using Theorem 2.6 as a black box. We provide a sketch of the argument.
Suppose for contradiction that p.(s.(p)) # p for some p as above. Then, as in the proof of
Proposition 1.5, there exist p; < py with s.(p1) = sc(p2) € (0,1). Set s = s.(p2) + § for
some § € (0, 1 —s.(p2)) to be chosen below, and consider the graph H(s, p,) obtained from H
after site percolation with parameter s and bond percolation with parameter p,. By a result of
Grimmett and Stacey [12] we have s, < 1—(1—p.)P~!, or equivalently (1—p.)P~! < 1—s, (see
also [6] for stronger results in this direction). Moreover, note that 6(s, p;) > 0 since s > s.(p1),
and thus p.(s) < p;. Hence, applying the above inequality from [12] for H=H (s, p2) (which
has maximum degree at most D, site percolation threshold s.(p.)/s and bond percolation
threshold p.(s)/p2), we infer

D—1 D—1
<1 _ &) < (1 _ PC(S)> —1- b(-(ﬁ))D_l <1— SL-(ﬁ) _ s —se(pe) _ §
P2 s s

Hence, choosing § sufficiently small (and using s.(p,) > 0), we have the desired contradiction,
and thus p.(A.(p)) = p.

4. Proof of Proposition 1.8

We first prove that Bernoulli bond percolation preserves local convergence. For complete-
ness, we also include the case of site percolation as it may be of independent interest.

Lemma 4.1. Let (Gy)i>1 be a sequence of graphs of geometric type converging locally to G
in the sense of Definitions 1.6 and 1.7. For p € [0, 1], consider the subgraphs Q,f(p) and G(p)
obtained after performing respectively Bernoulli bond and site percolation on Gy, and similarly
for GP(p) and G*(p). Then, these graphs are of geometric type and moreover (g,’; (P)ik>1 and
(Gi(p))k=1 converge locally respectively to G*(p) and G*(p).

Proof. The fact that a graph of geometric type remains in this class after bond or site
percolation is immediate from the definition. Now, assume that (Gi)r>1 converges locally to
G, and let p € [0, 1] be fixed. Let us consider first the case of bond percolation, which is
slightly easier. Fix {2 to be some bounded domain of R?, and let H be some finite graph. Note
that if H is obtained from another graph H’ after bond percolation, then H’ belongs to the
finite set A(H) of finite graphs with the same vertex set as H and containing H as a subgraph.
Therefore, denoting by E(H) the set of edges of a graph H, and taking advantage of the fact
that A(H) is a finite set, we get

i b = H) = 1 — H')plEH) E(H")|—|E(H)
klirgoIP’(gk(p)m = H) _klgrolo Z P((Go)yo = H')p!FHI(1 — p)lEHII-IEED
H'c A(H)
= 3 P(Go = H)pEHI(1 — p)lEHI-IEGD]
H'e A(H)
=P(G"(p)o = H).
We now consider the case of site percolation. The only additional difficulty is that now the

set B(H) of graphs which can give rise to a fixed graph H after site percolation is infinite.
However, denoting by V(H) the set of vertices of a graph H, and using Fatou’s lemma, we
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deduce
L. s - .. oy V(H V(H)| |V (H)
H'eB(H)
= Z ]P)(g”) = H’)p‘v(H)‘(l — p)lV(H/)‘*‘V(H)‘
H'eB(H)

=P(G'(p)o = H).

Since this holds for any finite graph H, by another application of Fatou’s lemma, we infer

I = liminf Z (Gi(p)o = Z likmianP’((Qk)m =H)
H finite H finite -
>Z (@(po=H)=1.
H finite

Hence, for any finite graph H, limy_, P(gg(p)m = H) = P(gs(p)m = H), which
concludes the proof of the lemma. [J

Now, we prove Proposition 1.8. Let A > Ag, and K > 0 be given. Let also (Gy)i>1 be a
sequence of K-dependent graphs of geometric type converging to G(X, 1). We need to prove
that limsup,_, o pc(Gr) < pc(A). To this end, we fix some p > p.(1) and show that, with
the notation from Lemma 4.1, for all k sufficiently large, g,’;( p) contains an infinite connected
component.

The proof relies on a finite-size criterion. Consider a tessellation 7~ of R? into squares of
side length /m, where m is a constant to be chosen sufficiently large later. For each square
Q in T, consider a partition of the square into 4 smaller squares of side length /m/2, say
{Oi}1<i<a. Then, for a random graph with vertex set embedded in R2, consider the event Ao
that the following holds:

e The second-largest component in Q has size at most M(A 200-p)

e The largest components in each of the squares Q;, for l e {1, 2, 3, 4}, have size at least
AG(/S\,p)m
Also, for two squares Q and Q' of 7 sharing a common edge, consider the square Q" of side
length /m in-between Q and Q’, which is the union of the two smaller squares of Q touching
Q' together with the two smaller squares of Q' touching Q. Then, define

AQ,Q/ = .AQ n .AQ/ N .AQ//.

On the one hand, on Ay ¢, the two largest components of Q and Q' are connected by
construction. On the other hand, by Theorem 1.1 (or by the results of [20]) we know that for
every 6 > 0 and every sufficiently large m, Py ,(Ap o) > 1 — 8. Now, with a slight abuse of
notation, denote by P , the distribution of Q,i’ (p). Then, by definition of the local convergence,
Lemma 4.1 and the fact that Ag o is a local event one has that, for any sufficiently large k
and any two squares Q and Q' sharing a common edge, Py ,(Ag o) = 1 —26. On the other
hand, considering the graph isomorphic to Z> with vertex set the squares in 7, and declaring
the edge between two neighboring squares Q and Q' open if the event Ay o holds, defines
a bond percolation process on Z>. For every m > K, by hypothesis, this bond percolation is
1-dependent for each of the graphs g;;( p). Therefore, by Theorem 2.2, choosing & small enough
(and then m large enough) allows us to make this graph supercritical for any sufficiently large
k, and thus proving that all the graphs g,’;( p) have an infinite connected component.
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The last part of the theorem is immediate since the critical bond percolation is a decreasing
function for the partial order given by the inclusion of graphs. This concludes the proof of
Proposition 1.8. O

5. Proof of Theorem 1.1

From now on, A > 0 and p € (0, 1] are fixed parameters such that A > A.(p). This in
particular ensures that G = G(A, p) contains an infinite connected component almost surely.

The proof of Theorem 1.1 is divided into three parts. In Section 5.1 we prove that a.a.s. G,
contains a connected component of size {2 ,(n). Despite the fact that this result has already
been proved very recently by Penrose [20], its proof serves as a base for the second and
third steps. In Section 5.2 we prove that a.a.s. the second-largest component in G, has size
6., p((log n)?), and finally in Section 5.3 we show that n~'Li(G,) converges almost surely to
AO(A, p) as n — oo.

We introduce some additional notation, which will be used throughout this section. A
horizontal crossing of a rectangle [a, b] X [c,d] in G is a path in G with edges, embedded as
straight segments in the plane, such that:

o the first edge intersects the segment connecting (a, ¢) and (a, d);

e all edges in the path but the first and the last ones are included in the rectangle
[a, b] X [c,d];

o the last edge intersects the segment connecting (b, ¢) and (b, d).

A vertical crossing is defined analogously. We denote by H([a, b] x [c, d]) (respectively
V(la, b] x [c,d])) the event “a path in G crosses the rectangle [a, b] X [c, d] horizontally
(vertically, respectively)”. We also let H(b, d) and V(b, d) denote the events H ([0, b] x [0, d])
and V([0, b] x [0, d]), respectively.

5.1. The existence of a giant component

This section is devoted to the proof of the fact that, in the supercritical regime, a.a.s. the
graph G, contains a component of linear size, which we state as a separate theorem.

Theorem 5.1. Assume that A > 0 and p € (0, 1] are such that A > A.(p). Then a.a.s. one
has Li(G,) = 0, ,(n).

The proof of this theorem is divided into two main parts. Firstly, we show in Proposition 5.2
that for any ¥ > 0 the event H(k R, R) holds a.a.s. as R — o0. The proof of this part is
inspired by the proof of Corollary 4.2 in [1] in the context of a closely related model but,
since we perform bond percolation on top of the random geometric graph, two intersecting
edges need not necessarily be part of the same connected component (as is the case for the
random geometric graph without percolation). To circumvent this difficulty, we use a carefully
designed sprinkling procedure, as was sketched in the introduction.

In the second part, we construct an auxiliary graph that dominates a supercritical Bernoulli
bond percolation on Z?. Then, we rely on known results for supercritical bond percolation
on finite boxes of Z? and transfer them to the original graph by using that, by construction,
any linear-sized subgraph of the auxiliary graph corresponds to a linear-sized subgraph of the
original graph.
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Fig. 1. Connecting the box A(R/6) to the box A(R/2): in this case, the rectangles associated to the events Cx and
Dpg are separated from the rest of the R x R square by dashed lines, and the path traverses vertically the rectangle
on top, so the event Cg is realized (the rotated rectangles associated to the events Az and By are not explicitly
separated).

We start with the first part.

Proposition 5.2. Assume that A > 0 and p € (0, 1] are such that ). > \.(p). Then for every
k >0, one has P, ,(H(kR, R)) — 1, as R — oc.

Proof. The proof has four steps. The first one is to prove the result for « = 1/3. The second
step uses a result of Penrose [20] saying that with probability bounded away from zero, for
some large enough constant K and two squares of side length K at distance R from each other,
there exist one vertex in the first square and another in the second square that are connected
by a path that stays within a box of side length 4R containing its endpoints. Note that K is a
large but fixed constant, and that we let R tend to infinity, so that R > K. In a third step, we
prove that with probability bounded away from zero there is a path surrounding the box A(R)
inside A(3R). Finally, as a last step, we prove that if the result holds for a given « > 0, then
it also holds for all «’ € [k, 2k).

Step 1. We show that P(H(R/3, R)) — 1 as R — oo. Define the events
Ar = H(R/6, R/2] x [-R/2, R/2]), Bgr=H(—R/2, —R/6] x [-R/2, R/2]),
Cr =V(—R/2,R/2] x [R/6,R/2]), Dg=V(—R/2, R/2] x [-R/2, R/6]).

Note that all four events correspond to crossing a rectangle with aspect ratio 3 along its
shorter side. Then, connecting the box A(R/6) to the right (respectively the left, the top, or the
bottom) side of A(R/2) ensures that the event Ag (respectively Bg, Cg, or Dg) is realized, see
Fig. 1.

Thus, the square-root trick (2) and the fact that all four events have probability P(H(R/3, R))
implies that

P(H(R/3, R)) > 1 — (1 — P(Ag U Bg UCg U Dg)*
>1—(1—P(AR/6) < R*\ A(R/2))"*.
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Since by definition G(A, p) contains an infinite component almost surely, the probability that
the box A(R/6) intersects the infinite component tends to 1 as R — oo, which finishes the
proof of Step 1.

Step 2. For every sufficiently large constant K > 0, one has
liminf P(AKK) €2 Agja.0/(K)) > 0.
R—o0

This result is proved in [20], see the proof of Proposition 2.6 therein, and we refer to this paper
for details. Let us stress that, in particular, both Steps 1 and 2 use the hypothesis A > A.(p).

For the third step, we need a couple of new definitions. For x € R? and r, R > 0 satisfying
0 < r < R, we define the annulus

Ax(r, R) == A:(R) \ A:(r),
and the event
Circ,(r, R) := {A,(r, R) contains a cycle of G}.

We also simply write A(r, R) and Circ(r, R) for Ag(r, R) and Circy(r, R), respectively. In the
next step, we prove that large annuli with constant ratio of their radii contain a cycle of G with
probability bounded away from zero.

Step 3. We show that lim infg_, o, P(Circ(R,3R)) > 0. Set r = R/2. Fori € {1, ..., 8}, let

v; =(@{r —2R,2R), viy§=Q2R,2R —ir), vit16= 2R —ir,—2R),
Vi424 = (—2R, —2R + ll’)

Note that the points (vi)?il divide d A(2R) into 32 equal segments of length r. By Step 2 we

know that for every sufficiently large K and R = R(K) and for every i € {1, ..., 32}, we have
Ay (R) 1
P Av,(K) > Aui+l(K) = E’ (3)

where v33 = vy, see Fig. 2.

Since each of the events in (3) is increasing, we conclude by the FKG inequality (Lemma 2.1)
that their intersection, which we call A, has probability at least 2732, Now, for every i €
{1,...,32}, fix a tessellation 7; of the box A,,(K) into squares of side length 1/ V5 (this is
possible by choosing K to be an integer multiple of /5) and let

B={0NPo(A) #@, forall Q € T; and all 1 <i < 32}.

Since A and B are both increasing events, by the FKG inequality there is p > 0 such that
P(A N B) > p, for all sufficiently large R. Also, choose M > 0 so that the event

C={l4,(K)NPo(V)| <M, forall 1 <i <32}

holds with probability at least 1 — p/2. Then, in particular, P(LANB N C) > p/2.

Now, observe that all three events A, BB and C are independent of the state of the edges inside
the squares (A, (K) ?il Indeed, BB and C depend only on Po(1), and A depends on Po(A) and
the state of the edges with at least one endpoint outside these squares. Thus, calling D the event
that, for all i € {1, ..., 32}, the vertices A,,(K) N Po(A) induce a single connected component
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| Ay, (R)
A(R)

t Avyy (K)

t '0 vy (K)

Fig. 2. An illustration of the event described in (3) for i = 11.

from G(A, p), we get P(D | ANBNC) > p32M2. Hence, since ANBNCND C Circ(R, 3R),
we get
32M2

P(Circ(R, 3R)) > PLANBNCND)>PUANBNCPD | ANBNC) > ,0p2 ,

which finishes the proof of Step 3.
For the last step, we use a sprinkling argument.

Step 4. If Py ,(H(kR, R)) — 1 as R — oo for some fixed positive parameters «, A" and p,
then for any A > A’ one also has P, ,(H(2«R, R)) — 1.
Suppose that the statement holds for some given «, A’ and p, and consider the rectangles

IT =[0,2«R] x [0,R], II =[0,kR]x[0,R], IhL =[kR,2«R]x [0, R].

In particular, II; and II, are respectively the left and right halves of 1. Then, divide the segment
between the points (¢ R, 0) and (¢« R, R) into N segments Iy, ..., Iy, of equal length, where
N e N will be chosen appropriately later. Also, for any i € {1,..., N} and j € {1, 2}, let B; ;
be the event that /I; contains a horizontal crossing which intersects /;. For any fixed N, using
our assumption and the square-root trick (2), we have for both j € {1, 2} that

max Py ,(Bi ;) = 1 = (1 =Py ,(H(kR, Y)Y,

1<i<N

which tends to 1 as R — oo. Denote by i the smallest index realizing the maximum above
(it is the same for both j € {1, 2} by symmetry of II; and II;), and let xy be the midpoint of
the interval I;;.
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/
Ve Jhoi1

Ak

Ake+1

Fig. 3. In the figure, the central vertex is xo; around it, there are two cycles, yi, and yg, e positioned in the
annuli Ay, and A, . Note that yk’( = Yk but yk/l+l S Yoyt (Vk,t and yk/ul are thickened while Ve \yk’Hl is
transparent). The proportions of the side lengths of the boxes, centered at xo, are not the real ones in the above
schematic representation.

By Step 3, there exist Ry and § > 0 such that for every R > Ry, P); ,(Circ(R, 3R)) > 4.
Assume now that R/N > R; and define

K = |_10g4(min(/<, 1/2)N)J —1, and D:=R/N.

For every k € {0, ..., K}, define further the annulus A; = Axo(4kD, 3.4*¥D) and note that, by
construction, any horizontal crossing of II} or II, that intersects [;, also crosses each of these
annuli. Denote by D, the event that there is a cycle inside the annulus A;. Recall that by Step
3 and our choice of constants, each of these events has probability at least § > 0 under PP, ,.
Let D == (Y0, Ip, > §K/2} denote the event that in at least §K /2 many annuli A there
exists a cycle. Since (]lpk),f:(, dominates an independent family of K 4 1 Bernoulli random
variables with parameter §, Chernoff’s inequality implies that D holds with probability at least
1 — exp(—2(6K)). In particular, for every ¢ > 0 and for every sufficiently large R (allowing
for N and K to be sufficiently large as well), the event B;, | N B;, » N'D holds with probability
at least 1 — ¢.

Now, we first sample the graph G()/, p), and perform a sprinkling to connect the crossings
of Il and I, intersecting ;, to one of the cycles around xy on the event B;, 1 N B, » N D. For
this, fix some A > A" and recall that by some well-known properties of Poisson Point Processes
one may construct the graph G(A, p) by first sampling independent copies of G(A', p) and
G(L—2/, p), and then adding independently an edge between any pair of vertices v € G(\/, p)
and v' € G(A — )/, p) satisfying ||v — v’|| < 1 with probability p.

So, assume that the event B;, | N13;, 2D holds for G()’, p), and let Py and P, be horizontal
crossings of II} and I, respectively. Also, set L = [§K/2] and let ()/;%)EL:l be cycles of
G(), p) provided by D in the annuli (A, )%, , respectively. Note that parts of these paths may
be outside II. Thus, for every £ € {1, ..., L}, denote by yk//z C v, a path or a cycle whose
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vertices, except possibly the first and the last one, are in I/ and which separates xy from the
left and the right side of II, see Fig. 3. Then, connecting the paths P; and P, to the same path
or cycle among (yk’z )E_, within IT forms a horizontal crossing of II.

Now, for each j € {1,2} and each £ € {1, ..., L}, there are two edges, one in P; and one
in yk’e, that intersect. By the triangle inequality, we claim that there is one endvertex of the first
edge and one endvertex of the second edge which both lie in II; and are at distance at most
3/2 from each other: indeed, letting u; , and v; , be the two endvertices of the first edge, w; ¢
be one of the endvertices of the second edge that lies in II;, and z be the intersection point of
the two edges,

lej e —wiell + lwje —vjell
2

min{fluj ¢ — wjell, lwje —vjel} <

- Nlej o — zll + llz — vjell + 2]z — wjell <

= 5 =

Fix two vertices as above, and note that the area of the region, obtained by intersecting the

two unit balls centered around them and I}, is at least the area of the intersection of the unit

balls around 0, around (3/2, 0) and the quarter-plane {(x, y) : x, y > 0}, which we denote by «.

We conclude that, for every £ € {1, ..., L}, Py and P, connect to y, after adding G(A -2, p),

with probability at least ((1 — e’(’\’*/)“) p*)? and these events are all independent of each other

since the annuli (Ak)f:0 are disjoint. Thus, for every sufficiently large R, the probability that
G (X, p) contains a horizontal crossing of II is at least

(1—e)(1— (1= (1 —e *2phly > 1 26

3
5

Since this statement holds for any € € (0, 1), the proof of Step 4 is completed.
To conclude, note that altogether the four steps prove Proposition 5.2. [

In the proof of Step 4 above we saw how to glue crossings of two parallel copies of the
same rectangle to form a longer crossing. In the next remark, we extend this gluing procedure
to the setting of two orthogonal copies of the same rectangle, as we shall need this later, e.g.
in the proof of Theorem 5.1. We omit its proof since it requires only minor modifications to
the proof of Step 4 above.

Remark 5.3. Fix « > 1 and some A > A.(p). Then, consider the rectangles I; =
[0, «R] x [0, R] and II; = [0, R] x [0, k R]. Also, fix any positive integer N > 3 and denote
ay = 1/2 - N""and By = 1/2 4+ N~!. From Proposition 5.2 we know that the rectangle
II :=[1,kR—11x[ayR, By R] C I3 (respectively Il := [an R, By R1x[1,k R—1] C IIy) is
crossed horizontally (vertically, respectively) in G()/, p) a.a.s. as R — oo, where ' = %C(p).
By considering a number of disjoint annuli around the square [ay R, By R]?, we deduce as in
Step 4 that any horizontal crossing of II; and any vertical crossing of II, connect within /3N,
in G(x, p) with probability arbitrarily close to 1 when N is sufficiently large.

We are now in position to conclude the proof of the fact that a.a.s. G, has a component of
linear size.

Proof of Theorem 5.1. Fix some large R > 0 so that /n/R € N. Then, tessellate the
square /A, into R x R squares and combine these into horizontal and vertical dominos, that is,
rectangles of dimensions 2R x R and R x 2R, respectively. By identifying dominos with vertices
and declaring that two dominos are neighbors if they are orthogonal and their intersection
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is an R x R square, this defines a graph isomorphic to (a finite subgraph of) Z>. We now
construct an auxiliary random subgraph H,, by applying the following bond percolation on
7% let ) = %ﬂ(m, and call a domino admissible if a thinner inner rectangle, as described
in Remark 5.3, is crossed by an open path in G()/, p). In this case, we associate to this
domino an arbitrary one of these paths. Then, we say that the edge between two neighboring
admissible dominos II; and 11, is open if their corresponding paths are connected by a path in
I NI, N G(X, p). By Proposition 5.2 and Remark 5.3, every edge is open with a probability
that can be made arbitrarily close to 1 by choosing R sufficiently large (see the proof of
Step 4 above). Moreover, the states of two edges at distance larger than 2 are independent.
In other words, Hyyy is obtained via a 2-dependent bond percolation on Z2. Thus, by applying
Theorem 2.2 we deduce that, by choosing R sufficiently large, one can ensure that Hy
dominates an independent bond percolation with parameter g = 3/4, say. Moreover, it is well
known that the critical threshold for independent bond percolation on Z? is equal to 1/2 and
also that, in the supercritical regime, by Theorem 2.4, the largest component in the box A, is
a.a.s. of size 2,(n) as n — oo. Finally, notice that, since R is a large but fixed constant, if
H,,x contains a component of linear size, then G, does as well, which concludes the proof of
Theorem 5.1. O

5.2. The second-largest component

This section is dedicated to the proof of the following theorem. Recall that we assume
throughout that A and p satisfy A > A.(p).

Theorem 5.4. A.a.s. the second-largest component in G,(A, p) has size 0, ,((log n)?).

The proof is divided into two parts. We start with the lower bound.

Proposition 5.5. A.a.s. the second-largest component in G,(A, p) has size (2, ,((log n)?).

Proof. Tessellate the square A, into subsquares of side length lgg)\". On the one hand, for

any given square of the tessellation, the probability that there is no point of Po(X) in it at

5h
hand, by Theorem 5.1, the probability that in such a square there is a connected component of

size {2, ,((log n)?), whose vertices are all at distance at least one from its boundary, is equal
to 1 — o(1). In particular, for any square in the tessellation, the probability that it contains a
connected component of size (2, ,((log n)?) which is disconnected from the rest of the graph
G, is at least (1 —o(1))n=*>. Since there are n!=°!) squares in the tessellation, by Chernoff’s
inequality a.a.s. there is a square that satisfies the above condition, concluding the proof of the
proposition. [

distance at most 1 from its boundary is equal to exp (—A (4]°g" - 4)) > n~%5. On the other

We now aim at showing the upper bound. This will be done in several steps. The first point
is to show that, roughly speaking, in supercritical Bernoulli bond percolation on Z? large boxes
are typically crossed by many disjoint paths (more precisely, the number of crossings typically
has the same order as the side length of the box), see Corollary 5.8 for a more precise statement.
Then, we use the fact observed in the previous section that, in a sense, the continuous model
dominates supercritical Bernoulli bond percolation. We deduce that any small window of side
length of order logn in A, contains many disjoint cycles surrounding its center. Finally, some
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delicate sprinkling allows us to conclude that a.a.s. for each vertex v in 4,, no path from v
exits the window around v without connecting to at least one of these cycles.

Theorem 5.4 will then follow immediately by combining Proposition 5.5 with the following
upper bound for the second-largest component, which we state as a separate proposition.

Proposition 5.6. A.a.s. the second-largest component in G,(A, p) has size O, ,((log n)?).

To prove this proposition, we first need some preliminary results on ordinary Bernoulli
bond percolation, as mentioned above. For k > 1 and x € 72, we define Ci(x) the kth order
connected component of x as the set of vertices y € Z> which are connected to x by a path
made of any number of open edges and at most k — 1 closed edges. In particular, the first order
connected component is the usual connected component of x. Also, for A C Z2, define C,f (%)
as the kth order connected component of x in Z? \ A. We prove the following lemma:

Lemma 5.7. For any g € [0, 1/2), there are positive constants a and C such that, for any
positive integers k and t, one has

P,( sup |lx|l > t) < C¥exp(—at).
xECk(())

Proof. The proof proceeds by induction on k. The result for k = 1 follows immediately from
Theorem 2.3. Now assume that it holds for some k. Then, for any # > 1, we aim to obtain an
upper bound for ]I”q(supxecwr L@ lIxll = 7). To do this, we take a union bound over all pairs of
neighbors v € C1(0) and w € C,(0) \ C;(0) (that is, vertex v is in the component of the origin
C1(0) and w is a neighbor of v in the complement of C;(0)). Then, by the triangle inequality,
the distance of a vertex x to the origin is at most

lxll < llx —wll + 14 (v,

where we use that ||[v —w]|| = 1 as v and w are neighbors. As such, using a union bound yields
P,( sup x| >1) < Z P,(0 v, 05w, sup fx—w|>t—1-|v]).
XECk+1(0) weZ? xeckcl(ﬂ)(w)

llw—v]l=1
Then, by conditioning on C;(0) and using the induction hypothesis together with the fact that,
for any fixed A C Z2, C,f‘(w) is dominated by C(w), we get

Po( sup fxll =) <4 Py(0 < v)-Py( sup fx| =1 —1—]v])
x€Cp41(0) vez2 xeCr(0)

= Cre - (4e Y0 Py(0 < e, @
veZ?

where the factor of 4 in the first inequality comes from the fact that every vertex in Z? has 4
neighbors. Applying again Theorem 2.3 yields the existence of a sufficiently small « so that the
sum in (4) is finite, which concludes the proof of the induction step for C = 4e* )" ;2 P (0 <
vyl O

As a corollary, we obtain the following fact.
Corollary 5.8. Fix g > 1/2. There exist positive constants C and «, such that for any positive
integers k and N,
P, (There exist k disjoint horizontal crossings in [0,2N] x [0, N]) >1-— ck exp(—aN).
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Proof. Consider the dual graph of Z? (its vertices are the faces delimited by the edges of the
graph Z?, and two faces are adjacent if they share an edge). Recall that one can couple Bernoulli
bond percolation with parameter ¢ (and 1 — g, respectively) on Z? (and its dual, respectively)
by declaring an edge between two vertices of the dual graph open if the edge separating the two
corresponding faces of the original graph is closed, and vice versa. Now it suffices to observe
that if there are no k disjoint horizontal crossings of the rectangle [0, 2N] x [0, N], then the kth
order connected component of one of the vertices, corresponding to the squares with centers
{(1/2 41, —1/2)}1.22’0*1 in the dual graph, reaches the top of the rectangle. By Lemma 5.7, we
know that for any such vertex this happens with probability at most C*¥ exp(—aN) for some
positive constants « and C. Then, using a union bound over the 2N dual vertices on the bottom
side and reducing « by factor of 2, say, concludes the proof. [J

We are now ready to prove the upper bound on the size of the second-largest component
of G,. Its proof goes roughly as follows: To begin with, recall the dominos and the auxiliary
graph H,,x from the proof of Theorem 5.1, and fix a vertex x € G,. We perform some delicate
exploration of the space and use sprinkling only in a few carefully chosen dominos which
have the potential to connect a path from x at distance at most 1 from them with a cycle in G,
going through them. When doing the sprinkling, we require the formation of a dense net of
well-connected points after the second stage, thus making sure that all new points participate
in the giant.

We will write G, for the percolated random geometric graph with vertex set (Po(A)U {x})N
Ay

Proof of Proposition 5.6. Fix A = and recall the construction of G(A, p) from the
independent copies of G()/, p) and G(A — 1/, p) used in Step 4 of the proof of Proposition 5.2.
Consider a sufficiently large R so that /n/R € N. We construct a version of the auxiliary
graph H,, from the proof of Theorem 5.1 as follows: First, reveal G(1/, p) and construct
a vertex in H,y if its corresponding domino contains a path as described in Remark 5.3.
Then, construct an edge between two neighboring vertices of Hyy if, firstly, the paths in their
corresponding dominos I1; and II, intersect at a point surrounded by at least K disjoint cycles
in G(1/, p) as in Remark 5.3, with K to be fixed, and secondly, they are connected within
II N I, in G(A, p). Note that, up to choosing R and K sufficiently large, H,,x dominates a
Bernoulli bond percolation with parameter 3/4 in a box of Z? with side length roughly /7/R.
We next tessellate this new box into overlapping horizontal and vertical rectangles with side
lengths Cylogn and 2C logn called log-dominos, where C; is some large constant satisfying

ze= € N, which will be fixed later. Set

O(C]
W = -logn |,
2logC

with o and C as in Corollary 5.8. Then, consider the event 4, that all log-dominos are crossed
by at least W disjoint paths in H,, along their longer side. Note that on A4, since crossings
of two orthogonal overlapping log-dominos have a common vertex of H,y, all these paths are
connected in H,,x and thus correspond to a connected component 6,, of G, of size O(n).
Moreover, a union bound and Corollary 5.8 tell us that if C; is chosen sufficiently large, then

AtAc(p)
2

P(A,) > 1 —n®exp G%) =1-o0(1). (5)
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We aim to bound the probability that there is a connected component of G, whose diameter is
at least 4C logn without being connected to this giant component. For this, the strategy will
be roughly to show that if such a component exists, say in a square of side length of order
logn centered at a point X € Po(A) N A, it will have to cross many cycles surrounding X in
this window, and we estimate the cost of this scenario by sprinkling G(A — A/, p) on top of
G()/, p). Note that some care is required here; indeed, adding a bit of intensity to the Poisson
process could also help to create new connected components with large diameter. In our proof,
we first discover the cycles of Hyy surrounding X by an exploration from the boundary of a
small box around it towards its center, then find possible paths starting from X and coming
close to these cycles, and finally perform a sprinkling only in constant-sized regions with the
aim to connect the path from X to any of the cycles with probability bounded away from 0.

To be more precise now, for any x € A,, consider the box A} := A,(4C, logn) and define
the event

0r =[x S5 R\ A7),

that is, the connected component of x in G} reaches the complement of A7. Let also U/ be
the event that in the graph Hy, N A} there are W disjoint cycles surrounding x or, in case x
is at distance less than 4Cy logn from 94,, paths from the boundary of H,y to itself, which
all surround the point x when seen as cycles (parts of which may coincide with the boundary
of A,). Note the important fact that, by construction,

Ao S (U (6)

xeA,

On the event Uf}, we denote by C; the outermost cycle of Hy, in A} that surrounds x (or
possibly the outermost path from the boundary of H,, to itself in case x is at distance smaller
than 4C; log n from 9 /A,). With a slight abuse of notation, we alternatively view C; as a cycle in
the graph H,u, a set of dominos in A}, or a cycle in G, obtained by connecting the crossings
associated to the sequence of admissible dominos forming the cycle in Hyy. Let also Cfr be
the enlarged cycle made of the points in A7 at distance smaller than one from C; (viewed here
as a union of dominos).

We next define C, as the outermost cycle surrounding x in the restriction of Hyx to the

region enclosed by C;". Note that on U/, by repeating again this procedure, one can define

inductively a sequence of disjoint cycles Cs, ..., Cw/ (from now on, we assume W to be
even since decreasing it by 1 does not modify the argument), which all surround x and are at
distance at least 1 from each other. Let us define the event I{; that the cycles Cy, ..., Cw/ as

constructed above exist. In particular, U] C ij ; it will turn out later that it is more convenient
to work with the latter for some reasons related to measurability of these events.
Now, fori =1,..., W/2, denote

B, = U* N {none of the paths from x to R?\ A* shares a vertex with C; in G*},

and
w2
By = () B
i=1
Recall that on the event A,, the cycles Ci, ..., Cw/, are all part of the same connected

component in G,. Therefore, if A, holds and the connected component of a point X €
Po(X) N A, reaches dAX in G, without being part of the connected component containing
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the cycles Cy, ..., Cw/2, then necessarily Bf must hold. Thus, our aim now is to bound the
probability of these events.
We start by observing that a union bound and Lemma 2.5 yield

(U ofnB)=g Y ]loé(mgg]z)u//lnIF’(O;ﬂBﬁ)dx,

XePo(MN A, XePo(MN A,

and our goal is thus to bound the probabilities on the right-hand side from above.
Claim 5.9. For any sufficiently large Cy and for every x € A,, P(O* N BY) = o(n").

Proof of Claim 5.9. Fix x € A,, and for simplicity assume that it is at distance at least
4Cqlogn from d4,; the proof in the case of x being closer to 3/, is analogous. We first show
that the probability that a path in G* between x and R?\ A* does not intersect C; is bounded
away from 1. For this, note that C; can be determined by exploring the restriction of Hyyy
to A} by starting from its boundary. More precisely, it suffices to reveal only the connected
components of the dual graph that touch the boundary of Hy,x N A43.

Let U; denote the region inside A which is enclosed by C; (seen as a set of dominos).
Then, conditionally on C;, the distribution of the point configuration in Uj is still that of an
independent Poisson Point Process with intensity A. Moreover, on the event O}, the connected
component of x in G; N U, contains at least one vertex at distance smaller than one from C;.
We define the first one of these vertices as follows.

First, explore G(A, p) in the entire region R; C U, enclosed by C1+. Then, for t > 0, let B,
be the set of points at distance at most ¢ from R;, and let

T := inf{t > 0 : there exists y € d B, such that x ﬂ v}
Note that T is a stopping time with respect to the filtration (F;),>¢ defined by
Fr=0(Ci, G, NB,), forall t > 0.
Moreover, as we already mentioned, one has
O, C{T < oo}. @)

Let X7 be the (almost surely unique) point on d By which is connected to x in G, N Br.
Let Q7 be the (almost surely unique) closest R x R square from X7 which is part of C,
(when viewing C; as a succession of R x R squares by dividing every domino in half), and let
St := Ax,(1) N (U, \ Br) be the part of the box Ax, (1) which is still unexplored when only
C; and Br has been revealed, see Fig. 4. We now define an event £ on which X connects to
C. Firstly, recall that we set ' = %"(”), and we view Po(A) as the union of two independent
Poisson Point Processes with intensities A" and A —A’, respectively. Then, consider a tessellation
into squares of side length 1/+/5 of Q7, and let & =Nixs &, ; be the event that the following
three conditions are satisfied: N

o & . There exists a set P C Po(A — A') containing exactly one point in every square of
the tessellation, and such that every pair of points of P in adjacent squares is connected
by an edge in G(A — A/, p) (points in adjacent squares are always at distance smaller than
one by construction).

e £7,: One of the points in P is connected by an edge between G(A—21’, p) and G(A', p) to
the path associated to one of the dominos in C; containing Q7 (we recall that by definition
these paths are part of G(A/, p)).
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Fig. 4. The figure depicts x, X7 and the square Q7. The dominos in the cycle C; are the ones intersecting the
blue curve. The black contour corresponds to the boundary of C{" while the red contour is the boundary of Br.

o &5 If Xy is at distance smaller than 0.1 from Q7, we ask that it is connected by an
edge in G(A — A/, p) to the closest point of P (this is possible since 0.1 4+ 4/2/5 < 1,
where +/2/5 is the length of a diagonal of a square in the tessellation). If not, we require
that in St there is a point of Po(A — 1) that is connected by an edge in G(A — 1/, p) to
both X7 and a point of P.

Note that, conditionally on G(1', p), £} is an increasing event which is measurable with respect
to G(A — 1A', p). Moreover, by construction, conditionally on the event £}, X7 is connected to
C; (seen here as a cycle in the original graph G,) in G(X, p). We claim that there exists ¢ > 0
(only depending on R, A and p) such that almost surely

PE; | Fr) - Lgxnr<ooy = € - Liirnir<co)- 3

(Note that, while T is clearly JFr-measurable, Z;IV,;‘ is also Fr-measurable since each of
C, . Y Cw/2 is included in R;. In particular, this explains why it is more convenient to work
with U} instead of Uf;.) To see this, notice first that, since T is a stopping time, conditionally
on Fr, the distribution of G, in the region U; \ Br is that of an independent percolated random
geometric graph. Thus, given that the first two conditions are satisfied, the third one is achieved
at a constant cost independently of F7. Otherwise said, there is ¢’ > 0, such that

PE | Fr) - Ugrnreoey = € - PE; 1 NE 5 | Fr) - Uixnir <o)

On the other hand, the first two conditions are more delicate to handle. Observe that, by
construction, conditionally on Fr, the only information that we have on Q7 is that it is part
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of one, two or three admissible dominos whose associated paths get connected in Q7 when
sprinkling Po(A — A’). In particular, all dominos disjoint from the interior of U, that contain
Q17 are admissible and participate in the cycle C;. This has as an important consequence that,
conditionally on G(A, p) in A \ (Qr UU;) and on G(¥/, p) in Qr, the event that Q7 indeed
closes the cycle C; when sprinkling Po(A — 1) is increasing. Therefore, by the FKG inequality
(see Lemma 2.1), conditionally on this event, the probability that the first two conditions of
&Y are satisfied is greater than its corresponding probability without the conditioning. More
precisely,

(11Imgx2|fT) ]lux N{T <oo} _]p(gxl | Fr) - [P(g*2| nl’]:T)']lﬁ;fﬂ{T«)o}

=2 \\7!
z(l_eXp(_ 5 )) PP gy ooy

where we used that there are at most 2|P| edges between adjacent squares in the tessellation
of Q7 in the definition of £ . This proves our claim (8).

Now, letting B‘ = ﬂw/ 2 Bz ; and observing that it is Fr-measurable, we can write

P(BEN{T < oo}) <P(EX N E,;‘ N{T < oo}) < E[IE”(S_,J; | Fr) - ]lg;m{T@o}]
< (1 —e)P(B: N{T < oo},
where for the last inequality we used that the event £ has the same distribution conditionally
on B, and U, respectively, and we can use claim (8) with 1517« instead of Lxnirooop
indeed, the fact whether or not there are edges between paths starting from x and some cycle

among C,, ..., Cw/, is independent from the state of the edges between these paths and C;.
Hence, by (7) and an immediate induction we deduce that

POy NBY) < BB N{T < oo}) < (1 — )"
Then, by choosing the constant C; (defined in the beginning of the proof) large enough, we

can make the previous bound o(n~!), as desired. [J

As a consequence of Claim 5.9, we get

Pl U OfnBY|=o).

XePo(MNA,

Together with (5) this shows that, with probablhty going to 1 as n — oo, any connected
component which is not connected to G, is such that it does not exit the box AX for any of
the vertices X in this component. To conclude, it suffices to observe that, by concentration of
Poisson random variables, it is very unlikely that one of these boxes contains much more than
(logn)? points. Indeed, applying again Lemma 2.5 gives

P( U {1Gnn4¥1 > 28Ci logn?}) < u«:[ S Lignareasc, bgn)z}
XePo()N A, XePo()N A,

= A/ P(IG3 N AL > 20(8C logn)?) dx < AnP(IG N A(4C) logn)| > 2A(8Cy logn)® — 1)
Ay
=o(),

where we use Lemma 2.7 for the last equality. This concludes the proof of the proposition. [J
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Remark 5.10. Apart from the size of the second-largest component in G,, with minor
modifications the proof also implies a stretched exponential decay of |C;(0)| in the infinite-
volume limit conditionally on |C;(0)] < oco. As above, the key point is to establish an upper
bound on the diameter of C;(0). By similar arguments one may show that the event &, that
‘A(n, 2n) = A(2n)\ A(n) contains ©(n) cycles in G(A', p) (with the notation from the previous
proof) that are pairwise at distance at least 1 from each other which all participate in the infinite
component of G(A', p)’ is satisfied with probability 1 — exp(—{2, ,(n)). Thus, partitioning
R? \ A(1) into the annuli (A(2%, 2**1))>¢ and applying the argument from the proof of
Proposition 5.6 to each of them shows that, conditionally on £y, the event 0 M (R2\ A(2%))
and simultaneously |C;(0)| < oo holds with probability at most exp(—{2; ,,(2")). Hence, since
A(2U°en1=2) is included in the ball of radius n/2 around 0, the probability that the Euclidean
diameter of C;(0) is at least n is at most

P(C1(0) N (R \ AQ1E™72)) £ 0) < P(C,1(0) N (R*\ A2M°e"72))
# B | Eogni—1) + P(Esliogn)—1)
= exp(_QA,p(n))~

5.3. The convergence of (n’lLl(Gn)),,zl

First, we recall that the convergence in probability of (n='L{(G,)),=1 to A0(A, p) is proved
in [20]. On the other hand, L,(G,) is bounded by the total number of points of Po(X) in 4,
(which is distributed as a Poisson random variable with parameter An), so this sequence is also
bounded in L? for all p > 1 (e.g. as a consequence of Lemma 2.7). Therefore, the convergence
to A0(X, p) holds in fact in L? for all p > 1.

We now prove the almost sure convergence by using the results of Section 5.2. Fix § < 1/2,
and for any large integer n, let 7, be a tessellation of A, into k := |[n{!=9/2|2 squares with
volume roughly n’. Then, consider the event A, that:

e in each square in 7,,, the largest component has a size of order at least cn®, where ¢ > 0 is
some sufficiently small constant, and any other component has diameter at most (log n)?;
e in /,, the second-largest component has size at most (logn)>.

The proof of Proposition 5.6 shows that, if ¢ is sufficiently small, 4, holds with probability
1 —o(n™2).

Moreover, observe that on the event A,, L{(G,) is equal to the sum of k independent terms
(X i)f.‘:l , all distributed as L(G,,s), up to some error term, which is due to the components lying
in the region R of all points in A, at distance at most (log )? from the boundaries of the squares
of 7,. Foralli € {1, ...k}, let us denote ¥; = min{n?X;,2}, and Y = ¥; + - - - + Y. Then,
since X; > cn® on the event A,, EY; = O(1) for any i € {1,..., k}. Therefore, by Hoeffding’s
inequality (which is a version of Chernoff’s inequality for bounded random variables, see for
example [14]), P(]Y —EY| > 101;”) = exp(—n?M). At the same time, ¥; = n°X; on the
event that the ith square in the tessellation contains at most 2n® points, which happens with
probability at least 1 — exp(—nml)) (see Lemma 2.7), and in particular EY = nEX + o(1).
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As a consequence,

A

POX—EM>

k
k
P(|Y —EY|> P(Y; #n°X;
_logn>_ <| |_210gn>+§( 7 )

IA

P (IY ~EY| 2 ) + kexp(—2(n*)) = exp(—n M),

2logn

On the other hand, the event D, that there are at most n'~%/?(logn)® points in R (which has
area O(n'~%?(logn)?)) holds with probability 1 — o(n™2).
Finally, together with the fact that

1
—E[X] — A08(A) as n — o0,
n

we deduce that,

P(|L1(Gn)—EL1<Gn>|z ! >§P(|X—E[X]Iz ”)
n logn

21o
+P(A,) +P(D,) = o(n™?),

and the fact that ), n™* < oo together with the Borel-Cantelli lemma concludes the proof
of the almost sure convergence.
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