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Abstract

The percolated random geometric graph Gn(λ, p) has vertex set given by a Poisson Point Process in
the square [0,

√
n]2, and every pair of vertices at distance at most 1 independently forms an edge with

robability p. For a fixed p, Penrose proved that there is a critical intensity λc = λc(p) for the existence
f a giant component in Gn(λ, p). Our main result shows that for λ > λc, the size of the second-largest
omponent is a.a.s. of order (log n)2. Moreover, we prove that the size of the largest component rescaled
y n converges almost surely to a constant, thereby strengthening results of Penrose.

We complement our study by showing a certain duality result between percolation thresholds
ssociated to the Poisson intensity and the bond percolation of G(λ, p) (which is the infinite volume
ersion of Gn(λ, p)). Moreover, we prove that for a large class of graphs converging in a suitable sense
o G(λ, 1), the corresponding critical percolation thresholds converge as well to the ones of G(λ, 1).
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1. Introduction

The theory of percolation was introduced by Broadbent and Hammersley [5] more than
0 years ago. In the most classical setting, one is given a subgraph of Zd for some d ≥ 2
here every edge appears with probability p ∈ [0, 1], independently of all other edges. While

he model has a very simple definition, it undergoes a phase transition for the existence of an
nfinite component which is not completely understood to this day.

Several years after Broadbent and Hammersley, Gilbert [11] proposed a new mathematical
odel of wireless networks, which gave rise to the field of continuum percolation. His model,

nown as the Random Geometric Graph, is defined as follows: given λ, R > 0, the vertices
of the graph are given by a Poisson Point Process with intensity λ in R2, and whose edges
re given by the pairs of points at distance at most R. In fact, as mentioned in his paper, one
f the two parameters λ and R may be put to 1 by a suitable homothety of the plane. Later,
eester and Roy [18] generalized Gilbert’s model by connecting randomly and independently

airs of points in the Poisson process with a probability depending on their relative positions,
hus introducing the random connection model. In this paper, we aim at studying a particular
xample of the random connection model obtained by performing standard Bernoulli bond
ercolation on top of Gilbert’s model, often called soft random geometric graph or percolated
andom geometric graph.

.1. Formal setup and our results

For λ > 0, denote by Po(λ) a Poisson Point Process in R2 of intensity λ. Then, we define
G(λ, 1) as the random geometric graph with vertex set Po(λ) and edge set the set of pairs of
vertices at Euclidean distance at most one. Given p ∈ [0, 1], we further define G = G(λ, p)
as the graph obtained from G(λ, 1) after Bernoulli bond percolation with probability p.

We will often consider Po(λ) conditioned on containing the origin, that is, we add artificially
the origin to the point process (this construction is known in a more general setup under the
name Palm theory, see for instance [19]). Then, we shall denote by θ (λ, p) the probability that
the connected component of the origin in G is infinite. By classical considerations from ergodic
theory (see e.g. [18]) one may deduce the existence of a deterministic threshold λ0 ∈ [0,∞]
(in fact, a standard coupling argument with site percolation on Z2 (see [18,19]) shows that
λ0 ∈ (0,∞)) such that:

• for all λ > λ0, the graph G(λ, 1) contains an infinite connected component almost surely,
and in particular θ (λ, 1) > 0;
• for all λ < λ0, the graph G(λ, 1) contains no infinite component almost surely, and in

particular θ (λ, 1) = 0.

For every p ∈ (0, 1] we define then

λc(p) = inf{λ ∈ R : θ (λ, p) > 0}. (1)

Moreover, for n ≥ 1, we consider the restriction Gn = Gn(λ, p) of G to the square [0,
√

n]2.
lso, we denote by L1(Gn) the number of vertices in the largest connected component of Gn .
We say that a sequence of events (En)n≥0 holds asymptotically almost surely (which we

bbreviate by a.a.s.) if P(En)→ 1 as n→∞. A sequence of random variables (Xn)n≥0 is said
o be a.a.s. of order Θλ,p( fn) if there exist positive constants c and C , which might depend on

and p, such that P(c f ≤ X ≤ C f )→ 1 as n→∞.
n n n
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Our main contribution is a sharp result on the size of the second largest component of
G(λ, p) restricted to a square of area n. It extends a recent result by Penrose [20] who proved
hat the size of the largest connected component of Gn rescaled by n converges in probability to
λθ (λ, p), while the size of the second-largest component divided by n converges in probability
to 0. More precisely, we have the following main theorem:

Theorem 1.1. Fix λ > 0 and p ∈ (0, 1], such that λ > λc(p). Then (n−1L1(Gn))n≥1 converges
lmost surely to λθ (λ, p). Moreover, the size of the second-largest component in Gn is a.a.s.
f order Θλ,p

(
(log n)2

)
.

The proof of the almost sure convergence for the largest component is based on estimates
or the probability of crossing large rectangles with a fixed length-to-width ratio. The main
ifficulty here is that two edges that intersect (geometrically) in an interior point may still be
n different connected components because of the bond percolation. To solve this problem, we
se the classical technique of sprinkling, which consists of revealing the Poisson Point Process
n two steps with the idea to locally connect two crossing edges present after the first step with
ositive probability.

The result on the size of the second-largest component is the most delicate part. Proving the
ower bound is the easier part: it consists simply in observing that in the square [0,

√
n]2, there

s a.a.s. a subsquare of side length of order log n with no point at distance 1 from its boundary
nd that contains at least c(log n)2 points for some c > 0. The proof of the upper bound is more
laborate. The main idea is the following: we begin by proving that a.a.s. every point x in the
quare [0,

√
n]2 is surrounded by ‘many’ cycles in the giant component of Gn close to x . Hence,

f the connected component of x ∈ Gn has ‘large’ Euclidean diameter, it necessarily intersects
eometrically each of the above cycles. In this case, the argument of sprinkling that was used
or the largest component does not work directly: although adding new points would help to
onnect x to the giant component, it could also create new components with large diameter.
e overcome this difficulty by using local sprinkling only rather than global sprinkling. This

llows us to prove that components with large diameter (which thus cross many cycles) must
e part of the giant component, and at the same time no new components with large diameter
re created.

emark 1.2 (A Generalization of the Model). In fact, a careful inspection of our proof shows
hat Theorem 1.1 holds for the more general random connection model mentioned above.

ore precisely, denote by D the unit disc centered at the origin, and fix an even function
g : D → (0, 1] with bounded support. Then, the random graph G(λ, g) may be defined as

subgraph of G(λ, 1) in which every edge between two vertices x and y is retained with
robability g(x − y), independently of all other edges. In particular, the graph G(λ, p) is a
pecial case of this generalized setting with g constant equal to p. Then, by defining λc(g) and
(λ, g) as before, Theorem 1.1 holds for this more general setup with almost the same proof.
owever, in order to keep the notation of the paper simple, we decided to present a proof in

he simpler percolated random geometric graph model only.

emark 1.3 (Stretched Exponential Decay in the Supercritical Regime). The proof of
heorem 1.1 easily implies that in the infinite volume setting, the origin is in a component of
ize at least n without being part of the infinite component with probability at least exp(−c

√
n)

or some c = c(λ, p) > 0. For more details, see Remark 5.10.
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Remark 1.4. We note that the question about the size of the second largest component of the
raph Gn in dimension more than two remains open. Unfortunately, our techniques do not shed

light on this more general setting as we substantially use the properties of the planar embedding
of Gn: Indeed, planarity allows to “glue” paths that intersect each other via sprinkling (see the
proofs of Theorem 5.1 and Proposition 5.2), and to use duality in an auxiliary percolation on
the Z2 lattice in the proof of Corollary 5.8.

Besides the study of the largest component sizes, a second motivation for studying G(λ, p) is
the following ‘duality’ question. Recalling the definition of λc(p) in (1), for every λ ∈ [λ0,∞),
we define in a similar way

pc(λ) = inf{p ∈ [0, 1] : θ (λ, p) > 0}.

t is natural to ask whether the two functions λc(p) and pc(λ) are strictly monotone, continuous,
nd inverse of each other. We give an answer to this question in the following proposition:

roposition 1.5. For any λ ∈ (λ0,∞) and p ∈ (0, 1), one has λc(pc(λ)) = λ and pc(λc(p)) =
p, respectively. In particular, λc and pc are inverse bijections, and hence continuous and strictly
decreasing.

The most difficult part of this proposition is the equality pc(λc(p)) = p, which essentially
follows from the results proved by Franceschetti, Penrose and Rosoman in [10]. Thus, our
contribution here is to prove the other equality, which is the easier part. For this, we rely on a
classical bound by Hammersley [13] stating that for any infinite locally finite graph, the bond
percolation threshold is bounded from above by the site percolation threshold, which implies
that pc is a strictly decreasing function of λ.

Finally, a third motivation for analyzing the graph G(λ, p) is related to Schramm’s locality
conjecture, see [3] and also [7,9,15,17] for some recent progress. Suppose that we are given
an integer k ≥ 1 and a real λ > 0. Then, remove all vertices of the random geometric
graph G(λ, 1) which have degree larger than some constant k together with all the edges
emanating from them. This defines a subgraph of G(λ, 1) in which all vertices have degree
bounded by k. Moreover, as k → ∞, these random subgraphs (say rooted at the origin)
converge locally in the Benjamini–Schramm sense to G(λ, 1) (see e.g. [2,4] for more on this
notion of local convergence). Thus, we were initially aiming to understand whether the bond
percolation thresholds on these subgraphs converge to pc(λ), the bond percolation threshold of
G(λ, 1). Our first main result confirms a more general version of this statement. We remark
that, while Schramm’s locality conjecture was stated in terms of vertex-transitive graphs, we
assume translation invariance of the distribution of our graphs. First, a random set embedded
in R2 is said to be locally finite if for any bounded domain Ω , the restriction of the set to Ω
is almost surely finite.

Definition 1.6. Let K > 0 be given. We say that a random graph with a locally finite vertex
set embedded in R2 is a K -dependent graph of geometric type if the following two conditions
are satisfied:

• The law of the graph is invariant by any translation of R2.
• For any two domains Ω1 and Ω2 at Euclidean distance at least K , the restrictions of the

graph to Ω1 and Ω2 are independent.

We also say that a graph is of geometric type if there exists K > 0 such that it is a K -dependent

graph of geometric type.
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In particular, each of the graphs G(λ, p), or more generally any random connection model
s of geometric type. The example mentioned above where vertices with degree larger than a
onstant k are removed is another example of a K -dependent graph of geometric type for any

K > 2. In this setting, a convenient notion of local convergence is the following.

efinition 1.7. A sequence (Gk)k≥1 of graphs of geometric type in the sense of Definition 1.6
s said to converge locally to another graph G of geometric type if for any bounded domain
⊆ R2, the distribution of the restriction of Gk to Ω converges to the distribution of the

estriction of G to Ω as a sequence of finite graphs. In other words, for any finite graph H ,

lim
k→∞

P
(
(Gk)|Ω = H

)
= P

(
G|Ω = H

)
.

Examples of graph sequences of geometric type which converge to G(λ, p) include:

• G(λk, pk) for any sequence (λk)k≥1 and (pk)k≥1 converging respectively to λ and p;
• Gk , obtained after removing all vertices in G(λ, p) with degree larger than k;
• Ĝε, obtained after removing all vertices in G(λ, p) with another vertex at distance at most

ε (in Rd ) from them.

A natural guess is that both the bond and the site percolation thresholds are continuous for
this notion of convergence in the following sense. Fix K > 0 and any sequence (Gk)k≥1 of
K -dependent graphs of geometric type converging locally to some other graph G. Denote by
pc(Gk) and sc(Gk) respectively the bond and the site percolation thresholds of Gk (and similarly
or pc(G) and sc(G)). Then, one should always have

lim
k→∞

pc(Gk) = pc(G) and lim
k→∞

sc(Gk) = sc(G).

e are able to prove one direction of this claim for bond percolation when the limiting graph
s G(λ, 1). We do not address the question of site percolation here, which is a harder problem,
ee below for some comments on it.

roposition 1.8. Fix λ > λ0, K > 0, and a sequence of K -dependent graphs (Gk)k≥1 of
eometric type which converges locally to G(λ, 1) in the sense of Definition 1.7. Then, with
he previous notation, one has

lim sup
k→∞

pc(Gk) ≤ pc(λ).

f in addition Gk is a subgraph of G(λ, 1) for any k ≥ 1, then

lim
k→∞

pc(Gk) = pc(λ).

In particular this proposition applies to the example of the graph Gk obtained after removing
rom G(λ, 1) vertices with degree larger than k.

Moreover, we remark that the proof works for bond percolation and not for site percolation.
he reason for this hides in the fact that, in general, comparison between bond and site
ercolation fails for graphs of unbounded maximum degree. In particular, our proof technique
f sprinkling in new vertices, which might potentially have high degrees, breaks down for site
ercolation. This lack of symmetry is also apparent from (the statement of) Theorem 1.1 and
emark 3.1.
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Plan of the paper. In Section 2 we introduce notation and several preliminary results. Then,
ections 3 and 4 are dedicated to the proofs of Propositions 1.5 and 1.8. Finally, in Section 5
e present the proof of Theorem 1.1.

. Notation and preliminaries

.1. Notation

Given a graph G, we denote by |G| its number of vertices, which we also call its size, and
y L1(G) the size of its largest connected component. Given an event A, we denote by A the
omplementary event.

We use classical asymptotic notation: for sequences (an)n∈N and (bn)n∈N, we say that
n = O(bn), an = Θ(bn), and an = Ω (bn) when there exist constants 0 < c1 < c2 < ∞

nd n0 ∈ N such that for all n ≥ n0, an ≤ c2bn , c1bn ≤ an ≤ c2bn , and an ≥ c1bn , respectively.
oreover, we say that an = o(bn) when limn→∞ an/bn = 0. By default the limit variable is

, and the constants associated to O(·), Θ(·) and Ω (·) are independent from the parameters of
he problem; if this is not the case, the parameters influencing the constants will be given as
ower indices, for example Op(·) or Θλ,p(·).

For any x = (x1, x2) ∈ R2 and r ≥ 0, denote Λx (r ) := [x1 − r, x1 + r ] × [x2 − r, x2 + r ],
and simply write Λ(r ) when x = 0 := (0, 0) (the origin). Furthermore, for all n ∈ N, we define

n := [0,
√

n]2 and given a domain Ω ⊆ R2, we set ∂Ω to be the boundary of Ω . We also
rite ∥x∥ for the Euclidean norm of x ∈ R2.
Given two domains Ω1,Ω2 ⊆ R2 and a graph G with vertex set included in R2, we denote

y Ω1
G
←→ Ω2, or simply by Ω1 ↔ Ω2 when G is clear from the context, the event that there is

path in G starting from a vertex in Ω1 and ending at a vertex in Ω2. Given a domain Ω ⊆ R2,
e shall also write Ω1

Ω
←→ Ω2, the same event with the restriction that the path is contained in

. Furthermore, when Ω1 (or Ω2) is reduced to a singleton {x}, we simply write x .
Now, we introduce some standard notation from percolation theory. Given a fixed graph
= (V, E) (which in our case shall mostly be Z2 or a subgraph of it), a configuration ω is

n element of {0, 1}E . As usual, we often identify ω with the subgraph of G with vertex set V
nd edge set {e : ωe = 1}. Edges from this set are called open, and the other edges of G are
alled closed. For q ∈ [0, 1], Bernoulli bond percolation with parameter q on G is the product
robability measure Pq for which every edge is open with probability q, independently of the
ther edges (we omit the reference to the base graph G in this notation, as it should always
e clear from the context to which graph it applies). Note that by definition, when the base
raph G is the random geometric graph G(λ, 1), the subgraph obtained after Bernoulli bond
ercolation with parameter p is G(λ, p). We shall either denote its distribution by Pλ,p, when
e want to emphasize which parameters we consider, or simply by P, when they are clear from

he context.
Given a fixed graph G = (V, E), a configuration ω is smaller than ω′ if for every e ∈ E one

as ωe ≤ ω′e. An event A ⊆ {0, 1}E is increasing if whenever ω ∈ A and ω ≤ ω′, then also
′
∈ A, and an event A is decreasing if A is increasing. Then, when considering the random

eometric graph G = G(λ, p), we say that an event A is increasing if whenever ω and ω′ are
wo instances of G such that ω is a subgraph of ω′ and ω is in A, then ω′ is also in A.
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2.2. Preliminaries

The following well-known inequality shows that two increasing events are positively
orrelated. It applies to a wide variety of random models, and both Bernoulli percolation and
he percolated random geometric graph model are among them, see e.g. [8,20].

emma 2.1 (Harris Inequality/FKG Inequality). For any q ∈ [0, 1] and any increasing events
and B, one has

Pq (A ∩ B) ≥ Pq (A)Pq (B).

imilarly, for any λ > 0, p ∈ [0, 1] and any two increasing events A and B,

Pλ,p(A ∩ B) ≥ Pλ,p(A)Pλ,p(B).

A consequence of Lemma 2.1 is the so-called square-root trick: given k increasing (or
ecreasing) events (Ai )k

i=1, and any q ∈ [0, 1],

max
1≤i≤k

Pq (Ai ) ≥ 1− (1− Pq (∪k
i=1Ai ))1/k, (2)

nd similarly with Pλ,p instead of Pq .
Now, we present a couple of results concerning Bernoulli bond percolation on Z2 which

ill be used several times in this work. First we need a result on dependent bond percolation.
or any k ∈ N, we say that a bond percolation on a graph is k-dependent if the states of any

wo (families of) edges at graph distance larger than k are independent.

heorem 2.2 (See Theorem 0.0 in [16]). For every k ≥ 1 and p ∈ [0, 1), there is q0 =

0(k, p) < 1 such that every k-dependent bond percolation measure on Z2, satisfying that any
dge is open with probability q > q0, dominates Bernoulli bond percolation with parameter p.

Next, we state a result providing exponential decay of correlations in the subcritical regime.

Theorem 2.3 ([8], Theorem 3.3). For every q ∈ [0, 1/2), there exists cq > 0 such that, for all
x ∈ Z2,

Pq (0↔ x) ≤ exp(−cq∥x∥).

The last result we shall need on Bernoulli percolation on Z2 provides some concentration
or the size of the largest component in finite volume.

heorem 2.4 (See [21], Theorem 4). Fix n ≥ 1, Hn = Z2
∩ [0,
√

n]2 and q ∈ (1/2, 1]. Denote
y Hn,q the graph obtained from Hn after Bernoulli bond percolation with parameter q. Then,
or every ε > 0, there exists c = c(q, ε) > 0 such that Pq (L1(Hn,q ) ≤ (1 − ε)EL1(Hn,q )) ≤
xp(−cn).

Since the vertices of our graph are given by a homogeneous Poisson Point Process, the next
ormula, known under the name Campbell–Mecke formula, will be useful in our analysis. We
efer to [20] for this version of the theorem, which can simply be deduced from more standard
ersions by integrating first against the Bernoulli percolation measure, conditionally on the
oisson Point Process.
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Lemma 2.5 (Campbell–Mecke Formula). Fix λ > 0, p ∈ [0, 1], and let G = G(λ, p). For
ny non-negative measurable function f on the set of pairs (x,G), where G is a graph whose
ertex set is a locally finite subset of R2 and x is a vertex of G, one has

E
[ ∑

X∈Po(λ)

f
(
X, G

)]
= λ

∫
R2

E[ f (x, Gx )] dx,

here Gx is obtained by adding x to the vertex set of G, and independently for each other
ertex y of G at distance smaller than one from x, an edge is added between x and y with
robability p.

We continue with a particular case of a theorem by Franceschetti, Penrose and Rosoman [10]
n the critical intensity for the appearance of a giant component in G(λ, p).

heorem 2.6 (See Theorem 2.3 in [10]). For every p1, p2 ∈ [0, 1] such that p1 < p2,
c(p1) > λc(p2).

Finally, we state a standard Chernoff-type inequality for Poisson random variables.

emma 2.7. Let X be a Poisson random variable with mean λ > 0. Then, for any ε > 0,

P(|X − λ| ≥ ε) ≤ 2 exp
(
−

ε2

2(λ+ ε)

)
.

. Proof of Proposition 1.5

First, we fix λ ∈ (λ0,∞) and show that λc(pc(λ)) = λ. We argue by contradiction, assuming
hat λc(pc(λ)) ̸= λ. We distinguish two cases:

• if λc(pc(λ)) > λ, then there is ε > 0 such that λ + ε < λc(pc(λ)) and thus
θ (λ + ε, pc(λ)) = 0, and hence pc(λ + ε) ≥ pc(λ). However, pc is a non-increasing
function, so pc(λ+ ε) = pc(λ);
• if λc(pc(λ)) < λ, then there is ε > 0 such that λ − ε > λc(pc(λ)) and thus

θ (λ − ε, pc(λ)) > 0, and hence pc(λ − ε) ≤ pc(λ). However, pc is a non-increasing
function, so pc(λ− ε) = pc(λ).

n both cases, our assumption leads to the existence of λ1, λ2 ∈ (λ0,∞) satisfying λ1 < λ2
nd pc(λ1) = pc(λ2).

Now, set p = pc(λ2) + δ for some δ > 0 to be chosen sufficiently small. It thus holds
hat G(λ2, p) is supercritical. On the one hand, by a classical result of Hammersley [13] the
ond percolation threshold of G(λ2, p), which is pc(λ2)/p, is dominated by its site percolation
hreshold, which is λc(p)/λ2. Hence, λ2

p ≤
λc(p)
pc(λ2) . Hence, we find that pc(λ2)/p ≤ λc(p)/λ2. On

he other hand, θ (λ1, p) > 0 since p > pc(λ1), so λc(p) ≤ λ1. We conclude that λ2
p ≤

λ1
pc(λ2) ,

hich rewrites as λ2
λ1
≤

p
pc(λ2) = 1 + δ

pc(λ2) . Choosing δ sufficiently small (and using that
pc(λ2) > 0) leads to a contradiction, which proves the equality.

To deduce the equality pc(λc(p)) = p for any fixed p ∈ (0, 1), a similar reasoning provides
two distinct p1, p2 ∈ (0, 1) satisfying λc(p1) = λc(p2), which contradicts the statement of

heorem 2.6. □

emark 3.1. For an infinite connected graph H with site percolation threshold sc, bond
ercolation threshold p and maximum degree D ≥ 3, the equality p (s (p)) = p holds along
c c c
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similar lines without using Theorem 2.6 as a black box. We provide a sketch of the argument.
Suppose for contradiction that pc(sc(p)) ̸= p for some p as above. Then, as in the proof of

roposition 1.5, there exist p1 < p2 with sc(p1) = sc(p2) ∈ (0, 1). Set s = sc(p2) + δ for
ome δ ∈ (0, 1− sc(p2)) to be chosen below, and consider the graph H (s, p2) obtained from H
fter site percolation with parameter s and bond percolation with parameter p2. By a result of
rimmett and Stacey [12] we have sc ≤ 1−(1−pc)D−1, or equivalently (1−pc)D−1

≤ 1−sc (see
lso [6] for stronger results in this direction). Moreover, note that θ (s, p1) > 0 since s > sc(p1),
nd thus pc(s) ≤ p1. Hence, applying the above inequality from [12] for Ĥ = H (s, p2) (which
as maximum degree at most D, site percolation threshold sc(pc)/s and bond percolation
hreshold pc(s)/p2), we infer(

1−
p1

p2

)D−1

≤

(
1−

pc(s)
p2

)D−1

= (1− bc(Ĥ ))D−1
≤ 1− sc(Ĥ ) =

s − sc(pc)
s

=
δ

s
.

ence, choosing δ sufficiently small (and using sc(p2) > 0), we have the desired contradiction,
nd thus pc(λc(p)) = p.

. Proof of Proposition 1.8

We first prove that Bernoulli bond percolation preserves local convergence. For complete-
ess, we also include the case of site percolation as it may be of independent interest.

emma 4.1. Let (Gk)k≥1 be a sequence of graphs of geometric type converging locally to G
n the sense of Definitions 1.6 and 1.7. For p ∈ [0, 1], consider the subgraphs Gb

k (p) and Gs
k (p)

btained after performing respectively Bernoulli bond and site percolation on Gk , and similarly
or Gb(p) and Gs(p). Then, these graphs are of geometric type and moreover (Gb

k (p))k≥1 and
Gs

k (p))k≥1 converge locally respectively to Gb(p) and Gs(p).

roof. The fact that a graph of geometric type remains in this class after bond or site
ercolation is immediate from the definition. Now, assume that (Gk)k≥1 converges locally to
G, and let p ∈ [0, 1] be fixed. Let us consider first the case of bond percolation, which is
slightly easier. Fix Ω to be some bounded domain of R2, and let H be some finite graph. Note
that if H is obtained from another graph H ′ after bond percolation, then H ′ belongs to the
finite set A(H ) of finite graphs with the same vertex set as H and containing H as a subgraph.

herefore, denoting by E(H ) the set of edges of a graph H , and taking advantage of the fact
hat A(H ) is a finite set, we get

lim
k→∞

P
(
Gb

k (p)|Ω = H
)
= lim

k→∞

∑
H ′∈A(H )

P
(
(Gk)|Ω = H ′

)
p|E(H )|(1− p)|E(H ′)|−|E(H )|

=

∑
H ′∈A(H )

P
(
G|Ω = H ′

)
p|E(H )|(1− p)|E(H ′)|−|E(H )|

= P
(
Gb(p)|Ω = H

)
.

We now consider the case of site percolation. The only additional difficulty is that now the
set B(H ) of graphs which can give rise to a fixed graph H after site percolation is infinite.

However, denoting by V (H ) the set of vertices of a graph H , and using Fatou’s lemma, we
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deduce

lim inf
k→∞

P
(
Gs

k (p)|Ω = H
)
≥

∑
H ′∈B(H )

lim inf
k→∞

P
(
(Gk)|Ω = H ′

)
p|V (H )|(1− p)|V (H ′)|−|V (H )|

=

∑
H ′∈B(H )

P
(
G|Ω = H ′

)
p|V (H )|(1− p)|V (H ′)|−|V (H )|

= P
(
Gs(p)|Ω = H

)
.

Since this holds for any finite graph H , by another application of Fatou’s lemma, we infer

1 = lim inf
k→∞

∑
H finite

P
(
Gs

k (p)|Ω = H
)
≥

∑
H finite

lim inf
k→∞

P
(
(Gk)|Ω = H

)
≥

∑
H finite

P
(
Gs(p)|Ω = H

)
= 1.

Hence, for any finite graph H , limk→∞ P
(
Gs

k (p)|Ω = H
)
= P

(
Gs(p)|Ω = H

)
, which

oncludes the proof of the lemma. □

Now, we prove Proposition 1.8. Let λ > λ0, and K ≥ 0 be given. Let also (Gk)k≥1 be a
equence of K -dependent graphs of geometric type converging to G(λ, 1). We need to prove
hat lim supk→∞ pc(Gk) ≤ pc(λ). To this end, we fix some p > pc(λ) and show that, with
he notation from Lemma 4.1, for all k sufficiently large, Gb

k (p) contains an infinite connected
omponent.

The proof relies on a finite-size criterion. Consider a tessellation T of R2 into squares of
ide length

√
m, where m is a constant to be chosen sufficiently large later. For each square

Q in T , consider a partition of the square into 4 smaller squares of side length
√

m/2, say
Qi }1≤i≤4. Then, for a random graph with vertex set embedded in R2, consider the event AQ
hat the following holds:

• The second-largest component in Q has size at most λθ (λ,p)
10 m.

• The largest components in each of the squares Qi , for i ∈ {1, 2, 3, 4}, have size at least
λθ (λ,p)

8 m.

Also, for two squares Q and Q′ of T sharing a common edge, consider the square Q′′ of side
ength

√
m in-between Q and Q′, which is the union of the two smaller squares of Q touching

Q′ together with the two smaller squares of Q′ touching Q. Then, define

AQ,Q′ := AQ ∩AQ′ ∩AQ′′ .

On the one hand, on AQ,Q′ , the two largest components of Q and Q′ are connected by
onstruction. On the other hand, by Theorem 1.1 (or by the results of [20]) we know that for
very δ > 0 and every sufficiently large m, Pλ,p(AQ,Q′ ) > 1− δ. Now, with a slight abuse of

notation, denote by Pk,p the distribution of Gb
k (p). Then, by definition of the local convergence,

Lemma 4.1 and the fact that AQ,Q′ is a local event one has that, for any sufficiently large k
and any two squares Q and Q′ sharing a common edge, Pk,p(AQ,Q′ ) ≥ 1 − 2δ. On the other
hand, considering the graph isomorphic to Z2 with vertex set the squares in T , and declaring
the edge between two neighboring squares Q and Q′ open if the event AQ,Q′ holds, defines
a bond percolation process on Z2. For every m ≥ K , by hypothesis, this bond percolation is
1-dependent for each of the graphs Gb

k (p). Therefore, by Theorem 2.2, choosing δ small enough
(and then m large enough) allows us to make this graph supercritical for any sufficiently large

b
k, and thus proving that all the graphs Gk (p) have an infinite connected component.
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The last part of the theorem is immediate since the critical bond percolation is a decreasing
unction for the partial order given by the inclusion of graphs. This concludes the proof of
roposition 1.8. □

. Proof of Theorem 1.1

From now on, λ > 0 and p ∈ (0, 1] are fixed parameters such that λ > λc(p). This in
particular ensures that G = G(λ, p) contains an infinite connected component almost surely.

The proof of Theorem 1.1 is divided into three parts. In Section 5.1 we prove that a.a.s. Gn

ontains a connected component of size Ωλ,p(n). Despite the fact that this result has already
een proved very recently by Penrose [20], its proof serves as a base for the second and
hird steps. In Section 5.2 we prove that a.a.s. the second-largest component in Gn has size

λ,p((log n)2), and finally in Section 5.3 we show that n−1L1(Gn) converges almost surely to
θ (λ, p) as n→∞.

We introduce some additional notation, which will be used throughout this section. A
orizontal crossing of a rectangle [a, b]× [c, d] in G is a path in G with edges, embedded as
traight segments in the plane, such that:

• the first edge intersects the segment connecting (a, c) and (a, d);
• all edges in the path but the first and the last ones are included in the rectangle

[a, b]× [c, d];
• the last edge intersects the segment connecting (b, c) and (b, d).

A vertical crossing is defined analogously. We denote by H([a, b] × [c, d]) (respectively
V([a, b] × [c, d])) the event “a path in G crosses the rectangle [a, b] × [c, d] horizontally
(vertically, respectively)”. We also let H(b, d) and V(b, d) denote the events H([0, b]× [0, d])
and V([0, b]× [0, d]), respectively.

5.1. The existence of a giant component

This section is devoted to the proof of the fact that, in the supercritical regime, a.a.s. the
graph Gn contains a component of linear size, which we state as a separate theorem.

Theorem 5.1. Assume that λ > 0 and p ∈ (0, 1] are such that λ > λc(p). Then a.a.s. one
has L1(Gn) = Θλ,p(n).

The proof of this theorem is divided into two main parts. Firstly, we show in Proposition 5.2
that for any κ > 0 the event H(κ R, R) holds a.a.s. as R → ∞. The proof of this part is
inspired by the proof of Corollary 4.2 in [1] in the context of a closely related model but,
since we perform bond percolation on top of the random geometric graph, two intersecting
edges need not necessarily be part of the same connected component (as is the case for the
random geometric graph without percolation). To circumvent this difficulty, we use a carefully
designed sprinkling procedure, as was sketched in the introduction.

In the second part, we construct an auxiliary graph that dominates a supercritical Bernoulli
bond percolation on Z2. Then, we rely on known results for supercritical bond percolation
on finite boxes of Z2 and transfer them to the original graph by using that, by construction,
any linear-sized subgraph of the auxiliary graph corresponds to a linear-sized subgraph of the
original graph.
321



L. Lichev, B. Lodewijks, D. Mitsche et al. Stochastic Processes and their Applications 164 (2023) 311–336

D
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Fig. 1. Connecting the box Λ(R/6) to the box Λ(R/2): in this case, the rectangles associated to the events CR and
R are separated from the rest of the R× R square by dashed lines, and the path traverses vertically the rectangle

n top, so the event CR is realized (the rotated rectangles associated to the events AR and BR are not explicitly
separated).

We start with the first part.

Proposition 5.2. Assume that λ > 0 and p ∈ (0, 1] are such that λ > λc(p). Then for every
κ > 0, one has Pλ,p(H(κ R, R))→ 1, as R→∞.

Proof. The proof has four steps. The first one is to prove the result for κ = 1/3. The second
step uses a result of Penrose [20] saying that with probability bounded away from zero, for
some large enough constant K and two squares of side length K at distance R from each other,
there exist one vertex in the first square and another in the second square that are connected
by a path that stays within a box of side length 4R containing its endpoints. Note that K is a
large but fixed constant, and that we let R tend to infinity, so that R ≫ K . In a third step, we
prove that with probability bounded away from zero there is a path surrounding the box Λ(R)
inside Λ(3R). Finally, as a last step, we prove that if the result holds for a given κ > 0, then
it also holds for all κ ′ ∈ [κ, 2κ).

Step 1. We show that P(H(R/3, R))→ 1 as R→∞. Define the events

AR = H([R/6, R/2]× [−R/2, R/2]), BR = H([−R/2,−R/6]× [−R/2, R/2]),
CR = V([−R/2, R/2]× [R/6, R/2]), DR = V([−R/2, R/2]× [−R/2, R/6]).

Note that all four events correspond to crossing a rectangle with aspect ratio 3 along its
shorter side. Then, connecting the box Λ(R/6) to the right (respectively the left, the top, or the
bottom) side of Λ(R/2) ensures that the event AR (respectively BR , CR , or DR) is realized, see
Fig. 1.

Thus, the square-root trick (2) and the fact that all four events have probability P(H(R/3, R))
implies that

P(H(R/3, R)) ≥ 1− (1− P(AR ∪ BR ∪ CR ∪DR))1/4

2 1/4

≥ 1− (1− P(Λ(R/6)↔ R \ Λ(R/2))) .
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Since by definition G(λ, p) contains an infinite component almost surely, the probability that
he box Λ(R/6) intersects the infinite component tends to 1 as R → ∞, which finishes the
roof of Step 1.

tep 2. For every sufficiently large constant K > 0, one has

lim inf
R→∞

P
(
Λ(K )

Λ(R)
←−→ Λ(R/2,0)(K )

)
> 0.

his result is proved in [20], see the proof of Proposition 2.6 therein, and we refer to this paper
or details. Let us stress that, in particular, both Steps 1 and 2 use the hypothesis λ > λc(p).

For the third step, we need a couple of new definitions. For x ∈ R2 and r, R > 0 satisfying
0 < r < R, we define the annulus

Ax (r, R) := Λx (R) \ Λx (r ),

and the event

Circx (r, R) := {Ax (r, R) contains a cycle of G}.

We also simply write A(r, R) and Circ(r, R) for A0(r, R) and Circ0(r, R), respectively. In the
ext step, we prove that large annuli with constant ratio of their radii contain a cycle of G with
robability bounded away from zero.

tep 3. We show that lim infR→∞ P(Circ(R, 3R)) > 0. Set r = R/2. For i ∈ {1, . . . , 8}, let

vi = (ir − 2R, 2R), vi+8 = (2R, 2R − ir ), vi+16 = (2R − ir,−2R),

vi+24 = (−2R,−2R + ir ).

ote that the points (vi )32
i=1 divide ∂Λ(2R) into 32 equal segments of length r . By Step 2 we

now that for every sufficiently large K and R = R(K ) and for every i ∈ {1, . . . , 32}, we have

P
(
Λvi (K )

Λvi (R)
←−−→ Λvi+1 (K )

)
≥

1
2
, (3)

here v33 = v1, see Fig. 2.
Since each of the events in (3) is increasing, we conclude by the FKG inequality (Lemma 2.1)

hat their intersection, which we call A, has probability at least 2−32. Now, for every i ∈
1, . . . , 32}, fix a tessellation Ti of the box Λvi (K ) into squares of side length 1/

√
5 (this is

ossible by choosing K to be an integer multiple of
√

5) and let

B = {Q ∩ Po(λ) ̸= ∅, for all Q ∈ Ti and all 1 ≤ i ≤ 32}.

ince A and B are both increasing events, by the FKG inequality there is ρ > 0 such that
(A ∩ B) > ρ, for all sufficiently large R. Also, choose M > 0 so that the event

C = {|Λvi (K ) ∩ Po(λ)| ≤ M, for all 1 ≤ i ≤ 32}

olds with probability at least 1− ρ/2. Then, in particular, P(A ∩ B ∩ C) ≥ ρ/2.
Now, observe that all three events A, B and C are independent of the state of the edges inside

he squares (Λvi (K ))32
i=1. Indeed, B and C depend only on Po(λ), and A depends on Po(λ) and

he state of the edges with at least one endpoint outside these squares. Thus, calling D the event
hat, for all i ∈ {1, . . . , 32}, the vertices Λ (K )∩ Po(λ) induce a single connected component
vi
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Fig. 2. An illustration of the event described in (3) for i = 11.

from G(λ, p), we get P(D | A∩B ∩ C) ≥ p32M2
. Hence, since A∩B ∩ C ∩D ⊆ Circ(R, 3R),

we get

P(Circ(R, 3R)) ≥ P(A ∩ B ∩ C ∩D) ≥ P(A ∩ B ∩ C)P(D | A ∩ B ∩ C) ≥
ρp32M2

2
,

hich finishes the proof of Step 3.
For the last step, we use a sprinkling argument.

tep 4. If Pλ′,p(H(κ R, R)) → 1 as R → ∞ for some fixed positive parameters κ , λ′ and p,
then for any λ > λ′ one also has Pλ,p(H(2κ R, R))→ 1.

Suppose that the statement holds for some given κ , λ′ and p, and consider the rectangles

Π = [0, 2κ R]× [0, R], Π1 = [0, κ R]× [0, R], Π2 = [κ R, 2κ R]× [0, R].

In particular, Π1 and Π2 are respectively the left and right halves of Π . Then, divide the segment
between the points (κ R, 0) and (κ R, R) into N segments I1, . . . , IN , of equal length, where
N ∈ N will be chosen appropriately later. Also, for any i ∈ {1, . . . , N } and j ∈ {1, 2}, let Bi, j

e the event that Π j contains a horizontal crossing which intersects Ii . For any fixed N , using
ur assumption and the square-root trick (2), we have for both j ∈ {1, 2} that

max
1≤i≤N

Pλ′,p(Bi, j ) ≥ 1− (1− Pλ′,p(H(κ R, R)))1/N ,

which tends to 1 as R → ∞. Denote by i0 the smallest index realizing the maximum above
(it is the same for both j ∈ {1, 2} by symmetry of Π1 and Π2), and let x0 be the midpoint of

the interval Ii0 .
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Fig. 3. In the figure, the central vertex is x0; around it, there are two cycles, γkℓ
and γkℓ+1 , positioned in the

nnuli Akℓ
and Akℓ+1 . Note that γ ′kℓ

= γkℓ
but γ ′kℓ+1

⊊ γkℓ+1 (γ ′kℓ
and γ ′kℓ+1

are thickened while γkℓ+1 \ γ ′kℓ+1
is

ransparent). The proportions of the side lengths of the boxes, centered at x0, are not the real ones in the above
chematic representation.

By Step 3, there exist R0 and δ > 0 such that for every R ≥ R0, Pλ′,p(Circ(R, 3R)) ≥ δ.
ssume now that R/N ≥ R0 and define

K :=
⌊

log4

(
min(κ, 1/2)N

)⌋
− 1, and D := R/N .

or every k ∈ {0, . . . , K }, define further the annulus Ak := Ax0 (4k D, 3 ·4k D) and note that, by
onstruction, any horizontal crossing of Π1 or Π2 that intersects Ii0 also crosses each of these
nnuli. Denote by Dk the event that there is a cycle inside the annulus Ak . Recall that by Step
and our choice of constants, each of these events has probability at least δ > 0 under Pλ′,p.
et D := {

∑K
k=0 1Dk ≥ δK/2} denote the event that in at least δK/2 many annuli Ak there

xists a cycle. Since (1Dk )K
k=0 dominates an independent family of K + 1 Bernoulli random

ariables with parameter δ, Chernoff’s inequality implies that D holds with probability at least
− exp(−Ω (δK )). In particular, for every ε > 0 and for every sufficiently large R (allowing

or N and K to be sufficiently large as well), the event Bi0,1 ∩Bi0,2 ∩D holds with probability
t least 1− ε.

Now, we first sample the graph G(λ′, p), and perform a sprinkling to connect the crossings
f Π1 and Π2 intersecting Ii0 to one of the cycles around x0 on the event Bi0,1 ∩Bi0,2 ∩D. For
his, fix some λ > λ′ and recall that by some well-known properties of Poisson Point Processes
ne may construct the graph G(λ, p) by first sampling independent copies of G(λ′, p) and

G(λ−λ′, p), and then adding independently an edge between any pair of vertices v ∈ G(λ′, p)
nd v′ ∈ G(λ− λ′, p) satisfying ∥v − v′∥ ≤ 1 with probability p.

So, assume that the event Bi0,1∩Bi0,2∩D holds for G(λ′, p), and let P1 and P2 be horizontal
rossings of Π1 and Π2, respectively. Also, set L = ⌊δK/2⌋ and let (γkℓ

)L
ℓ=1 be cycles of

G(λ′, p) provided by D in the annuli (Akℓ
)L
ℓ=1, respectively. Note that parts of these paths may

′
be outside Π . Thus, for every ℓ ∈ {1, . . . , L}, denote by γkℓ
⊆ γkℓ

a path or a cycle whose
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vertices, except possibly the first and the last one, are in Π and which separates x0 from the
eft and the right side of Π , see Fig. 3. Then, connecting the paths P1 and P2 to the same path
r cycle among (γ ′kℓ

)L
ℓ=1 within Π forms a horizontal crossing of Π .

Now, for each j ∈ {1, 2} and each ℓ ∈ {1, . . . , L}, there are two edges, one in Pj and one
n γ ′kℓ

, that intersect. By the triangle inequality, we claim that there is one endvertex of the first
dge and one endvertex of the second edge which both lie in Π j and are at distance at most
/2 from each other: indeed, letting u j,ℓ and v j,ℓ be the two endvertices of the first edge, w j,ℓ

e one of the endvertices of the second edge that lies in Π j , and z be the intersection point of
he two edges,

min{∥u j,ℓ − w j,ℓ∥, ∥w j,ℓ − v j,ℓ∥} ≤
∥u j,ℓ − w j,ℓ∥ + ∥w j,ℓ − v j,ℓ∥

2

≤
∥u j,ℓ − z∥ + ∥z − v j,ℓ∥ + 2∥z − w j,ℓ∥

2
≤

3
2
.

Fix two vertices as above, and note that the area of the region, obtained by intersecting the
wo unit balls centered around them and Π j , is at least the area of the intersection of the unit
alls around 0, around (3/2, 0) and the quarter-plane {(x, y) : x, y ≥ 0}, which we denote by α.

We conclude that, for every ℓ ∈ {1, . . . , L}, P1 and P2 connect to γkℓ
after adding G(λ−λ′, p),

ith probability at least ((1− e−(λ−λ′)α)p2)2 and these events are all independent of each other
ince the annuli (Ak)K

k=0 are disjoint. Thus, for every sufficiently large R, the probability that
G(λ, p) contains a horizontal crossing of Π is at least

(1− ε)(1− (1− (1− e−(λ−λ′)α)2 p4)L ) ≥ 1− 2ε.

ince this statement holds for any ε ∈ (0, 1), the proof of Step 4 is completed.
To conclude, note that altogether the four steps prove Proposition 5.2. □

In the proof of Step 4 above we saw how to glue crossings of two parallel copies of the
ame rectangle to form a longer crossing. In the next remark, we extend this gluing procedure
o the setting of two orthogonal copies of the same rectangle, as we shall need this later, e.g.
n the proof of Theorem 5.1. We omit its proof since it requires only minor modifications to
he proof of Step 4 above.

emark 5.3. Fix κ > 1 and some λ > λc(p). Then, consider the rectangles Π3 =

0, κ R] × [0, R] and Π4 = [0, R] × [0, κ R]. Also, fix any positive integer N ≥ 3 and denote
N = 1/2 − N−1 and βN = 1/2 + N−1. From Proposition 5.2 we know that the rectangle
′

3 := [1, κ R−1]× [αN R, βN R] ⊆ Π3 (respectively Π ′4 := [αN R, βN R]× [1, κ R−1] ⊆ Π4) is
rossed horizontally (vertically, respectively) in G(λ′, p) a.a.s. as R→∞, where λ′ =

λ+λc(p)
2 .

y considering a number of disjoint annuli around the square [αN R, βN R]2, we deduce as in
tep 4 that any horizontal crossing of Π ′3 and any vertical crossing of Π ′4 connect within Π3∩Π4

n G(λ, p) with probability arbitrarily close to 1 when N is sufficiently large.

We are now in position to conclude the proof of the fact that a.a.s. Gn has a component of
inear size.

roof of Theorem 5.1. Fix some large R > 0 so that
√

n/R ∈ N. Then, tessellate the
quare Λn into R× R squares and combine these into horizontal and vertical dominos, that is,
ectangles of dimensions 2R×R and R×2R, respectively. By identifying dominos with vertices
nd declaring that two dominos are neighbors if they are orthogonal and their intersection
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is an R × R square, this defines a graph isomorphic to (a finite subgraph of) Z2. We now
onstruct an auxiliary random subgraph Haux by applying the following bond percolation on
2: let λ′ :=

λ+λc(p)
2 , and call a domino admissible if a thinner inner rectangle, as described

n Remark 5.3, is crossed by an open path in G(λ′, p). In this case, we associate to this
omino an arbitrary one of these paths. Then, we say that the edge between two neighboring
dmissible dominos Π1 and Π2 is open if their corresponding paths are connected by a path in
1 ∩Π2 ∩G(λ, p). By Proposition 5.2 and Remark 5.3, every edge is open with a probability

hat can be made arbitrarily close to 1 by choosing R sufficiently large (see the proof of
tep 4 above). Moreover, the states of two edges at distance larger than 2 are independent.
n other words, Haux is obtained via a 2-dependent bond percolation on Z2. Thus, by applying
heorem 2.2 we deduce that, by choosing R sufficiently large, one can ensure that Haux

ominates an independent bond percolation with parameter q = 3/4, say. Moreover, it is well
nown that the critical threshold for independent bond percolation on Z2 is equal to 1/2 and
lso that, in the supercritical regime, by Theorem 2.4, the largest component in the box Λn is
.a.s. of size Ωq (n) as n → ∞. Finally, notice that, since R is a large but fixed constant, if

Haux contains a component of linear size, then Gn does as well, which concludes the proof of
heorem 5.1. □

.2. The second-largest component

This section is dedicated to the proof of the following theorem. Recall that we assume
hroughout that λ and p satisfy λ > λc(p).

heorem 5.4. A.a.s. the second-largest component in Gn(λ, p) has size Θλ,p((log n)2).

The proof is divided into two parts. We start with the lower bound.

roposition 5.5. A.a.s. the second-largest component in Gn(λ, p) has size Ωλ,p((log n)2).

roof. Tessellate the square Λn into subsquares of side length log n
5λ

. On the one hand, for
ny given square of the tessellation, the probability that there is no point of Po(λ) in it at

distance at most 1 from its boundary is equal to exp
(
−λ

(
4 log n

5λ
− 4

))
≥ n−4/5. On the other

and, by Theorem 5.1, the probability that in such a square there is a connected component of
ize Ωλ,p((log n)2), whose vertices are all at distance at least one from its boundary, is equal
o 1 − o(1). In particular, for any square in the tessellation, the probability that it contains a
onnected component of size Ωλ,p((log n)2) which is disconnected from the rest of the graph

Gn is at least (1− o(1))n−4/5. Since there are n1−o(1) squares in the tessellation, by Chernoff’s
nequality a.a.s. there is a square that satisfies the above condition, concluding the proof of the
roposition. □

We now aim at showing the upper bound. This will be done in several steps. The first point
s to show that, roughly speaking, in supercritical Bernoulli bond percolation on Z2 large boxes
re typically crossed by many disjoint paths (more precisely, the number of crossings typically
as the same order as the side length of the box), see Corollary 5.8 for a more precise statement.
hen, we use the fact observed in the previous section that, in a sense, the continuous model
ominates supercritical Bernoulli bond percolation. We deduce that any small window of side

ength of order log n in Λn contains many disjoint cycles surrounding its center. Finally, some
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delicate sprinkling allows us to conclude that a.a.s. for each vertex v in Λn , no path from v

xits the window around v without connecting to at least one of these cycles.
Theorem 5.4 will then follow immediately by combining Proposition 5.5 with the following

pper bound for the second-largest component, which we state as a separate proposition.

roposition 5.6. A.a.s. the second-largest component in Gn(λ, p) has size Oλ,p((log n)2).

To prove this proposition, we first need some preliminary results on ordinary Bernoulli
ond percolation, as mentioned above. For k ≥ 1 and x ∈ Z2, we define Ck(x) the kth order
onnected component of x as the set of vertices y ∈ Z2 which are connected to x by a path
ade of any number of open edges and at most k−1 closed edges. In particular, the first order

onnected component is the usual connected component of x . Also, for A ⊆ Z2, define CA
k (x)

s the kth order connected component of x in Z2
\ A. We prove the following lemma:

emma 5.7. For any q ∈ [0, 1/2), there are positive constants α and C such that, for any
ositive integers k and t, one has

Pq
(

sup
x∈Ck (0)

∥x∥ ≥ t
)
≤ Ck exp(−αt).

roof. The proof proceeds by induction on k. The result for k = 1 follows immediately from
heorem 2.3. Now assume that it holds for some k. Then, for any t ≥ 1, we aim to obtain an
pper bound for Pq (supx∈Ck+1(0) ∥x∥ ≥ t). To do this, we take a union bound over all pairs of
eighbors v ∈ C1(0) and w ∈ C2(0) \ C1(0) (that is, vertex v is in the component of the origin
1(0) and w is a neighbor of v in the complement of C1(0)). Then, by the triangle inequality,
he distance of a vertex x to the origin is at most

∥x∥ ≤ ∥x − w∥ + 1+ ∥v∥,

here we use that ∥v−w∥ = 1 as v and w are neighbors. As such, using a union bound yields

Pq
(

sup
x∈Ck+1(0)

∥x∥ ≥ t
)
≤

∑
v,w∈Z2
∥w−v∥=1

Pq
(
0↔ v, 0 ↮ w, sup

x∈CC1(0)
k (w)

∥x − w∥ ≥ t − 1− ∥v∥
)
.

hen, by conditioning on C1(0) and using the induction hypothesis together with the fact that,
or any fixed A ⊆ Z2, CA

k (w) is dominated by Ck(w), we get

Pq
(

sup
x∈Ck+1(0)

∥x∥ ≥ t
)
≤ 4

∑
v∈Z2

Pq
(
0↔ v

)
· Pq

(
sup

x∈Ck (0)
∥x∥ ≥ t − 1− ∥v∥

)
≤ Cke−αt

·

(
4eα

∑
v∈Z2

Pq (0↔ v)eα∥v∥
)
, (4)

here the factor of 4 in the first inequality comes from the fact that every vertex in Z2 has 4
eighbors. Applying again Theorem 2.3 yields the existence of a sufficiently small α so that the
um in (4) is finite, which concludes the proof of the induction step for C = 4eα

∑
v∈Z2 Pq (0↔

)eα∥v∥. □

As a corollary, we obtain the following fact.

orollary 5.8. Fix q > 1/2. There exist positive constants C and α, such that for any positive
ntegers k and N,

P
(
There exist k disjoint horizontal crossings in [0, 2N ]× [0, N ]

)
≥ 1− Ck exp(−αN ).
q
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Proof. Consider the dual graph of Z2 (its vertices are the faces delimited by the edges of the
raph Z2, and two faces are adjacent if they share an edge). Recall that one can couple Bernoulli
ond percolation with parameter q (and 1− q , respectively) on Z2 (and its dual, respectively)
y declaring an edge between two vertices of the dual graph open if the edge separating the two
orresponding faces of the original graph is closed, and vice versa. Now it suffices to observe
hat if there are no k disjoint horizontal crossings of the rectangle [0, 2N ]×[0, N ], then the kth
rder connected component of one of the vertices, corresponding to the squares with centers
(1/2+ i,−1/2)}2N−1

i=0 in the dual graph, reaches the top of the rectangle. By Lemma 5.7, we
now that for any such vertex this happens with probability at most Ck exp(−αN ) for some
ositive constants α and C . Then, using a union bound over the 2N dual vertices on the bottom
ide and reducing α by factor of 2, say, concludes the proof. □

We are now ready to prove the upper bound on the size of the second-largest component
f Gn . Its proof goes roughly as follows: To begin with, recall the dominos and the auxiliary
raph Haux from the proof of Theorem 5.1, and fix a vertex x ∈ Gn . We perform some delicate
xploration of the space and use sprinkling only in a few carefully chosen dominos which
ave the potential to connect a path from x at distance at most 1 from them with a cycle in Gn

oing through them. When doing the sprinkling, we require the formation of a dense net of
ell-connected points after the second stage, thus making sure that all new points participate

n the giant.
We will write Gx

n for the percolated random geometric graph with vertex set (Po(λ)∪{x})∩
n .

roof of Proposition 5.6. Fix λ′ =
λ+λc(p)

2 and recall the construction of G(λ, p) from the
independent copies of G(λ′, p) and G(λ−λ′, p) used in Step 4 of the proof of Proposition 5.2.

onsider a sufficiently large R so that
√

n/R ∈ N. We construct a version of the auxiliary
raph Haux from the proof of Theorem 5.1 as follows: First, reveal G(λ′, p) and construct
vertex in Haux if its corresponding domino contains a path as described in Remark 5.3.

hen, construct an edge between two neighboring vertices of Haux if, firstly, the paths in their
corresponding dominos Π1 and Π2 intersect at a point surrounded by at least K disjoint cycles
in G(λ′, p) as in Remark 5.3, with K to be fixed, and secondly, they are connected within
Π1 ∩ Π2 in G(λ, p). Note that, up to choosing R and K sufficiently large, Haux dominates a

ernoulli bond percolation with parameter 3/4 in a box of Z2 with side length roughly
√

n/R.
e next tessellate this new box into overlapping horizontal and vertical rectangles with side

engths C1 log n and 2C1 log n called log-dominos, where C1 is some large constant satisfying
√

n
RC1 log n ∈ N, which will be fixed later. Set

W :=
⌊

αC1

2 log C
· log n

⌋
,

ith α and C as in Corollary 5.8. Then, consider the event An that all log-dominos are crossed
y at least W disjoint paths in Haux along their longer side. Note that on An , since crossings
f two orthogonal overlapping log-dominos have a common vertex of Haux, all these paths are
onnected in Haux and thus correspond to a connected component Ĝn of Gn of size Θ(n).
oreover, a union bound and Corollary 5.8 tell us that if C1 is chosen sufficiently large, then

P(An) ≥ 1− n2 exp
(
−

αC1 log n
)
= 1− o(1). (5)
2
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We aim to bound the probability that there is a connected component of Gn whose diameter is
t least 4C1 log n without being connected to this giant component. For this, the strategy will
e roughly to show that if such a component exists, say in a square of side length of order
og n centered at a point X ∈ Po(λ) ∩ Λn , it will have to cross many cycles surrounding X in
his window, and we estimate the cost of this scenario by sprinkling G(λ − λ′, p) on top of

G(λ′, p). Note that some care is required here; indeed, adding a bit of intensity to the Poisson
process could also help to create new connected components with large diameter. In our proof,
we first discover the cycles of Haux surrounding X by an exploration from the boundary of a
small box around it towards its center, then find possible paths starting from X and coming
close to these cycles, and finally perform a sprinkling only in constant-sized regions with the
aim to connect the path from X to any of the cycles with probability bounded away from 0.

To be more precise now, for any x ∈ Λn , consider the box Λx
n := Λx (4C1 log n) and define

the event

Ox
n :=

{
x

Gx
n
←→ R2

\ Λx
n

}
,

that is, the connected component of x in Gx
n reaches the complement of Λx

n . Let also U x
n be

the event that in the graph Haux ∩ Λx
n there are W disjoint cycles surrounding x or, in case x

is at distance less than 4C1 log n from ∂Λn , paths from the boundary of Haux to itself, which
all surround the point x when seen as cycles (parts of which may coincide with the boundary
of Λn). Note the important fact that, by construction,

An ⊆
⋂

x∈Λn

U x
n . (6)

On the event U x
n , we denote by C1 the outermost cycle of Haux in Λx

n that surrounds x (or
possibly the outermost path from the boundary of Haux to itself in case x is at distance smaller
than 4C1 log n from ∂Λn). With a slight abuse of notation, we alternatively view C1 as a cycle in
the graph Haux, a set of dominos in Λx

n , or a cycle in Gn obtained by connecting the crossings
associated to the sequence of admissible dominos forming the cycle in Haux. Let also C+1 be
the enlarged cycle made of the points in Λx

n at distance smaller than one from C1 (viewed here
as a union of dominos).

We next define C2 as the outermost cycle surrounding x in the restriction of Haux to the
region enclosed by C+1 . Note that on U x

n , by repeating again this procedure, one can define
inductively a sequence of disjoint cycles C3, . . . , CW/2 (from now on, we assume W to be
even since decreasing it by 1 does not modify the argument), which all surround x and are at
distance at least 1 from each other. Let us define the event Ũ x

n that the cycles C1, . . . , CW/2 as
constructed above exist. In particular, U x

n ⊆ Ũ x
n ; it will turn out later that it is more convenient

to work with the latter for some reasons related to measurability of these events.
Now, for i = 1, . . . , W/2, denote

Bx
n,i := Ũ x

n ∩ {none of the paths from x to R2
\ Λx

n shares a vertex with Ci in Gx
n},

and

Bx
n :=

W/2⋂
i=1

Bx
n,i .

Recall that on the event An , the cycles C1, . . . , CW/2, are all part of the same connected
component in Gn . Therefore, if An holds and the connected component of a point X ∈

X
Po(λ) ∩ Λn reaches ∂Λn in Gn without being part of the connected component containing
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the cycles C1, . . . , CW/2, then necessarily BX
n must hold. Thus, our aim now is to bound the

robability of these events.
We start by observing that a union bound and Lemma 2.5 yield

P
( ⋃

X∈Po(λ)∩Λn

OX
n ∩ BX

n

)
≤ E

[ ∑
X∈Po(λ)∩Λn

1OX
n ∩BX

n

]
= λ

∫
Λn

P
(
Ox

n ∩ Bx
n

)
dx,

nd our goal is thus to bound the probabilities on the right-hand side from above.

laim 5.9. For any sufficiently large C1 and for every x ∈ Λn , P(Ox
n ∩ Bx

n ) = o(n−1).

roof of Claim 5.9. Fix x ∈ Λn , and for simplicity assume that it is at distance at least
C1 log n from ∂Λn; the proof in the case of x being closer to ∂Λn is analogous. We first show
hat the probability that a path in Gx

n between x and R2
\Λx

n does not intersect C1 is bounded
way from 1. For this, note that C1 can be determined by exploring the restriction of Haux
o Λx

n by starting from its boundary. More precisely, it suffices to reveal only the connected
omponents of the dual graph that touch the boundary of Haux ∩ Λ

x
n .

Let U1 denote the region inside Λx
n which is enclosed by C1 (seen as a set of dominos).

hen, conditionally on C1, the distribution of the point configuration in U1 is still that of an
ndependent Poisson Point Process with intensity λ. Moreover, on the event Ox

n , the connected
omponent of x in Gx

n ∩U1 contains at least one vertex at distance smaller than one from C1.
e define the first one of these vertices as follows.
First, explore G(λ, p) in the entire region R1 ⊆ U1 enclosed by C+1 . Then, for t ≥ 0, let Bt

e the set of points at distance at most t from R1, and let

T := inf{t ≥ 0 : there exists y ∈ ∂ Bt such that x
Gx

n∩Bt
←−−→ y}.

Note that T is a stopping time with respect to the filtration (Ft )t≥0 defined by

Ft := σ (C1, Gx
n ∩ Bt ), for all t ≥ 0.

Moreover, as we already mentioned, one has

Ox
n ⊆ {T <∞}. (7)

Let XT be the (almost surely unique) point on ∂ BT which is connected to x in Gx
n ∩ BT .

Let QT be the (almost surely unique) closest R × R square from XT which is part of C1
(when viewing C1 as a succession of R× R squares by dividing every domino in half), and let
ST := ΛXT (1) ∩ (U1 \ BT ) be the part of the box ΛXT (1) which is still unexplored when only
C1 and BT has been revealed, see Fig. 4. We now define an event E x

n on which XT connects to
C1. Firstly, recall that we set λ′ =

λ+λc(p)
2 , and we view Po(λ) as the union of two independent

oisson Point Processes with intensities λ′ and λ−λ′, respectively. Then, consider a tessellation
into squares of side length 1/

√
5 of QT , and let E x

n =
⋂

i≤3 E x
n,i be the event that the following

hree conditions are satisfied:

• E x
n,1: There exists a set P ⊆ Po(λ − λ′) containing exactly one point in every square of

the tessellation, and such that every pair of points of P in adjacent squares is connected
by an edge in G(λ−λ′, p) (points in adjacent squares are always at distance smaller than
one by construction).
• E x

n,2: One of the points in P is connected by an edge between G(λ−λ′, p) and G(λ′, p) to
the path associated to one of the dominos in C1 containing QT (we recall that by definition

′
these paths are part of G(λ , p)).
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Fig. 4. The figure depicts x , XT and the square QT . The dominos in the cycle C1 are the ones intersecting the
lue curve. The black contour corresponds to the boundary of C+1 while the red contour is the boundary of BT .

• E x
n,3: If XT is at distance smaller than 0.1 from QT , we ask that it is connected by an

edge in G(λ − λ′, p) to the closest point of P (this is possible since 0.1 +
√

2/5 < 1,
where

√
2/5 is the length of a diagonal of a square in the tessellation). If not, we require

that in ST there is a point of Po(λ− λ′) that is connected by an edge in G(λ− λ′, p) to
both XT and a point of P .

ote that, conditionally on G(λ′, p), E x
n is an increasing event which is measurable with respect

o G(λ− λ′, p). Moreover, by construction, conditionally on the event E x
n , XT is connected to

1 (seen here as a cycle in the original graph Gn) in G(λ, p). We claim that there exists ε > 0
only depending on R, λ and p) such that almost surely

P(E x
n | FT ) · 1Ũ x

n ∩{T <∞} ≥ ε · 1Ũ x
n ∩{T <∞}. (8)

Note that, while T is clearly FT -measurable, Ũ x
n is also FT -measurable since each of

2, . . . , CW/2 is included in R1. In particular, this explains why it is more convenient to work
ith Ũ x

n instead of U x
n .) To see this, notice first that, since T is a stopping time, conditionally

n FT , the distribution of Gx
n in the region U1\BT is that of an independent percolated random

eometric graph. Thus, given that the first two conditions are satisfied, the third one is achieved
t a constant cost independently of FT . Otherwise said, there is ε′ > 0, such that

P(E x
n | FT ) · 1Ũ x

n ∩{T <∞} ≥ ε′ · P(E x
n,1 ∩ E x

n,2 | FT ) · 1Ũ x
n ∩{T <∞}.

n the other hand, the first two conditions are more delicate to handle. Observe that, by

onstruction, conditionally on FT , the only information that we have on QT is that it is part
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of one, two or three admissible dominos whose associated paths get connected in QT when
prinkling Po(λ − λ′). In particular, all dominos disjoint from the interior of U1 that contain

QT are admissible and participate in the cycle C1. This has as an important consequence that,
onditionally on G(λ, p) in Λx

n \ (QT ∪U1) and on G(λ′, p) in QT , the event that QT indeed
closes the cycle C1 when sprinkling Po(λ−λ′) is increasing. Therefore, by the FKG inequality
(see Lemma 2.1), conditionally on this event, the probability that the first two conditions of
E x

n are satisfied is greater than its corresponding probability without the conditioning. More
precisely,

P(E x
n,1 ∩ E x

n,2 | FT ) · 1Ũ x
n ∩{T <∞} = P(E x

n,1 | FT ) · P(E x
n,2 | E x

n,1,FT ) · 1Ũ x
n ∩{T <∞}

≥

(
1− exp

(
−

λ− λ′

5

))|P|
p2|P|
· p · 1Ũ x

n ∩{T <∞},

here we used that there are at most 2|P| edges between adjacent squares in the tessellation
f QT in the definition of E x

n,1. This proves our claim (8).
Now, letting B̃x

n :=
⋂W/2

i=2 Bx
n,i and observing that it is FT -measurable, we can write

P(Bx
n ∩ {T <∞}) ≤ P(E x

n ∩ B̃x
n ∩ {T <∞}) ≤ E

[
P(E x

n | FT ) · 1B̃x
n∩{T <∞}

]
≤ (1− ε)P(B̃x

n ∩ {T <∞}),

where for the last inequality we used that the event E x
n has the same distribution conditionally

n B̃x
n and Ũ x

n , respectively, and we can use claim (8) with 1B̃x
n∩{T <∞} instead of 1Ũ x

n ∩{T <∞};
ndeed, the fact whether or not there are edges between paths starting from x and some cycle
mong C2, . . . , CW/2 is independent from the state of the edges between these paths and C1.
ence, by (7) and an immediate induction we deduce that

P
(
Ox

n ∩ Bx
n

)
≤ P(Bx

n ∩ {T <∞}) ≤ (1− ε)W/2.

Then, by choosing the constant C1 (defined in the beginning of the proof) large enough, we
can make the previous bound o(n−1), as desired. □

As a consequence of Claim 5.9, we get

P

⎛⎝ ⋃
X∈Po(λ)∩Λn

OX
n ∩ BX

n

⎞⎠ = o(1).

Together with (5) this shows that, with probability going to 1 as n → ∞, any connected
omponent which is not connected to Ĝn is such that it does not exit the box ΛX

n for any of
he vertices X in this component. To conclude, it suffices to observe that, by concentration of
oisson random variables, it is very unlikely that one of these boxes contains much more than
log n)2 points. Indeed, applying again Lemma 2.5 gives

P
( ⋃

X∈Po(λ)∩Λn

{
|Gn ∩Λ

X
n | > 2λ(8C1 log n)2})

≤ E
[ ∑

X∈Po(λ)∩Λn

1|Gn∩ΛX
n |>2λ(8C1 log n)2

]
= λ

∫
Λn

P
(
|Gx

n ∩Λ
x
n | > 2λ(8C1 log n)2) dx ≤ λnP

(
|G ∩Λ(4C1 log n)| > 2λ(8C1 log n)2

− 1
)

= o(1),
where we use Lemma 2.7 for the last equality. This concludes the proof of the proposition. □
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Remark 5.10. Apart from the size of the second-largest component in Gn , with minor
odifications the proof also implies a stretched exponential decay of |C1(0)| in the infinite-

olume limit conditionally on |C1(0)| < ∞. As above, the key point is to establish an upper
ound on the diameter of C1(0). By similar arguments one may show that the event En that
A(n, 2n) = Λ(2n)\Λ(n) contains Θ(n) cycles in G(λ′, p) (with the notation from the previous
roof) that are pairwise at distance at least 1 from each other which all participate in the infinite
omponent of G(λ′, p)’ is satisfied with probability 1 − exp(−Ωλ,p(n)). Thus, partitioning
2
\ Λ(1) into the annuli (A(2k, 2k+1))k≥0 and applying the argument from the proof of

roposition 5.6 to each of them shows that, conditionally on E2k , the event 0
G(λ,p)
←−−→ (R2

\Λ(2k))
nd simultaneously |C1(0)| <∞ holds with probability at most exp(−Ωλ,p(2k)). Hence, since
(2⌊log n⌋−2) is included in the ball of radius n/2 around 0, the probability that the Euclidean
iameter of C1(0) is at least n is at most

P(C1(0) ∩ (R2
\ Λ(2⌊log n⌋−2)) ̸= ∅) ≤ P(C1(0) ∩ (R2

\ Λ(2⌊log n⌋−2))

̸= ∅ | E2⌊log n⌋−1 )+ P(E2⌊log n⌋−1 )

= exp(−Ωλ,p(n)).

.3. The convergence of (n−1L1(Gn))n≥1

First, we recall that the convergence in probability of (n−1L1(Gn))n≥1 to λθ (λ, p) is proved
n [20]. On the other hand, L1(Gn) is bounded by the total number of points of Po(λ) in Λn

which is distributed as a Poisson random variable with parameter λn), so this sequence is also
ounded in L p for all p ≥ 1 (e.g. as a consequence of Lemma 2.7). Therefore, the convergence
o λθ (λ, p) holds in fact in L p for all p ≥ 1.

We now prove the almost sure convergence by using the results of Section 5.2. Fix δ < 1/2,
nd for any large integer n, let Tn be a tessellation of Λn into k := ⌊n(1−δ)/2

⌋
2 squares with

olume roughly nδ . Then, consider the event An that:

• in each square in Tn , the largest component has a size of order at least cnδ , where c > 0 is
some sufficiently small constant, and any other component has diameter at most (log n)2;
• in Λn , the second-largest component has size at most (log n)3.

he proof of Proposition 5.6 shows that, if c is sufficiently small, An holds with probability
− o(n−2).
Moreover, observe that on the event An , L1(Gn) is equal to the sum of k independent terms

X i )k
i=1, all distributed as L1(Gnδ ), up to some error term, which is due to the components lying

n the region R of all points in Λn at distance at most (log n)2 from the boundaries of the squares
f Tn . For all i ∈ {1, . . . , k}, let us denote Yi = min{n−δ X i , 2}, and Y = Y1 + · · · + Yk . Then,
ince X i ≥ cnδ on the event An , EYi = Θ(1) for any i ∈ {1, . . . , k}. Therefore, by Hoeffding’s
nequality (which is a version of Chernoff’s inequality for bounded random variables, see for
xample [14]), P(|Y − EY | ≥ k

log n ) = exp(−nΩ(1)). At the same time, Yi = n−δ X i on the
vent that the i th square in the tessellation contains at most 2nδ points, which happens with
robability at least 1− exp(−nΩ(1)) (see Lemma 2.7), and in particular EY = n−δEX + o(1).
334
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O
a

w

a

As a consequence,

P
(
|X − EX | ≥

n
log n

)
≤ P

(
|Y − EY | ≥

k
2 log n

)
+

k∑
i=1

P(Yi ̸= n−δ X i )

≤ P
(
|Y − EY | ≥

k
2 log n

)
+ k exp(−Ω (nδ)) = exp(−nΩ(1)).

n the other hand, the event Dn that there are at most n1−δ/2(log n)3 points in R (which has
rea O(n1−δ/2(log n)2)) holds with probability 1− o(n−2).

Finally, together with the fact that
1
n
E [X ]→ λθ (λ) as n→∞,

e deduce that,

P
(
|L1(Gn)− EL1(Gn)| ≥

n
2 log n

)
≤ P

(
|X − E [X ]| ≥

n
log n

)
+ P(An)+ P(Dn) = o(n−2),

nd the fact that
∑

n≥1 n−2 <∞ together with the Borel–Cantelli lemma concludes the proof
of the almost sure convergence.
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