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Abstract

We show that the range of a critical branching random walk conditioned to survive
forever and the Minkowski sum of two independent simple random walk ranges are
intersection-equivalent in any dimension d > 5, in the sense that they hit any finite set
with comparable probability, as their common starting point is sufficiently far away
from the set to be hit. Furthermore, we extend a discrete version of Kesten, Spitzer and
Whitman’s result on the law of large numbers for the volume of a Wiener sausage. Here,
the sausage is made of the Minkowski sum of N independent simple random walk
ranges in Z¢, withd > 2N + 1, and of a finite set A C Z¢. When properly normalised
the volume of the sausage converges to a quantity equivalent to the capacity of A with
respect to the kernel k(x, y) = (1 + ||x — yID2N=4 Asa consequence, we establish
a new relation between capacity and branching capacity.

Keywords Capacity - Range of random walk - Branching random walk - Branching
capacity - Intersection probability

Mathematics Subject Classification 60F15 - 60G50 - 60J45

< Bruno Schapira
bruno.schapira@univ-amu.fr

Amine Asselah
amine.asselah@u-pec.fr

Izumi Okada
iokada@math.s.chiba-u.ac.jp

Perla Sousi
p-sousi @statslab.cam.ac.uk

1 LAMA, UMR 8050, UPEC, UPEMLYV, CNRS, Université Paris-Est, 94010 Créteil, France

Faculty of Science, Department of Mathematics and Informatics, Chiba University, Chiba
263-8522, Japan

3 CNRS, I2M, UMR 7373, Aix-Marseille Université, 13453 Marseille, France
University of Cambridge, Cambridge, UK

Published online: 24 December 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-024-01352-7&domain=pdf

A. Asselah et al.

1 Introduction

In this paper we establish similarities between the typical behaviour of two multi-
parameter processes whose Green’s functions are comparable: the Minkowski sum of
two independent random walks and the infinite invariant critical branching random
walk. Both processes are considered in the transient regime on 74 thatis whend > 5.
The analogy holds first at the level of the volume of their Wiener sausages associated
withany set A C Z¢. More precisely, the Wiener sausage (of a trajectory of the process)
is obtained as we roll a finite set A C Z@ over the trajectory. Secondly, the analogy
holds for hitting times from infinity, showing some form of intersection-equivalence,
a notion first discussed by Benjamini, Pemantle and Peres [7]. We then consider
the Minkowski sum of N independent random walks, both in terms of their Wiener
sausages, and then in terms of their hitting times. Finally, in the critical dimension
d = 4, we provide a law of large numbers result for the capacity of a discrete Wiener
sausage.

The models. We first consider a so-called infinite invariant tree 7, whose one-sided
version was introduced by Le Gall and Lin [16] as a natural tool for studying the
range of critical branching random walks on Z¢, and whose two-sided version was
later defined by Zhu [23] and Bai and Wan [6] respectively with the goal of defining
branching interlacements and for studying the capacity of critical branching random
walk ranges. Interestingly, the genealogical structure of this tree is an instance of the
invariant sin-tree introduced earlier by Aldous [2], and appears as a local limit of
critical Bienaymé-Galton-Watson trees, conditioned to have a size going to infinity.
Also more importantly for us, and as we shall see in a moment, a one-sided version
of 7T appears to be a crucial ingredient for defining a notion of capacity for critical
branching random walks, called branching capacity [22].

The tree 7 is a labelled ordered (or plane) tree made of a spine, that is a semi-
infinite line of nodes (&, uy, ... ), to which are attached independent critical trees as
follows. Independently, each node u; for i > 0 draws a random number of children
Z; with size-biased distribution ug, (defined by ug, (i) = iwn(i)), identifying one
uniformly at random with u; 41, and thus partitioning the Z; — 1 other children as left
and right on each side of the spine, and letting each of them in turn produce a critical
Bienaymé-Galton-Watson tree with reproduction law p. Furthermore, the root draws
Zo children, where Zj is distributed according to zt(i) = (i — 1) (fori > 1) instead
of ugp. Its first child is identified with u, and the remaining Zy — 1 produce in turn
and independently p-critical trees. The root is assigned label 0 and, using a clockwise
depth-first search algorithm from the root, we label vertices on the right of the spine
with positive labels. Using a counter-clockwise depth-first search, we label vertices
on the left of the spine with negative labels, see Fig. 1. For each n € 7Z, we denote
by 7 (n) the vertex with label n. The set of vertices with nonnegative labels is called
the future of 7, and is denoted by 7., while the set of vertices with negative labels is
called the past of 7, and is denoted by 7_.

Then we consider a random walk (S, ),<7, indexed by 7 by assigning independent
increments to the edges of the tree, whose common law is taken for simplicity to be
the uniform distribution on the neighbours of the origin. Given x € 74, the value Sy
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Fig. 1 An infinite tree 7", with the spine in blue (colour figure online)

of the walk starting from x at a vertex u € 7 is obtained by summing the increments
along the edges on the shortest path joining u to the root, and adding x to the result. In
particular, the value of the walk at the root is x. We next denote by 7~ = {S,, : u € 7},
its range and define similarly 7 = {S, : u € 7_} (respectively 7' = {S, :u € 7, })
its range in the past (respectively in the future).

A second model of interest here is the Minkowski sum of two random walk ranges.
We recall that the Minkowski sum of two subsets A, B C 74 isdefinedtobe A+ B =
{a+b:aec A, be B} Let (X,)n>0 and ()N(,,),,zo be two independent simple random
walks on Z?. We denote by Reo = {X, : n = 0} and Reo = {)?,, :n > 0}
their respective ranges. In this paper we study their Minkowski sum which is simply
Roo +Roo- Thus, intuitively speaking one rolls on the support of one walk the support
of another independent walk, obtaining a sausage.

Wiener sausage. A celebrated result of Kesten, Spitzer and Whitman [9, p. 252] (see
also [20]) concerns the volume of a Wiener sausage obtained as we roll a compact set,
say A C R? with d > 3, over the trajectory of a transient Brownian trajectory. As we
run the sausage over a time period of length ¢, and divide the volume of the sausage by
t, the ratio converges to the electrostatic capacity of the set A. In our discrete setting
their result reads as follows. Given a simple random walk (X,),>0, define its range
in the time window [a, b], with 0 < a < b < oo, by Rla, b] = {X,, ..., Xp}, with
the short-hand notation R,, = R[0, n]. Then almost surely, for any finite set A C 74,
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withd > 3,
R,+ A
fim o AL Cap(A). (1.1)
n—00 n
The limiting functional Cap(A) turns out to be the discrete capacity of A. It is linked
with the Green’s function through an energy. Indeed, for a kernel k : 74 x 74 — RT,

and a probability measure v on A, the k-energy is defined to be

E) =) Y k(x, Y)v(). (1.2)

xeA yeA

The capacity of the set A is defined as

—1
)

Cap(A) = (inf [Eg(v) : v probability measure on A}) (1.3)

where g is the Green’s function of a simple random walk (X,),>0 on 74, defined as

g, y) =B Y1 = ),

n>0

with E, denoting expectation with respect to a walk starting from x. We recall that
g(x,y) = g(0,y — x), which we shall also write as g(y — x). As Spitzer observed
later [21], (1.1) follows directly from Kingman’s subadditive ergodic theorem and a
last exit decomposition. In [22] it was shown that, when d > 5, the hitting probability
of a finite set, say A C Z<, by the past tree 7_ appropriately normalised has a limit,
called the branching capacity of A, and denoted by BCap(A). More precisely,

2

BCap(A) := lim
[lx][—00 g * g(x)

P(TX N A #0). (1.4)
Furthermore, it was shown in [5] that the branching capacity is comparable to a capacity
corresponding to the kernel g * g in the following sense: there exists a positive constant
C depending on the variance of the offspring distribution u, so that for all finite sets
A C 74, we have

é -BCap(A)_1 < inf {é’g*g(y) : v probability measure on A] <C- BCap(A)_l.
(1.5)

Let A be an arbitrary set. For any two functions f,h : A — R we write f < h
if the ratio f(a)/h(a) is bounded both from above and below by positive constants
uniformly over all a € A.

Our first result extends the result by Kesten, Spitzer and Whitman to tree-indexed
random walks and additive random walks, thus revealing similarities between these
two processes. Fix an offspring distribution p with mean one and finite variance and
consider the associated infinite tree 7 defined above, together with the walk (S,,),c7
indexed by 7. Then, for n > 0, define 7;,0 ={S, :u=7(),...,7(n)}, its range
when restricted to the first n 4 1 vertices of 7, and starting from the origin.
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Theorem 1.1 Fixd > 5. Let X and X be two independent simple random walks on
74 and let ’];10 be as above. Let A be a finite subset of Z%. Then the following limits
hold almost surely,

O ITO+ Al Ra+Ra+ A
m—th—

l T (1.6)
n—oo n n—oo n
with the implied constants only depending on the variance of . Moreover,
T+ Al
lim ——— = BCap(A), (1.7)
n—oo
and ~
Rp+Rn+A Cap(R, + A
lim M — lim M_ (1.8)
n—o0 n n—oo n

Theorem 1.1 states that the two limits in (1.6) exist, and that they are comparable.
To the best of our knowledge, the observation that the limits are comparable is new,
as well as the characterisation of the limits in terms of the branching capacity. Note
that (1.8) generalises a law of large numbers result for Cap (R,) proved by Jain and
Orey [10] with the limit being positive if and only if d > 5. We show in (2.8) a
similar result where the branching capacity is considered instead of the capacity. In
Lemma 2.4 we give a representation of the limit in terms of escape probabilities in
analogy with the classical formula for capacity. We finally note that (1.7) generalises
a recent result of Le Gall and Lin [16] where they treat the case A = {0}. More
precisely, Le Gall and Lin study a critical BRW conditioned on having exactly n
nodes and take the limit as n — oo. In order to establish limit laws for the volume
of its range, they had to introduce the infinite invariant tree we described above as
its invariance under the shift of labels makes the corresponding law of large numbers
a simple application of Kingman’s subadditive ergodic theorem. Here, our starting
point is directly the infinite invariant tree, and the interested reader can check [16] for
linking the conditioned process and the infinite invariant one. Note that in the case
A = {0}, Le Gall and Lin provide a dual formula for Bcap({0}) in Theorem 4 of [16].
This formula was later generalised by Zhu in [22], where he defined the branching
capacity of any finite set A C Z<, as in (1.4).

Concerning the proof of Theorem 1.1, let us say that (1.7) follows from King-
man’s subadditive ergodic theorem, together with a last exit-decomposition, exactly
as for (1.1). Likewise (1.8) also simply follows from (1.1) and a multidimensional sub-
additive ergodic theorem, for which we refer to Sect. 2.2 for a precise statement. In fact,
the main observation is (1.6). The strategy is not to compare both terms directly here,
but rather to show that they are both comparable to a third quantity, the (d —4)-capacity
of A, which will be introduced later, in (1.10). Indeed, the fact that the left-hand side
of (1.6) is comparable to this third quantity follows from (1.7) and (1.5). Hence, the
main novelty here is to show that the right-hand side of (1.6), or equivalently of (1.8),
is comparable to the (d — 4)-capacity of A. For this we first use that the capacity of
a set is related to the probability of hitting this set by a simple random walk starting
from far away. Hence after some elementary computation (see Proposition 1.6), we
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reduce the whole problem to that of estimating hitting probabilities of a set A by a
sum of two walks, which is the object of our second result below.

Hitting probabilities. Our second result shows that, in the terminology of [17], 7*
and x + Roo + Reo are intersection-equivalent when x is away from the set to be hit.
For a finite set A C Z4, we define its diameter as

diam(A) = 1 + max{|lx — y|| : x,y € A},

where || - || denotes the Euclidean norm.

Theorem 1.2 Assume d > 5 and let  be an offspring distribution with mean one and
Jfinite variance. There exists a positive constant C so that the following holds. Let Roo
and R be two independent simple random walk ranges in 7. Then for any finite set
A C 74, containing the origin, and any x € 72, satisfying ||x|| > 2 - diam(A),

1

EP(Tj‘ﬂA;ﬁ@)§IP<(x+Roo+ﬁoo)ﬂA;éQJ)§C~P(TfﬂA;éQ)).

(1.9)

Note that Benjamini, Pemantle and Peres [7] focus on the Martin capacity for a
general transient Markov chain on a countable state space. The Martin capacity is
associated with the so-called Martin Kernel k(x, y) = g(x, y)/g(p,y), where p is
the starting site of the chain and g is its Green’s function. Their main result states that
the hitting probability of a set A is within a constant factor of two equal to the Martin
capacity of Aj; in particular two Markov chains with comparable Green’s functions
are intersection equivalent. While here both the random walk indexed by 7_, and the
sum of two walks, have comparable Green’s function, the main difficulty in proving
Theorem 1.2 is of course the lack of Markov property: for branching random walks or
for additive random walks, as Salisbury explains in [19] “the difficulty is that there may
be no first hitting time at which any kind of Markov property applies” . Fitzsimmons and
Salisbury [8, 19] using remarkable ideas managed to deal with multivariate processes.
Here we shall adapt proofs of Khoshnevisan and Shi [12], inspired by [19], which
provide estimates on the probability that a Brownian sheet hits a distant compact set
A C R, in terms of some appropriate (continuous) y-capacity of A, see (1.10) below
for a definition in the discrete setting. On the other hand, as already mentioned, the fact
that the hitting probability of A by a random walk indexed by 7_ is also comparable
to the (d — 4)-capacity of A was obtained independently earlier, see (1.4) and (1.5).

Sum of N random walks. One of the achievements of potential theory for Markov
processes (in the continuous setting) is to establish necessary and sufficient conditions
for a transient process to hit a set. Morally, the set should support a probability measure
whose g-energy is finite, where g is the Green’s function. Fitzsimmons and Salisbury
in [8] managed to build such a measure for additive Markov processes using random
times which are not stopping times. Their proof requires estimates on the first two
moments of the local times and their approach is adapted to tackle a sum of N walks,
as we shall see later in Lemma 3.1.
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We now define the y -capacity, denoted Cap,, , forany y > 0, by replacing g in (1.3)
by the kernel k,, (x, y) = (14 ||x — y||)™7. More precisely, for a finite and nonempty
subset A C Z4 , we define

S f{é‘ . v probabilit A}. 1.10
Capy(A) inf { &, (v) : v probability measure on ( )

Our third result is a natural generalisation of Theorem 1.1.

Theorem 1.3 Let N > 1,andd > 2N + 1. Let (Rf)o)i:1 ,,,,, N be N independent simple
random walk ranges on Z.%. There exists a positive set-function fu, such that for any
finite and nonempty A C Z¢, almost surely

. Ry A+ +RY+A
In(A) = nlgrgo " ¥ L | =< Cap,_,y (A). (1.11)

Furthermore, the following limit exists almost surely and satisfies

_ Capy_py_h(RL+A)
lim
n—00 n

= Capy_oy(A). (1.12)

Remark 1.4 In Sect.2.2 we give a dual representation of fy(A) in terms of escape
probabilities for sums of walks analogously to the case of capacity for N = 1.

As in the case N = 2, once (1.12) is established, (1.11) follows from a multi-
dimensional subadditive ergodic theorem, hence the whole matter is here again to
prove (1.12), which will be obtained as a consequence of our next two results.

First, we relate hitting probabilities of a set by the sum of N walks to its (d —2N)-
capacity. This is where we use the ideas of Fitzsimmons and Salisbury mentionned
above.

Theorem 1.5 Let N > 1 andd > 1+2N. Let (Réo),-zl ,,,,, N, be N independent simple
random walk ranges in 7¢. There exists a positive constant C, such that for any finite
set A C 74, containing the origin, and any x € 74 with x| > 2 - diam(A),

1 Capy_,y(A) I N

Cap,_oy(A)
flx || 42N

(1.13)

Note that the case N = 1 of Theorem 1.5 is well-known, see e.g. [14] or [7] for
a more precise result. In addition to Theorem 1.5 we have the following proposition,
which makes the link between the probability of hitting a set A by a sum of ranges,
and the ergodic limit appearing in (1.12) of Theorem 1.3.
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Proposition 1.6 Let N > 2 and d > 2N + 1. Suppose that RL ....RN are N
independent simple random walk ranges in Z%. There exist positive constants ¢| and
¢, such that for any finite nonempty set A C 7.¢,

Capy_onv_1)(RL + A)
lim inf ||x||d_2N-IP’<(x+RéO+~-+RIOVO)MA#Q))zcl- lim —Pd=2(N=Dn T )

[[x]]— 00 n—o00 n

(1.14)
and

Capy_pv—1) (R} + A)

lim sup ||x||d_2N-IP’((x+’R1 T RN YA £ @) <c¢y- lim
Jxll—o0 = > n=>00 n

(1.15)

Observe that (1.12) indeed follows from Theorem 1.5 and Proposition 1.6. The
proof of Proposition 1.6 follows from the fact that the capacity of a set is related to
its hitting probability by a walk starting from far away. The whole point here is to
make sure that one can exchange limits, which is done by a careful, though somewhat
standard, decomposition of a random walk trajectory into excursions.

Critical dimension four. We now briefly discuss the case of dimension four which is
critical for the capacity of the range. By analogy with the case of the volume in dimen-
sion two, first considered in Spitzer’s original paper [20], and then by Le Gall [15]
and Port [18], one can expect that in the asymptotic development of E[Cap(R,, + A)],
only the second order term should depend on A (and be related to a properly defined
notion of branching capacity). Here we do not pursue such a precise result, but notice
that indeed the first order term does not depend on A.

Proposition 1.7 Let R be a simple random walk range in Z*. Then for any finite and
nonempty set A C 7.*, one has

2
tim 2" gCap(R, + A)] = . (1.16)

n—o0 n 8
To prove the proposition above we use key ideas from Lawler’s book [14]: the
relationship between capacity and Green’s function in Theorem 3.6.1, and the estimates
from Section 3.4 in [14]. It was proved in [4] that when A = {0}, then (log n)Cap (R, +
A)/n converges to 2 /8 almost surely as n — oo. The same argument as in [4] can
be used to prove almost sure convergence also in the case when A is a general finite
set, see Remark 6.4. However, a central limit theorem is missing in the general case.

Notation. We will use the notation f = g if there exists a positive constant ¢, such
that f > cg,and f < g (or sometimes f = O(g))if g = f. We also use the standard
notation o(1) for a quantity which converges to 0 as the parameter n goes to infinity.
Forx € Z% andr > Olet B(x,r) = {y € Z¢ : ||y — x|| < r}, the Euclidean ball of
radius r. We write d A for the inner boundary of a set A C 74 i.e. the set of points in
A having at least one neighbor in A€.

The paper is organised as follows. In Sect. 2, we gather known results from ergodic
theory that we apply to trees and sums of walks. We then provide an expression for
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fn(A) from Theorem 1.3, and show that it is positive when d > 2N + 1. Finally, we
recall why y -capacities are sub-additive. In Sect. 3 we prove an estimate on the second
moment of local times, Lemma 3.1, which is an important ingredient for the proof of
Theorem 1.5 given in Sect. 4, together with the proof of Theorem 1.2. In Sect.5 we
prove Proposition 1.6 using Theorem 1.5 and in Sect. 6 we focus on the 4-dimensional
case and give the proof of Proposition 1.7. Finally, in Sect. 7, we gather related open
problems.

2 Subadditive functionals and Ergodic theorems

In this section we show the existence of three ergodic limits, namely the limits in (1.6),
(1.11) and (1.12) holding almost surely. We start in the next section by recalling some
results about y-capacities. Then in Sect.2.2 we recall a multi-parameter extension of
the subadditive ergodic theorem and then deduce that the limit in (1.11) exists almost
surely. Then in Sect.2.3 we apply it to functionals on trees.

2.1 y-Capacities

In this section we collect some results about y-capacities. In particular the existence
of the limit in (1.12) directly follows from Kingman’s subadditive theorem [13] and
the subadditivity of y-capacities, which we recall now.

Claim 2.1 Let y > 0. Then for any finite sets A, B C 74 we have
Cap, (AU B) < Cap, (A) + Cap, (B).

Proof First notice that Capy is increasing for inclusion, i.e. if A C B, then Capy (A) <
Cap,, (B), since a probability measure on A is also a probability measure on B. It thus
suffices to prove sub-additivity for disjoint subsets. Now consider A and B two disjoint
subsets of Z4, and let v be a probability measure on AU B. Leta = Y _, v(x). Then
it is easy to see that

3 A+ lx =y v@v() = o (-a
x,yeAUB ' V= Capy(A) CaPy(B)'

Indeed, this is trivially true if ¢ € {0, 1}, while otherwise the restriction of v/« to A
is a probability measure on A, and the restriction of ;= to B is a probability measure
on B. Taking the infimum over all v on the left hand side yields

1 _ o? (1—a)?
———— > inf .
CapV(A UB) ~ ecl0.1] | Cap,(A)  Cap,(B)
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Now observe that for any x, y > 0, and any « € [0, 1],

o (1—a)? 1
_+ 2 E)
x y x+y

which proves well that Capy (AUB) < Capy (A) + Capy (B) and finishes the proof.
O

Lemma22 Letd >3,y >2and A C 74, be a finite set. Let R be the range of a
simple random walk in Z¢. Then we have almost surely

Cap, (R, + A E[Cap, (R, + A
i Sy Rt ) [Cap, (Ry + A)]

n— 00 n n>1 n

2 Capy—Z(A)~

Proof Let u be a probability measure on A. Givenn > 0, and x € 74, define
n
£ (x) = E[Z 1(X = x)} :
k=0
and consider the probability measure v, on R, + A given by

£ (x)
Vn(Z)Z Z Zl(x+a=z)~m~u(a), fOI'allZER;:+A.

X€ER, acA

Note that this is indeed a probability measure on R,, + A. Then we have forany n > 1

1
vyezd L+ 11X = yID 770, (0)va (y)

Cap, (R, + A) >
v >

B (n 4 1)?
Yaben 2o yezd (L lla = b4 x =y 77 (@) by ()€, (y)”
2.1
By Jensen’s inequality we get
E[Cap, (R, + A)]
(n+1)°

= Yaben 2o yezd(L+lla = b+x =y w(@pnBER, ()€ ()]

Let g,(x) = E[£,(x)], and g(x) = goo(x). Then the Markov property and the sym-
metry of the random walk steps yield,
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EL (WM< Y (PXx =x, Xp = ) + P(Xg = y, Xp = x))

k<k'<n

<Y Y Pk =x)+P(Xx =) - P(Xp g =y —x)
k=0 k'=k

= (gn(x) + gn(¥))gx — y).

Therefore, letting ky, (1) = (1 + |lu|))”7, we get that for all a, b € A,

Y kyla—b+x—y) - Ell ()] S (ky xga—b) - Y galx)

x,yeZd xeZd

=(@m+1) - (ky xgla—D)).

Plugging this into (2.1) we get

1
Cap, (R, + A) > e :
> abeaky * gla —b)u(a)n(b)

Now we claim that as soon as y > 2, and d > 3, then k,, * g < k,,_>. Indeed, recall
that g (u) < (1 + |lu|)>~¢, and thus for u # 0,

ky k() = ) ko (4 — v)g(v)

veZd

1 1 1 1
= d-2 Z _ y+ y Z d-2
W72 |yt TF o=l " Tl o Tl

1

+ Z ||v||)/+d—2

lloll>2lull
_ 1
T w2

proving our claim. Therefore taking the infimum above over all probability measures
non A, we get that almost surely,

. Cap,(Ry +A) . E[Cap, (R, + A)]

n—oo n n>1 n

> Cap, 5(A),  (22)

where the existence of the limit and the first equality both follow from Claim 2.1
and Kingman’s subadditive ergodic theorem [13, 21]. This concludes the proof of the
lemma. o
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2.2 Multiparameter subadditive ergodic theorem

We start by recalling a multi-parameter extension of the subadditive ergodic theorem
due to Akcoglu and Krengel. We denote by U/ the set of all N-dimensional rectangles
of NV i.e. sets of the form ]_[fvzl{n,-, co.,mi}, withO < n; <m; foralli < N.

Theorem 2.3 (Akcoglu—Krengel [1]) Let N > 1, and (L(U))y ey, be a sequence of
real-valued random variables, satisfying the following properties:

(1) (Stationarity) For any k, any U1, ..., Uy € Uy, and any u € NV, the Jjoint distri-
bution of (L(u +Uy), ..., L(u+ Uy)) is the same as that of (L(Uy), ..., L(Uy)).
(ii) (Subadditivity) Given any disjoint rectangles Uy, . . ., U, such that Uf-‘zl U; € Uy,
one has L(Uj<xU;) < > o L(U)).
(ili) (Integrability) The random variables L(U) are integrable for all U € Uy.
(iv) (Boundedness in mean) One has supy ¢y, IE[|L(U)|]/|U| < o0Q.

Then there exists a random variable T, such that almost surely

L{0,...,m}N
lim 20} . " _r,
n—oo n
and furthermore,
E[L(T, {0, ... E[L(TTY (0, ...,
inf (T ni})] —  lim [T "’})]. (2.3)
ni,..., ny>1 ny...ny np,....nAN—>00 ny...nyN

Indeed, the existence of the limit I" follows from Theorem (2.4) in [1], and (2.3)
can be proved as Lemma (3.4) there. Using this we now explain the existence of the
limit in (1.11).

First, by the elementary exclusion-inclusion formula for the volume of the
Minkowski sum we get for A, B finite subsets of 74,

IR+ (AUB)| =[(R+ A)U(R+ B)|
=R+ A+ IR+ B[—-|(R+A)N(R+ B)|.

Since, R + (AN B) C (R + A) N (R + B), we have a strong form of subadditivity
[R+(AUB)[+|R+(ANB)| <R+ Al+|R + B|. (2.4)

Now clearly, for any fixed A ¢ Z¢ and R, ..., R" independent simple random walk
ranges, the process defined by

N
L(H{niy ---,mi}) = ‘Rl[”llvml] + -+ RN [ny, myl+ A,
i=1

satisfies all the hypotheses of the previous theorem (in particular stationarity follows
from the fact that for any k > 0 and any n < m, R[k + n, k + m] has the same law as
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X + R[n, m]), and hence we get the almost sure existence of the limit below for any
finite set A,
Ry+-+RY+A
fu(4) = lim 5 .
n

Furthermore, an immediate application of Kolmogorov’s 0 — 1 law implies that fx (A)
is almost surely constant. Then an application of the dominated convergence theorem
and (2.3) yield

. N
fn(A) = lim .
ey N =00 ny...ny

EHR}“+-~+R£’ +AH

Using (2.4) we deduce that fy also satisfies the strong subadditivity property

IN(AUB) + fN(ANB) < fn(A) + fn(B).

Therefore almost surely as well,

. o1 Ra+4A) . E[fvo1(Ra+ A)]
11m _— = hm .
n—o00 n n—oQ n

Applying twice the dominated convergence theorem yields

]EUR},,+-~-+RZ—1+R,’:’+AH

1
fn(A) = lim —- lim

n—00 . Mm—00 mN-1 2.5)
_ ElfvaiRY +A4)1 . v (RY +A)

= l1m = hm R E—
n>1 n n—0oo n

In the next result we give an expression for the set-function f (A) generalising the
expression for capacity in the case when N = 1. We give the proof in Sect.2.4.

Lemma 2.4 Let N be an integer, and consider dimensiond > 2N+1. Let R, ..., RN

be independent ranges of double-sided simple random walks in 7. Then,

N

) => Pl {(R©0,000+ Y RI(-00,00)+a)nA=0}]. (26)

acA \i=l i<j<N

2.3 Functionals on trees

A fundamental property of the infinite invariant tree is its invariance in law after
applying the shift on the labels. This fact was first observed by Le Gall and Lin [16]
on the restriction of the tree to 7., and then on the full tree independently by Zhu [23]
and Bai and Wan [6]. The infinite tree has an invariant product measure, and the shift
is actually a reversible map. Le Gall and Lin introduced the infinite tree to be able to
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use ergodic theory to prove asymptotics for the size of the range of the first n labelled
sites of the invariant branching random walk. They then transferred their result to
critical trees conditioned on having total population n, as n goes to infinity. Here, for
simplicity, we only discuss ’Z;,O, and the reader is referred to [16] to transfer the results
to critical branching random walks conditioned to have population 7.

In fact [16] shows that |7;0|/n converges almost surely to the probability that a
walk indexed by 7 avoids the origin (except at the root), simply as a consequence of
Kingman’s sub-additive ergodic theorem. By following the same argument, together
with a last exit decomposition, exactly as for (1.1), we obtain that for any finite set
AcCzd,

170+ Al @

x€A

where 7,y = 7 \ {9} (and 7T is the restriction of the range to 7. ). This latter
expression turns out to be the branching capacity of A. Indeed, Zhu [22, Proposition
8.1] showed that

BCap(A) = ZIP’(T_" NA=¢)= Z P(TF, NA=0). .7

xeA X€eA

Thus, the original part in Theorem 1.1 is to make the link with the set-function f,(A)
obtained with two independent random walks from (1.11).

Now let us mention some natural extensions of our results. We can indeed deduce
that also cap(’Z;lo + A)/n converges in probability, and furthermore that the limit is of
order Cap,_g(A), whend > 7. Let us just explain the proof in this case. First, applying
twice the multi-parameter ergodic theorem, Theorem 2.3, and using Theorems 1.1
and 1.3, we get that almost surely

0 0
po CapT L A) L [Ra+ TP Al BCap(R, + A)

n—o0o n n— 00 n2 n— 00 n
o 2Rt IRL+R2+ RS+ Al

= li li
n—00 n n—00 n3

= f3(A) < Cap,;_¢(A),
2.8)

where R,, and (Rfl) i=1,2,3 are independent ranges of simple random walks, indepen-
dent of 79,

2.4 Dual representation for fy

In this section we give the proof of Lemma 2.4 which again makes use of Theorem 2.3.
Proof of Lemma 2.4 We can write
IRy + -+ RY + Al

ZZ Z 1(Xi11+x¢Uj>i1(X}+Rﬁ+~~+R,’;’+A))
i1=n xeR2++RN+A
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> > XL 4 XD 4 x ¢ Ui (X +Ro 4+ RY + A))
iLi2<n xeR}++RN+A

X L(X] +x ¢ Ujpoipn(X5 + Ry 4+ R + A)).

Iterating this, we obtain

IRy + -+ Ry + Al
_Z Z XN a ¢ Ujniy (XY + A)) x (X))~ 11+XN
acAiy,..., in<n

+a ¢Uj>iN_1(X§V_1+R,},V+A))~-~><1(Xl-11 o+ XY
ta¢ Uiy (Xi+RE+-+RY + A).

Foralli € {1,..., N} and k < n, we set
Ri(—k,n—k) =X, —R. and R'(0,n—k) = Xi — R'[k+1,n].
Then we can rewrite the expression above as

IRY + -+ RN + A
=Y > URNO.n—in)+a)NA=H(RNTO0.n—iy1)

acAiy,....in<n
+RY (—in,n—in) +a@) VA =0) - x 1(R'O,n — 1) + R*(—iz, n — in)
4+ RN (—iy.n—iy)+a)NA=0).

Restricting the sum above over all iy, ...,iy € (logn,n — logn), dividing through
by n" and applying Theorem 2.3 we deduce that almost surely as n — 0o

1
— IRy 4+ RY + A

N
= Y P[{RIL oo+ > Ri(—o0, 00 +a)na=0}].

acA \i=l i<j<N

where R(—o00, 00) corresponds to the range of a double-sided simple random walk.
This now concludes the proof. O

3 Preliminaries on local times
Our goal in this section is to prove Lemma 3.1 below, which provides second moment

estimates for the local times of the sum of N independent walks. Fix N > 1, and
consider X', ..., XN a sequence of N simple random walks, all starting from the
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origin. Then given any x, z € Z¢, set
Copxippxy (@) = D 1z + X 4+ XN =x). (3.1)
I,..0,IN

Let G y be the N-th convolution power of the simple random walk’s Green’s function
g(sothat Gy(x —z) = E[€Z+X1+,_+XN (x)]). Our second moment estimate reads as
follows.

Lemma3.1 Let N > 1l andd > 2N + 1. There exists a constant C = C(d) > 0, such
that for any z, a, b € Z4, with ||z|| = 2 max(|lal|, |b]), we have

L€, x1poixch @0y g v (B)] < € (GN(Z —a)+Gy(z— b)) -Gy (a—b).

(3.2)
Before we move to the proof of this lemma, let us recall that g(x) < W,
which by an immediate induction shows that for any k € {1, ..., N} (and as long as
d > 14 2N), one has
1
Gr(x) x —————. 3.3
KO = T = G-

Proof of Lemma 3.1
Letk,¢,m € {l,...,N},and fora, b, z € 74, let

Fiom@ a.b) =Y Giz—b+w)Gr(w)Gpla — b+ w).

The first step towards the proof of Lemma 3.1 is the following claim.

Claim 3.2 One has

> (M8 =)+ 808y = YN FremGa+y.b+Y)
vy
= Fis1,041,m(z, a, b) + Fieq1,0my1(z, a, b).

Proof First of all we notice that Fi ¢, (z, a, b) = Fi.m ¢(z, b, a). Therefore it suffices
to prove that

> egy = Y Frem(za+y.b+y) = Fiyre41.m(z. a. b).
vy

We have

@ Springer



Branching random walks...

> egy = ¥ Fiem(za+y.b+))

vy

= Y g0gy —Y)Giz —b—y +w)G(w)Gpla+y—b—y +w)
v,y w

=Y gMgWGiz—b+u—y+w)Ge(w)Gpla —b+u+w)
y,u,w

=Y )G (w)Gn(a—b+u+w)Gry1(z—b+u+w)
u,w

=Y g)Ge(w —u)Gpla—b+v)Gry1(z = b+)
u,v

= G 1(W)Gnla — b+ v)Grp1(z — b +v) = Fip1.641.m(z @, b)

v
and this completes the proof. O

Forz,a, b € 749, define now

Vn(zoa,b) = B[l xi o oxn (@ x4 xn(B)].
The next step is obtained by a simple induction on N > 1.
Lemma 3.3 One has forany z,a,b € 74,

N-1

Vn(z,a,b) < Gn(z—D)GN(a —Db) + /; (k B 1>FN,Nk,k(Z, a,b)

+ Gy —a)Gy(a—b)+ Z ( B

)FN,N—k,k(Z: b, a),

with the convention that the two sums are zero when N = 1.
Proof Defining,

N—-1
N —1
Wy(z.a.b) =Gy —b)Gya—b)+ Fy N-kk(z,a,b),
= k-1

the statement of the lemma then becomes
Vn(z,a,b) < Wn(z,a,b) + Wn(z, b, a). 3.4

We will prove this by induction on N. For N = 1 we get
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Vn(z,a,b) < E[ Z 1z+ X =a) 12+ X541 = b)]

s,teN

+IE[ Y 1+ X =a) 1+ X :b)]

s,teN
=gz —a)gla—Db)+gz—b)gla—D),
and hence (3.4) holds for N = 1. Suppose now that (3.4) holds for N. We will establish

it also for N 4 1. Summing over all the possible locations of the (N + 1)-st walk and
using the induction hypothesis gives

Vnriza,b) < ) (e(g(y =) +8(Ngy — yDVn(z a+y. b +y)
vy

< Y @Mey =)+ 20"y — ¥ - Wz a+y.b+))
.y
+ Wn(z, b+y . a+y)).

To simplify notation we let A be the operator given by

Af@za,b) =) (e =) +e(Ne = YNz a+y,b+y)
vy

for any function f. To prove the lemma it thus suffices to show that
AWy (z,a,b) = Wnii(z,a, D). (3.5)

Note first that

D 88y —y)Gn(z—b—y)Gna—b+y—y) =Gni1(z—b)Gnii(a—b),
vy

which gives the first term in Wy (z, a, b). Note also that

D ee(y —y)GnGz—b—y)Gyla—b+y—y) = Fyi1.1nG a,b).

.y
By Claim 3.2 we obtain
AFyi,N-1(z,a,b) = Fny1,1,8(z,a,b) + Fyy12,8v-1(2, a, b),

which shows that the coefficient of the term Fy 1.1, 5 (2, a, b) in AWn(z, a, b) is given
by 1+ ()}) which is equal to (,,). Thus the term Fy_1,1,n(z, a, b) appears with
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the same coefficientin both Wy +1(z, a, b) and AWx(z,a,b). Letk € {2,..., N—1}.
Using Claim 3.2 again we get that

AFN N—kk(z,a,b) = FNny1 N+1-kk(2,a, D) + Fyy1 N—kk+1(2,a,b) and

AFN N1—kk—1(z,a,b) = Fy 1 Ny1-k k(2. a, b) + Fnyi N+2—kk—1(2, a, D).

Wethus see thatfork € {2, ..., N—1}thecoefficientoftheterm Fy1 n+1-k k(2, @, b)
in AWy(z, a, b) is equal to

N —1 n N—-1\ (N
k—1 k—=2) \k—-1)
which is the same as its coefficient in Wy 41(z, a, b). Using Claim 3.2 for a last time

we see that the term Fy41 n,1(2, a, b) is one of the two terms of AFy y—1.1(2, a, D),

and hence its coefficient in AWy (z, a, b) must be (1(\)’) = (N o 1) = 1. Therefore, we

see that the coefficients of all the terms appearing in AWy (z, a, b) and Wy 1(z, a, b)
are equal and this completes the proof of (3.5). O

Finally we shall need the following claim.

Claim3.4 Let N > 1 and d > 2N. There exists C > 0, such that for all k €
(1,....,N =1}, and all z,a,b € Z%, with ||z|| > 2max(||a|, b)),

Fy.N—kk(z,a,b) < C-Gn(z)Gn(a —b).
Proof First of all note that for all £, m, such that £ +m < N,
GoxGy = Goim-

Moreover, a change of variables gives

Fyn-kk(z,a,b) =Y GN@GN 4w +b—2)Gr(u+a—2).

uezd

We then have for ||z|| > 2 max(||al|, ||2]]), using (3.3),

> GNWGN—k(u+b—2)Gilu+a —2)
flull=lz]l /4

SGN@ Y GNa+b—2)Gru+a—2)=GnR)Gyla—Db).

On the other hand, if ||u|| < ||z||/4, since we also have || z|| > 2 max(||la]|, ||2]|), one
has ||u + b — z|| < ||Iz|| and |lu + a — z|| < ||z||. Therefore, using again (3.3),
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Y GN@GN-ku+b—2)Gru+a—2)

lull=lzll/4
_ 21 2
SGN @GR Y. Gy x — e < GN(2)
1+ |zl
[lell=llzll /4

S Gn(z)Gn(a —b)

and this finishes the proof. O
Lemma 3.1 now follows from a combination of Lemma 3.3 and Claim 3.4. O

4 Hitting probabilities and capacities

In this section we give the proof of Theorems 1.2 and 1.5. We start by giving the proof
of Theorem 1.2 assuming Theorem 1.5 and then give the proof of the latter for which
we mainly follow the arguments of [12], see also [11], which extends the approach of

[8].

Proof of Theorem 1.2 The proof follows from the combination of four distinct obser-
vations: (i) Theorem 1.5 with N = 2, (ii) the hitting time asymptotics for the infinite
invariant tree (1.4), (iii) the fact that BCap(A) =< Cap,_4(A) proved in [5], and
finally (iv) the asymptotic (3.3) with k = 2. O

The rest of this section is devoted to the proof of Theorem 1.5.

Let X!, ..., X" be i.i.d. simple random walks on Z¢ started from 0 with ranges
R})o, ceey R% respectively. For y > 0, recall that we defined k), (x, y) = (1 + ||y —
x[)”7, and now given a probability measure v on A, to lighten notation we set &, (v) =
&k, (v), where &, is defined by (1.2).

Lower Bound. It suffices to prove that if v is a probability measure on A, then

P(x+ R+ +RNA£S) 1
Gn(2) ~ Eian ()’

.1

with an implicit constant that is independent of v. To this end, for any probability
measure v with support on A, let

Z, = Z v(a) Ly xi,.. o xn(a).
acA

Then it is immediate that

(E[Z,])?
P((x+Réo+...+Rlovo)ﬂA#@)EP(ZV>0)2m, 4.2)
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where for the last inequality we used the Paley-Zygmund inequality. For the first
moment of Z,,, we have for any x with ||x|| > 2 - diam(A), using (3.3),

E[Z,) =) v@Gn(x—a) 2 Gy(x).

acA

For the second moment, by Lemma 3.1 we have for x with ||x|| > 2 - diam(A),

E[Zf] = Y v@v®Vy&,a,b) S Gy ) Y v@vb)Gyla—b)

a,beA a,beA
S GNX)Ei—an (V). (4.3)

Plugging these two bounds into (4.2) yields (4.1).

Upper Bound. We define N random times, which are not stopping times. First,
Ty =inf{ty >0:3n,.... 0y stx+ X, +-+ X € A},
and then inductively fori =2, ..., N,
Ti=inf{t; >0:3tipy, ... .ty stx+Xp +- +XT 1+X' +o 4+ X[ e A}
We next define a probability measure p on A by setting fora € A
M(a):IP(x—i—XlTl +o XN —al|T <oo).
It then suffices to prove that for ||x|| > 2 - diam(A),

P(T) <o00) _ 1
Gnx) ™~ Epan(p)’

4.4

To this end we define the variable Z, = ) .4 p(a)l,  xiq..qxv(a), and if
(]—' )n>0 stands for the natural filtration of the walk X', then we define the multi-
parameter process

M(tl,...,tN)zE[ZM|f}1v...vftN]

_Z“(“)Z > ( =x1|35]1) (4.5)

acA SN X1sees XN—1
N N
"P(Xw =a—Xx—Xx|— - —XN—1] |‘7:t1v)
We then have almost surely for all #1, ty € N
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M(ty, ..., tn)
=) p@ ) > B(x=xl|7)
acA SIZH Lo SNZIN xp . xy_ €Z4
]P’(ng =a—X—X]—- - —XN_] |]—',1x)
=> @ > gx) —x)gx T —xno)
acA Xlyeens xy_1€Z4

xg(x+x1+ - +xy_1+ X —a)
=D @GN+ X} +--+ X\ —a).

acA

Therefore, almost surely we get

sup M(t1,....tx) = 1(T1 <00) Y pu(@Gn(x + X, + -+ XP —a),

acA

and hence squaring both sides and taking expectations we obtain

IE|: sup Mz(tl, e, tN)j|
]

,,,,, IN

2
>E (Zu(a)GN(x—l—XlTl+---+X’TVN—a)) | Ty < o0 |- (T} < o0)

acA

2
= ub) (Z u(@Gn(b - a)) P(T1 < 00) 2 (Ea—an(w)* - (T} < 00),

beA acA

where in the last step we used the Cauchy-Schwarz inequality and (3.3).

By monotone convergence it then suffices to prove that for any uy, ..., uy,
]E[ sup M3, ..., tN)i| S Gn()Ea—an (), (4.6)
Nn=<uy,..., INSUN
with an implicit constant that is independent of uq, ..., uy. This together with the

inequality above would conclude the proof of (4.4).
Using the product expression for M from (4.5), it is easy to check that the process

1 — sup M(ti, ty, ..., tN),
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is anon-negative submartingale with respect to the filtration (}"tl1 \ ]—"32 VeV ]—'LIXV )11>0-
Applying Doob’s L?-inequality we then deduce

]E[ sup ( sup M (11, 12, ..-,IN)>]
H=uip \I2=uz,...INSUN

§4~E|: sup Mz(ul,tz,...,tN)].

nD=u,...INSuUN

Repeating the same argument N times, gives

]E[ sup M2(t1,...,tN)] <4V -E[Mz(ul,...,uN)] <4V . E[Z2),

where for the final inequality we used Jensen’s inequality. By (4.3) for x with ||x|| >
2 - diam(A), we get

E[Z2] S Gy @&-an ).

Altogether this proves (4.6) and thus completes the proof.

5 Hitting probabilities and ergodic limits

In this section, we prove Proposition 1.6. The proof is divided in two parts. First we
prove (1.14) in Sect. 5.1, which is the easiest direction, and then (1.15) in Sect.5.2,
which is slightly more demanding. We note that (1.15) follows in fact from a combi-
nation of Theorem 1.5 and Lemma 2.2, but we provide here another direct proof, as it
might be of independent interest.

5.1 Proof of (1.14)

Let N > 2, and assume that d > 2N + 1. Recall the definition of the functions G y
from the beginning of Sect. 3. Since R and —R have the same law, it amounts to
proving that

P(c+RL+ -+ RN (Roo + A) # 0)
llzll—00 Gy (2)

> fan(A),

where R is the range of a random walk (Xy)i>0, which is independent of
Réo, ... ,R%‘l, and

R Cap, »nv_1 (R + A
F(A) = lim —Pd=2(N nMn + 4

n— 00 n
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(The existence of the limit here follows from Lemma 2.2.) Let ¢ > 0 and let 7, =
inf{k > 0: Xy ¢ B(0,r)}. Then we get for | z|| large enough, using Theorem 1.5 for
the second inequality,

P(z+ R+ +REDH N (Reo + A) # 0)
Gn(2)
U P(@+Re+ -+ RETH N (RIO, ellzlP] + A) # 8, 7z 2 > 2l12]?)
- Gn ()

Gy_1(2)
GNNEZ)Z 'E[Capd*ZW*l)(R[O’ ellzlI’1+ A) - 1(ryzy 2 > SIIZIIZ)]

1
z W . E[Capd72(N71)(R[0, EHZHZ] + A)]

Vv

1
e 'E[Capd—z(N—l)(R[O, ellzl*1+ A) - 1ty 2 < g||z||2)] )

As ||z|| — oo we have that

1

T B[ Cap, oy (RIO. ellzl’] + )| = & i (4).

Cap,, (R, +A)

Indeed, the convergence holds in L! since the sequence ( -~

is uniformly
bounded by some deterministic constant, for any y > 0. Furthermorg, by Cauchy-

Schwarz we get

E[ Capy_aov—1y (RIO. ellz?] + A) - 17y 2 < ellzP)]

= \/E[CapdfﬂNfl)(R[Ov 8||Z||2] + A)Z] P(THZH/Z < 8||Z||2).
By a standard random walk estimate we get for a positive constant ¢ that
P(fnzu/z = 8||z||2) < exp(—c/e).

Capy_yv—1)(Rat+A4)
n

Using again that ( ) is bounded we get that it also converges to
n

ﬁv(A) in L2. Hence this gives for ||z|| sufficiently large
2 2 47 a2
E[ Capy_aov—1y(RIO. ellzl?] + 4] < 20zl* - F()?,
using also that ﬁv(A) is positive (since d > 2N + 1). Therefore we get
E[ Capy oy 1y (RIO. 2171+ A) - 1(ziayz2 =< ezl S 12012 Fov(A) exp(—c/@e).
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Putting everything together now gives that for | z|| sufficiently large

P((z+ R+ +RE™H N (Roo + A) # 0)
R GyvG@ R
2 e fn(A) —exp(—c/(28)) fn(A) 2 fn(A),

by taking ¢ sufficiently small. This finishes the proof. (|

5.2 Proof of (1.15)

We use here the same notation as in Sect.5.1. We define for i € Z, r; = 2'||z|, and
let I be the maximal index such that r_; > 4 diam(A). Now fori > —1, define

Bi = 0B(z,rit1) UdB(z, ri-1).
and fori > —/7,and k > 0, let

‘L’l-k = inf {n > oik_l X, € BB(z,ri)}, and o} = inf {n > rik X, € Bl-},

i

with the convention oi_l = 0. To simplify notation we will also write 7; = rl.o and
o = aio, for i > —1I. Note that by definition one has 79 = 0. Then let fori > —1,

Riy = U R[‘Eik, Ulk]
k>0

Observe that on the event {t_; = 00}, one has

Reo = |J R

i>—1

Note that, at least if ||z| is large enough, one has fori > I, Ry + A C B(z, ri+2) \
B(z, ri—7). In particular it is always possible to split R(;y + A into a finite number
(independent of z and A) of pieces with diameter at most r; /8 each. Then using
Theorem 1.5 and a union bound, we obtain

P((z+ R+ +REH N (R + A) # 0)
S Gy-1(ri) 'E[Capdfz(Nfl)(R(i) + A)]~

Using another union bound and the above we then get, with g(r) = r>=? for r > 0,
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P(z+ R+ +RE N (Reo + A) #0)

o0
<P <00)+ Y P(z+RL+ - +RLHNRG + A) #0)
i=—1
oo

8(2) ' |
~ g(diam(A)) + i:X—:I Gn-1(ri) - E[CapdfﬂNf])(R(l) + A)], (5.1

where for the last inequality, we used the well-known fact that for a simple random
walk starting from z, the probability to hit a ball B(0, r), with r < ||z||/2, is of order
g(2)/g(r). Now one has for any —/ < i < 0, using the transience of the walk, and
recalling that [E, denotes the expectation with respect to the law of a simple random
walk starting from x,

E I:Capd,ZW, i) (R(l) + A):I

<P(r; <o0)- sup E;, [Capd_2(N_1)(R(i) + A)]
x€dB(z,ri)

(z
S 8() . ZPx(Tik < OO)) -Ey [Capd_g(N_l)(R[O, o]l + A)]
8(ri) xeaBr) (=g

8(2)
< - sup  Ey|[Capy_rn_1n(RIO,0;]14+ A)|. 5.2)
8(ri)  xeaB(zr) [ d=2(N=D ]

Likewise for any i > 0, one has

E[Capd_z(N_l)(R(j) + A):I 5 sup ]EX I:Capd—Z(N—l)(R[O’ U[] + A)] (53)
x€dB(z,ri)

Now we claim that for any i > —1, one has

sup  E, [Capd_z(N_l)(R[O, oil + A)] < Fu(A) sl (5.4)
x€dB(z,r;)

Let us postpone the proof of the claim and conclude the proof of (1.15). Plugging (5.4)
into (5.2) and (5.3), and using (5.1) we get using thatd > 1 + 2N,

P((z+Réo+~~+R]ovo_l)ﬁ(Roo+A)#®)§g 8(@) + fn(A) - Gy (2).

(diam(A))
Dividing both sides by Gy (z), and letting ||z|| — oo concludes the proof of (1.15).

Thus it only remains to prove the claim (5.4). For this one can just write, using
monotonicity of y-capacities, for any x € d B(z, r;), and some constant ¢ > 0,
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E, [Capd—2(N—l)(R[O’ o]+ A):I

= Y B[ Capy a1y (RI0.011 + A) - 1r? < 07 < (ke + D)
k>0

< SB[ Capy oy (RIO, (6 + D72+ 4) - 1607 = ki) |
k>0

172
Y E [Capd_z(N_l)(R[O, (k+ 1)r?] + A)z] P(o; > kr?)\/
k>0

S INA) Y ke exp(=ck) S Fy(A) -1,
k>0

as wanted, where for the penultimate bound we used again that since

C Rn+A . . - .
(M#M) is bounded, it also converges to fy(A) in L. O
n

6 Capacity of the sausageind = 4

In this section we prove Proposition 1.7. Recall that we assume here that d = 4.
Following the notation of [14], we set ag = 2/ 72,

Claim 6.1 Fix M > 0. There exists a positive constant ¢ and ng so that for all n > ny,
if & is a geometric random variable of parameter 1/n, then for all x with ||x| < M
we have for all ¢ € (0, 1),

3
P Zg(Xk —x) —2as(logn)| = elogn
k=0

c
<.
g2logn

Proof Let

§
A=) (8(Xx—x)—g(Xp).
k=0

By the gradient estimate for Green’s function (see e.g. Theorem 1.5.5 in [14]), one
has

lg(Xik —x) —g(X S ———5-

L+ Xkl
Furthermore, a standard computation gives

(0.¢]

1 gW)
E — | = — s <
LX_(:) I+ ||Xk||3} Z I+ IxIP
= XEL
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Therefore Markov’s inequality gives that

1
P(|A| > = logn) < .
2 elogn

To conclude the proof we use the concentration results proved by Lawler. Indeed, he
shows in Lemma 4.2.1 in [14] that

§
P[> 2(X0) — 2aulogn)| > = logn
k=0 2

<
~ ¢2logn
O

We now introduce some notation. Fix a set A and let X be a simple random walk
starting from the origin with range R. Let R be an independent copy of R. Let S,f
and &) be two independent geometric random variables of parameter 1/n. For every
x € A we set

Ay = {(x + RI1,00) N (RI=§;, &1+ A) = 0}
e, =1(x & (R[1,§,1+ A))

U, = Z Z g(x, Xi + ).

yeA —gi<k<é;

The next lemma is an extension of a beautiful identity found by Lawler [ 14, Theorem
3.6.1], which corresponds to the case A = {0}. Here we mainly follow the notation
and presentation of [6, Lemma 2.12].

Lemma 6.2 We have

S TE[LAD e U] = 1Al

xeA
Proof For every nearest neighbour path (x, ..., x,) we define
B(m,xi,....xn) ={& +& =m, X gy —X o =x, V1<k<m},
and for all 0 < j < m we define
Bm, j,x1, ... xm) ={& = j, & =m—j, X_gopp —X_gr =xx, V1 <k <m).

Using the independence of the increments of the walk and the geometric random
variables we then obtain

1
P(B(m,j,)q, e Xm) | B(m,xl,...,xm)) = m——|-1
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Setting xo = 0, we then have

STE[1(AD) e U]

XEA
o0 m m
P(B(m, x1,...,Xm)
=22 X ((m1+1 m)'ZZuijsé({x,-H ----- Xm} + A))
xeAm=0 (x1,..., Xm) k=0 j=0
x P((x +xj + RI1,00) N ({x0. X1 ... Xm} + A) =0) Y gx +xj —x; — y).

yeA

Recall that the last exit decomposition formula [14, Proposition 2.4.1(d)] entails that
for any finite set B C Z¢, and any b € B,

1= g —b)-P(® +RI1,00)N B =9).
b'eB

Applying this to the set B = {x¢,...,x,} + A, and b = xx + y, with y € A and
k € {0, ..., m} fixed, we get

1= "3 "1 +xj ¢ (g1, X} + ADP((x +x; + R[1, 00))
x€A j=0

N ({xo, X1, ..., xm) +A) =0) - glx +x; —x — ).
Substituting this above we obtain
oo
DUE[AY e U =D Y PBOm,x1,....xm) - |Al = |A]
X€EA m=0 (x1,...,xm)
and this concludes the proof. O

Lemma 6.3 We have

A
Z]E[l(Aﬁ) . eﬁ] = +o(1))- %.
xeA aglogn
Proof We have from Lemma 6.2 that
ZE[l(A;) el U] = 1Al
xeA
We now get
ZE[l(Ax)~€x]= Al + : ~ZE[1(AX)~ex~(4a410gn—Z/{x)].
= neen 4aglogn  daglogn neen "
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For every x € A and ¢ > 0 we let
By = {lUy —E[U;]| = elogn}.
Then we have

E[1(A)) - ey - [E[Uy] — U |] < elogn - E[1(A}) - ey |
+ E[1(A)) - [E[Uhy ] — Uy |- 1(By)].

We now explain that it suffices to prove that
E[v1(A}) - [E[U ] — Uy |- 1(B)] S o (6.1)
n n n n’] ~ (lOg I’l)l/4 . .
Indeed, once this is established, then we get

__ A
4aq(logn)

S E[1(A}) - e}]

X€eA

x X 1
<¢ ZE[l(An) . en] + 0O (W) ,

xX€eA

and since this holds for any ¢ > 0, this concludes the proof. So we now turn to
prove (6.1). By the Cauchy-Schwarz inequality we obtain

B[4 - B[] - 31 18] = | P(A; 0 BY) - B[ B[] - 14)?]

< \/IP’(Aﬁ N B) -logn

using Claim 6.1 for the last inequality. It remains to bound the last probability appearing
above. To do this we define

0 &,
usl = Z g(x, Xp) and US? = Zg()c, Xi)s
k=—&! k=0
and also two events fori =1, 2
Bﬁ’i = {IU,f’i —2aq4logn| > glogn/4}.

Then it is clear that B;, < Bif’l U Bﬁ’z, at least for n large enough, and we have

P(AX N BY) < ]P’((x +R[1,00)) N (RI-£L, 01 + A) = 4, B;’Z)
+ IP’((x +R[1, 00)) N (R[O, ] + A) = 0, Bﬁ’l)

= 2P((x + RI1, 00)) N (RI—§1, 01+ A) = ) P(B}?).
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Since x € A we get

IP((x +RI[1,00)) N (R[-EL, 0] + A) = @) < P(Tz[l, 00) NR[—¢£L,0] = @)
1
Togn’

A

:

using Corollary 3.7.1 in [14] for the last inequality. Moreover, by Claim 6.1 we get
that

P(B,f’2) <

~ logn’

and hence altogether this gives

E[1(AY) - [E[UF] — U1 - 1BH] < Togmi/A’

concluding the proof. O

Proof of Proposition 1.7 Recall that for a finite set B C Z¢, one has cap(B) =
Y pep P((b+ R[1,00)) N B =), see [14, Section 2.2]. We thus have

E[Cap(R, + A)]

=Y > P(x ¢ (RIL.n— j1+ A), (x + RI1,00)) N (R[—j.n — jl+ A) = ).
x€A j=0

We then get the following bounds for m = n/(log n)?

E[Cap(R, + A)]
>n- Y P(x ¢ (R[1.n]+ A), (x +R[1,00) N (R[—n,n] + A) = @) and

x€eA

E[Cap(R, + A)]
<m-|Al+@m—m)- Y P(x ¢ (RILml+A), (x +R[1,00))

x€eA

N(R[—=m,m]+ A) =¥),

and we conclude using Lemma 6.3. O

Remark 6.4 As mentioned in the introduction, it would be possible to strengthen the
result of the proposition by proving an almost sure convergence, following the argu-
ments of [4]. The idea is to obtain good bounds on the variance of Cap(R, + A), and
then use Chebyshev’s inequality and the Borel-Cantelli lemma. The variance estimates
are based on the fact that the capacity is almost an additive functional, with an error
term (called cross-term in [4]) having small second moment. This approach is robust
and works as well when we consider R,, + A for a finite set A.
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7 Open problems

We discuss some open problems related to our present analysis.
General y-capacity. It would be interesting to show that for any y € (2, d), one has

Cap,, (Rn + A)
m _—

n— 00 n

= Cap,_,(A).

The results of this paper show that it is true when y = d — 2k, for some integer k, and
Lemma 2.2 proves one direction for general y > 2, but the other direction is missing.

Hitting Times. In Theorem 1.5 we established that the probability that a sum of N
simple random walks started from z hits a finite set A is of order G y (z) - Cap,_,y (A),
whend > 2N + 1 and ||z]] — oo. A natural question is whether the quantity

Pz+RY+ - +RENA#D
GN(Z) ( o0 o0 # )
has a limit as ||z]| — oo.

Another natural question is whether the analogue of Theorem 1.5 holds for the sum
of invariant trees. More precisely, when d > 4N + 1 and A is a finite subset of 74 is
the quantity

1
Gaon(2)

Pz + 7L+ + TN NA#0)

of order Cap,_4x (A) as ||z]] = 00? One difficulty here will be to be able to define
hitting times of the set A for which we can decouple future and past for each invariant
tree.

Tails of local times. In Theorem 1.2 we stated an intersection equivalence between the
sum of two simple random walks and an infinite invariant tree. However, the equiva-
lence between these two processes is not expected to hold beyond hitting probabilities.
Obtaining tails for the local times of additive walks is an open problem. We expect
the local times of the sum of two walks to decay as a stretched exponential when
d > 5 as opposed to an exponential decay in the case of the invariant tree (see [,
Theorem 1.6]).

Critical models. There is a range of critical models for which several questions arise:
the Minkowski sum of two simple random walks in d = 4, the Minkowski sum of 3
walks in d = 6 and so on. Interesting questions include:

(i) The fluctuations of the capacity of a sausage obtained as we roll a finite set over
the trajectory of the process.
(i1) The tail of the local times, where we expect a stretched exponential tail. It would
be interesting to have a representation of the rate function.
(iii) The folding phenomenon for additive walks or trees, and the first estimates we need
is an upper bound on the probability to cover a region up to a certain density (mea-
sured in a certain space-scale). A typical example of such a folding phenomenon

@ Springer



Branching random walks...

is the event of having a large intersection between two invariant trees in dimension
d > 9, and the approach should follow the analogous problem of intersection of
two random walks in d > 5 studied recently in [3].
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