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Abstract
We show that the range of a critical branching random walk conditioned to survive
forever and the Minkowski sum of two independent simple random walk ranges are
intersection-equivalent in any dimension d ≥ 5, in the sense that they hit any finite set
with comparable probability, as their common starting point is sufficiently far away
from the set to be hit. Furthermore, we extend a discrete version of Kesten, Spitzer and
Whitman’s result on the lawof large numbers for the volumeof aWiener sausage. Here,
the sausage is made of the Minkowski sum of N independent simple random walk
ranges in Z

d , with d ≥ 2N +1, and of a finite set A ⊂ Z
d . When properly normalised

the volume of the sausage converges to a quantity equivalent to the capacity of A with
respect to the kernel k(x, y) = (1 + ‖x − y‖)2N−d . As a consequence, we establish
a new relation between capacity and branching capacity.
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1 Introduction

In this paper we establish similarities between the typical behaviour of two multi-
parameter processes whose Green’s functions are comparable: the Minkowski sum of
two independent random walks and the infinite invariant critical branching random
walk. Both processes are considered in the transient regime onZ

d , that is when d ≥ 5.
The analogy holds first at the level of the volume of theirWiener sausages associated
with any set A ⊂ Z

d .More precisely, theWiener sausage (of a trajectory of the process)
is obtained as we roll a finite set A ⊂ Z

d over the trajectory. Secondly, the analogy
holds for hitting times from infinity, showing some form of intersection-equivalence,
a notion first discussed by Benjamini, Pemantle and Peres [7]. We then consider
the Minkowski sum of N independent random walks, both in terms of their Wiener
sausages, and then in terms of their hitting times. Finally, in the critical dimension
d = 4, we provide a law of large numbers result for the capacity of a discrete Wiener
sausage.

The models. We first consider a so-called infinite invariant tree T , whose one-sided
version was introduced by Le Gall and Lin [16] as a natural tool for studying the
range of critical branching random walks on Z

d , and whose two-sided version was
later defined by Zhu [23] and Bai and Wan [6] respectively with the goal of defining
branching interlacements and for studying the capacity of critical branching random
walk ranges. Interestingly, the genealogical structure of this tree is an instance of the
invariant sin-tree introduced earlier by Aldous [2], and appears as a local limit of
critical Bienaymé-Galton-Watson trees, conditioned to have a size going to infinity.
Also more importantly for us, and as we shall see in a moment, a one-sided version
of T appears to be a crucial ingredient for defining a notion of capacity for critical
branching random walks, called branching capacity [22].

The tree T is a labelled ordered (or plane) tree made of a spine, that is a semi-
infinite line of nodes (∅, u1, . . . ), to which are attached independent critical trees as
follows. Independently, each node ui for i > 0 draws a random number of children
Zi with size-biased distribution μsb (defined by μsb(i) = iμ(i)), identifying one
uniformly at random with ui+1, and thus partitioning the Zi − 1 other children as left
and right on each side of the spine, and letting each of them in turn produce a critical
Bienaymé-Galton-Watson tree with reproduction law μ. Furthermore, the root draws
Z0 children, where Z0 is distributed according to μ̃(i) = μ(i − 1) (for i ≥ 1) instead
of μsb. Its first child is identified with u1, and the remaining Z0 − 1 produce in turn
and independently μ-critical trees. The root is assigned label 0 and, using a clockwise
depth-first search algorithm from the root, we label vertices on the right of the spine
with positive labels. Using a counter-clockwise depth-first search, we label vertices
on the left of the spine with negative labels, see Fig. 1. For each n ∈ Z, we denote
by T (n) the vertex with label n. The set of vertices with nonnegative labels is called
the future of T , and is denoted by T+, while the set of vertices with negative labels is
called the past of T , and is denoted by T−.

Then we consider a random walk (Su)u∈T , indexed by T by assigning independent
increments to the edges of the tree, whose common law is taken for simplicity to be
the uniform distribution on the neighbours of the origin. Given x ∈ Z

d , the value Su
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Fig. 1 An infinite tree T , with the spine in blue (colour figure online)

of the walk starting from x at a vertex u ∈ T is obtained by summing the increments
along the edges on the shortest path joining u to the root, and adding x to the result. In
particular, the value of the walk at the root is x . We next denote by T x = {Su : u ∈ T },
its range and define similarly T x− = {Su : u ∈ T−} (respectively T x+ = {Su : u ∈ T+})
its range in the past (respectively in the future).

A second model of interest here is theMinkowski sum of two random walk ranges.
We recall that theMinkowski sum of two subsets A, B ⊂ Z

d , is defined to be A+B =
{a+b : a ∈ A, b ∈ B}. Let (Xn)n≥0 and (˜Xn)n≥0 be two independent simple random
walks on Z

d . We denote by R∞ = {Xn : n ≥ 0} and ˜R∞ = {˜Xn : n ≥ 0}
their respective ranges. In this paper we study their Minkowski sum which is simply
R∞ + ˜R∞. Thus, intuitively speaking one rolls on the support of one walk the support
of another independent walk, obtaining a sausage.

Wiener sausage. A celebrated result of Kesten, Spitzer and Whitman [9, p. 252] (see
also [20]) concerns the volume of a Wiener sausage obtained as we roll a compact set,
say A ⊂ R

d with d ≥ 3, over the trajectory of a transient Brownian trajectory. As we
run the sausage over a time period of length t , and divide the volume of the sausage by
t , the ratio converges to the electrostatic capacity of the set A. In our discrete setting
their result reads as follows. Given a simple random walk (Xn)n≥0, define its range
in the time window [a, b], with 0 ≤ a ≤ b ≤ ∞, by R[a, b] = {Xa, . . . , Xb}, with
the short-hand notationRn = R[0, n]. Then almost surely, for any finite set A ⊂ Z

d ,
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with d ≥ 3,

lim
n→∞

|Rn + A|
n

= Cap(A). (1.1)

The limiting functional Cap(A) turns out to be the discrete capacity of A. It is linked
with the Green’s function through an energy. Indeed, for a kernel k : Z

d ×Z
d → R

+,
and a probability measure ν on A, the k-energy is defined to be

Ek(ν) :=
∑

x∈A

∑

y∈A

k(x, y)ν(x)ν(y). (1.2)

The capacity of the set A is defined as

Cap(A) :=
(

inf
{

Eg(ν) : ν probability measure on A
})−1

, (1.3)

where g is the Green’s function of a simple random walk (Xn)n≥0 on Z
d , defined as

g(x, y) := Ex

[
∑

n≥0

1(Xn = y)
]

,

with Ex denoting expectation with respect to a walk starting from x . We recall that
g(x, y) = g(0, y − x), which we shall also write as g(y − x). As Spitzer observed
later [21], (1.1) follows directly from Kingman’s subadditive ergodic theorem and a
last exit decomposition. In [22] it was shown that, when d ≥ 5, the hitting probability
of a finite set, say A ⊂ Z

d , by the past tree T− appropriately normalised has a limit,
called the branching capacity of A, and denoted by BCap(A). More precisely,

BCap(A) := lim‖x‖→∞
2/σ 2

g ∗ g(x)
P
(

T x− ∩ A �= ∅). (1.4)

Furthermore, itwas shown in [5] that the branching capacity is comparable to a capacity
corresponding to the kernel g∗g in the following sense: there exists a positive constant
C depending on the variance of the offspring distribution μ, so that for all finite sets
A ⊂ Z

d , we have

1

C
· BCap(A)−1 ≤ inf

{

Eg∗g(ν) : ν probability measure on A
}

≤ C · BCap(A)−1.

(1.5)
Let A be an arbitrary set. For any two functions f , h : A → R+ we write f 
 h

if the ratio f (a)/h(a) is bounded both from above and below by positive constants
uniformly over all a ∈ A.

Our first result extends the result by Kesten, Spitzer and Whitman to tree-indexed
random walks and additive random walks, thus revealing similarities between these
two processes. Fix an offspring distribution μ with mean one and finite variance and
consider the associated infinite tree T defined above, together with the walk (Su)u∈T
indexed by T . Then, for n ≥ 0, define T 0

n = {Su : u = T (0), . . . , T (n)}, its range
when restricted to the first n + 1 vertices of T , and starting from the origin.
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Theorem 1.1 Fix d ≥ 5. Let X and ˜X be two independent simple random walks on
Z
d and let T 0

n be as above. Let A be a finite subset of Z
d . Then the following limits

hold almost surely,

lim
n→∞

|T 0
n + A|
n


 lim
n→∞

|Rn + ˜Rn + A|
n2

, (1.6)

with the implied constants only depending on the variance of μ. Moreover,

lim
n→∞

|T 0
n + A|
n

= BCap(A), (1.7)

and

lim
n→∞

|Rn + ˜Rn + A|
n2

= lim
n→∞

Cap(Rn + A)

n
. (1.8)

Theorem 1.1 states that the two limits in (1.6) exist, and that they are comparable.
To the best of our knowledge, the observation that the limits are comparable is new,
as well as the characterisation of the limits in terms of the branching capacity. Note
that (1.8) generalises a law of large numbers result for Cap(Rn) proved by Jain and
Orey [10] with the limit being positive if and only if d ≥ 5. We show in (2.8) a
similar result where the branching capacity is considered instead of the capacity. In
Lemma 2.4 we give a representation of the limit in terms of escape probabilities in
analogy with the classical formula for capacity. We finally note that (1.7) generalises
a recent result of Le Gall and Lin [16] where they treat the case A = {0}. More
precisely, Le Gall and Lin study a critical BRW conditioned on having exactly n
nodes and take the limit as n → ∞. In order to establish limit laws for the volume
of its range, they had to introduce the infinite invariant tree we described above as
its invariance under the shift of labels makes the corresponding law of large numbers
a simple application of Kingman’s subadditive ergodic theorem. Here, our starting
point is directly the infinite invariant tree, and the interested reader can check [16] for
linking the conditioned process and the infinite invariant one. Note that in the case
A = {0}, Le Gall and Lin provide a dual formula for Bcap({0}) in Theorem 4 of [16].
This formula was later generalised by Zhu in [22], where he defined the branching
capacity of any finite set A ⊂ Z

d , as in (1.4).
Concerning the proof of Theorem 1.1, let us say that (1.7) follows from King-

man’s subadditive ergodic theorem, together with a last exit-decomposition, exactly
as for (1.1). Likewise (1.8) also simply follows from (1.1) and amultidimensional sub-
additive ergodic theorem, forwhichwe refer to Sect. 2.2 for a precise statement. In fact,
the main observation is (1.6). The strategy is not to compare both terms directly here,
but rather to show that they are both comparable to a third quantity, the (d−4)-capacity
of A, which will be introduced later, in (1.10). Indeed, the fact that the left-hand side
of (1.6) is comparable to this third quantity follows from (1.7) and (1.5). Hence, the
main novelty here is to show that the right-hand side of (1.6), or equivalently of (1.8),
is comparable to the (d − 4)-capacity of A. For this we first use that the capacity of
a set is related to the probability of hitting this set by a simple random walk starting
from far away. Hence after some elementary computation (see Proposition 1.6), we
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reduce the whole problem to that of estimating hitting probabilities of a set A by a
sum of two walks, which is the object of our second result below.

Hitting probabilities. Our second result shows that, in the terminology of [17], T x−
and x +R∞ + ˜R∞ are intersection-equivalent when x is away from the set to be hit.
For a finite set A ⊂ Z

d , we define its diameter as

diam(A) = 1 + max{‖x − y‖ : x, y ∈ A},

where ‖ · ‖ denotes the Euclidean norm.

Theorem 1.2 Assume d ≥ 5 and let μ be an offspring distribution with mean one and
finite variance. There exists a positive constant C so that the following holds. LetR∞
and ˜R∞ be two independent simple random walk ranges in Z

d . Then for any finite set
A ⊂ Z

d , containing the origin, and any x ∈ Z
d , satisfying ‖x‖ ≥ 2 · diam(A),

1

C
· P

(

T x− ∩ A �= ∅) ≤ P

(

(x + R∞ + ˜R∞) ∩ A �= ∅
)

≤ C · P
(

T x− ∩ A �= ∅).
(1.9)

Note that Benjamini, Pemantle and Peres [7] focus on the Martin capacity for a
general transient Markov chain on a countable state space. The Martin capacity is
associated with the so-called Martin Kernel k(x, y) = g(x, y)/g(ρ, y), where ρ is
the starting site of the chain and g is its Green’s function. Their main result states that
the hitting probability of a set A is within a constant factor of two equal to the Martin
capacity of A; in particular two Markov chains with comparable Green’s functions
are intersection equivalent. While here both the random walk indexed by T−, and the
sum of two walks, have comparable Green’s function, the main difficulty in proving
Theorem 1.2 is of course the lack of Markov property: for branching random walks or
for additive randomwalks, as Salisbury explains in [19] “the difficulty is that theremay
be no first hitting time atwhich any kind ofMarkov property applies”. Fitzsimmons and
Salisbury [8, 19] using remarkable ideas managed to deal with multivariate processes.
Here we shall adapt proofs of Khoshnevisan and Shi [12], inspired by [19], which
provide estimates on the probability that a Brownian sheet hits a distant compact set
A ⊂ R

d , in terms of some appropriate (continuous) γ -capacity of A, see (1.10) below
for a definition in the discrete setting. On the other hand, as alreadymentioned, the fact
that the hitting probability of A by a random walk indexed by T− is also comparable
to the (d − 4)-capacity of A was obtained independently earlier, see (1.4) and (1.5).

Sum of N random walks. One of the achievements of potential theory for Markov
processes (in the continuous setting) is to establish necessary and sufficient conditions
for a transient process to hit a set.Morally, the set should support a probabilitymeasure
whose g-energy is finite, where g is the Green’s function. Fitzsimmons and Salisbury
in [8] managed to build such a measure for additive Markov processes using random
times which are not stopping times. Their proof requires estimates on the first two
moments of the local times and their approach is adapted to tackle a sum of N walks,
as we shall see later in Lemma 3.1.
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We now define the γ -capacity, denoted Capγ , for any γ > 0, by replacing g in (1.3)
by the kernel kγ (x, y) = (1+ ‖x − y‖)−γ . More precisely, for a finite and nonempty
subset A ⊂ Z

d , we define

1

Capγ (A)
= inf

{

Ekγ (ν) : ν probability measure on A
}

. (1.10)

Our third result is a natural generalisation of Theorem 1.1.

Theorem 1.3 Let N ≥ 1, and d ≥ 2N+1. Let (Ri∞)i=1,...,N be N independent simple
random walk ranges on Z

d . There exists a positive set-function fN , such that for any
finite and nonempty A ⊂ Z

d , almost surely

fN (A) := lim
n→∞

∣

∣R1
n + · · · + RN

n + A
∣

∣

nN

 Capd−2N (A). (1.11)

Furthermore, the following limit exists almost surely and satisfies

lim
n→∞

Capd−2(N−1)(R1
n + A)

n

 Capd−2N (A). (1.12)

Remark 1.4 In Sect. 2.2 we give a dual representation of fN (A) in terms of escape
probabilities for sums of walks analogously to the case of capacity for N = 1.

As in the case N = 2, once (1.12) is established, (1.11) follows from a multi-
dimensional subadditive ergodic theorem, hence the whole matter is here again to
prove (1.12), which will be obtained as a consequence of our next two results.

First, we relate hitting probabilities of a set by the sum of N walks to its (d − 2N )-
capacity. This is where we use the ideas of Fitzsimmons and Salisbury mentionned
above.

Theorem 1.5 Let N ≥ 1 and d ≥ 1+2N. Let (Ri∞)i=1,...,N , be N independent simple
random walk ranges in Z

d . There exists a positive constant C, such that for any finite
set A ⊂ Z

d , containing the origin, and any x ∈ Z
d , with ‖x‖ ≥ 2 · diam(A),

1

C
· Capd−2N (A)

‖x‖d−2N ≤ P

(

(x + R1∞ + · · · + RN∞) ∩ A �= ∅
)

≤ C · Capd−2N (A)

‖x‖d−2N .

(1.13)

Note that the case N = 1 of Theorem 1.5 is well-known, see e.g. [14] or [7] for
a more precise result. In addition to Theorem 1.5 we have the following proposition,
which makes the link between the probability of hitting a set A by a sum of ranges,
and the ergodic limit appearing in (1.12) of Theorem 1.3.
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Proposition 1.6 Let N ≥ 2 and d ≥ 2N + 1. Suppose that R1, . . . ,RN , are N
independent simple random walk ranges in Z

d . There exist positive constants c1 and
c2, such that for any finite nonempty set A ⊂ Z

d ,

lim inf‖x‖→∞ ‖x‖d−2N ·P
(

(x+R1∞ +· · ·+RN∞)∩ A �= ∅
)

≥ c1 · lim
n→∞

Capd−2(N−1)(R1
n + A)

n
,

(1.14)
and

lim sup
‖x‖→∞

‖x‖d−2N ·P
(

(x+R1∞ +· · ·+RN∞)∩ A �= ∅
)

≤ c2 · lim
n→∞

Capd−2(N−1)(R1
n + A)

n
.

(1.15)

Observe that (1.12) indeed follows from Theorem 1.5 and Proposition 1.6. The
proof of Proposition 1.6 follows from the fact that the capacity of a set is related to
its hitting probability by a walk starting from far away. The whole point here is to
make sure that one can exchange limits, which is done by a careful, though somewhat
standard, decomposition of a random walk trajectory into excursions.

Critical dimension four.We now briefly discuss the case of dimension four which is
critical for the capacity of the range. By analogy with the case of the volume in dimen-
sion two, first considered in Spitzer’s original paper [20], and then by Le Gall [15]
and Port [18], one can expect that in the asymptotic development of E[Cap(Rn + A)],
only the second order term should depend on A (and be related to a properly defined
notion of branching capacity). Here we do not pursue such a precise result, but notice
that indeed the first order term does not depend on A.

Proposition 1.7 Let R be a simple random walk range in Z
4. Then for any finite and

nonempty set A ⊂ Z
4, one has

lim
n→∞

log n

n
· E

[

Cap(Rn + A)
] = π2

8
. (1.16)

To prove the proposition above we use key ideas from Lawler’s book [14]: the
relationship between capacity andGreen’s function inTheorem3.6.1, and the estimates
fromSection 3.4 in [14]. It was proved in [4] that when A = {0}, then (log n)Cap(Rn+
A)/n converges to π2/8 almost surely as n → ∞. The same argument as in [4] can
be used to prove almost sure convergence also in the case when A is a general finite
set, see Remark 6.4. However, a central limit theorem is missing in the general case.

Notation. We will use the notation f � g if there exists a positive constant c, such
that f ≥ cg, and f � g (or sometimes f = O(g)) if g � f . We also use the standard
notation o(1) for a quantity which converges to 0 as the parameter n goes to infinity.
For x ∈ Z

d , and r ≥ 0 let B(x, r) = {y ∈ Z
d : ‖y − x‖ ≤ r}, the Euclidean ball of

radius r . We write ∂� for the inner boundary of a set � ⊆ Z
d , i.e. the set of points in

� having at least one neighbor in �c.
The paper is organised as follows. In Sect. 2, we gather known results from ergodic

theory that we apply to trees and sums of walks. We then provide an expression for
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fN (A) from Theorem 1.3, and show that it is positive when d ≥ 2N + 1. Finally, we
recall why γ -capacities are sub-additive. In Sect. 3 we prove an estimate on the second
moment of local times, Lemma 3.1, which is an important ingredient for the proof of
Theorem 1.5 given in Sect. 4, together with the proof of Theorem 1.2. In Sect. 5 we
prove Proposition 1.6 using Theorem 1.5 and in Sect. 6 we focus on the 4-dimensional
case and give the proof of Proposition 1.7. Finally, in Sect. 7, we gather related open
problems.

2 Subadditive functionals and Ergodic theorems

In this section we show the existence of three ergodic limits, namely the limits in (1.6),
(1.11) and (1.12) holding almost surely. We start in the next section by recalling some
results about γ -capacities. Then in Sect. 2.2 we recall a multi-parameter extension of
the subadditive ergodic theorem and then deduce that the limit in (1.11) exists almost
surely. Then in Sect. 2.3 we apply it to functionals on trees.

2.1 �-Capacities

In this section we collect some results about γ -capacities. In particular the existence
of the limit in (1.12) directly follows from Kingman’s subadditive theorem [13] and
the subadditivity of γ -capacities, which we recall now.

Claim 2.1 Let γ > 0. Then for any finite sets A, B ⊆ Z
d we have

Capγ (A ∪ B) ≤ Capγ (A) + Capγ (B).

Proof First notice that Capγ is increasing for inclusion, i.e. if A ⊆ B, then Capγ (A) ≤
Capγ (B), since a probability measure on A is also a probability measure on B. It thus
suffices to prove sub-additivity for disjoint subsets. Now consider A and B two disjoint
subsets of Z

d , and let ν be a probability measure on A∪ B. Let α = ∑

x∈A ν(x). Then
it is easy to see that

∑

x,y∈A∪B

(1 + ‖x − y‖)−γ ν(x)ν(y) ≥ α2

Capγ (A)
+ (1 − α)2

Capγ (B)
.

Indeed, this is trivially true if α ∈ {0, 1}, while otherwise the restriction of ν/α to A
is a probability measure on A, and the restriction of ν

1−α
to B is a probability measure

on B. Taking the infimum over all ν on the left hand side yields

1

Capγ (A ∪ B)
≥ inf

α∈[0,1]

{

α2

Capγ (A)
+ (1 − α)2

Capγ (B)

}

.

123



A. Asselah et al.

Now observe that for any x, y > 0, and any α ∈ [0, 1],

α2

x
+ (1 − α)2

y
≥ 1

x + y
,

which proves well that Capγ (A ∪ B) ≤ Capγ (A) + Capγ (B) and finishes the proof.
��
Lemma 2.2 Let d ≥ 3, γ > 2 and A ⊆ Z

d , be a finite set. Let R be the range of a
simple random walk in Z

d . Then we have almost surely

lim
n→∞

Capγ (Rn + A)

n
= inf

n≥1

E
[

Capγ (Rn + A)
]

n
� Capγ−2(A).

Proof Let μ be a probability measure on A. Given n ≥ 0, and x ∈ Z
d , define


n(x) = E

[

n
∑

k=0

1(Xk = x)

]

,

and consider the probability measure νn on Rn + A given by

νn(z) =
∑

x∈Rn

∑

a∈A

1(x + a = z) · 
n(x)

n + 1
· μ(a), for all z ∈ Rn + A.

Note that this is indeed a probability measure onRn + A. Then we have for any n ≥ 1

Capγ (Rn + A) ≥ 1
∑

x,y∈Zd (1 + ‖x − y‖)−γ νn(x)νn(y)

= (n + 1)2
∑

a,b∈A
∑

x,y∈Zd (1 + ‖a − b + x − y‖)−γ μ(a)μ(b)
n(x)
n(y)
.

(2.1)

By Jensen’s inequality we get

E
[

Capγ (Rn + A)
]

≥ (n + 1)2
∑

a,b∈A
∑

x,y∈Zd (1 + ‖a − b + x − y‖)−γ μ(a)μ(b)E[
n(x)
n(y)]
.

Let gn(x) = E[
n(x)], and g(x) = g∞(x). Then the Markov property and the sym-
metry of the random walk steps yield,
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E[
n(x)
n(y)] ≤
∑

k≤k′≤n

(P(Xk = x, Xk′ = y) + P(Xk = y, Xk′ = x))

≤
n
∑

k=0

∞
∑

k′=k

(P(Xk = x) + P(Xk = y)) · P(Xk′−k = y − x)

= (gn(x) + gn(y))g(x − y).

Therefore, letting kγ (u) = (1 + ‖u‖)−γ , we get that for all a, b ∈ A,

∑

x,y∈Zd

kγ (a − b + x − y) · E[
n(x)
n(y)] � (kγ ∗ g(a − b)) ·
∑

x∈Zd

gn(x)

= (n + 1) · (kγ ∗ g(a − b)).

Plugging this into (2.1) we get

Capγ (Rn + A) � n + 1
∑

a,b∈A kγ ∗ g(a − b)μ(a)μ(b)
.

Now we claim that as soon as γ > 2, and d ≥ 3, then kγ ∗ g 
 kγ−2. Indeed, recall
that g(u) 
 (1 + ‖u‖)2−d , and thus for u �= 0,

kγ ∗ g(u) =
∑

v∈Zd

kγ (u − v)g(v)


 1

‖u‖d−2

∑

v∈B(u,‖u‖/2)

1

1 + ‖v − u‖γ
+ 1

‖u‖γ

∑

v∈B(0,2‖u‖)

1

‖v‖d−2

+
∑

‖v‖>2‖u‖

1

‖v‖γ+d−2


 1

‖u‖γ−2 ,

proving our claim. Therefore taking the infimum above over all probability measures
μ on A, we get that almost surely,

lim
n→∞

Capγ (Rn + A)

n
= inf

n≥1

E
[

Capγ (Rn + A)
]

n
� Capγ−2(A), (2.2)

where the existence of the limit and the first equality both follow from Claim 2.1
and Kingman’s subadditive ergodic theorem [13, 21]. This concludes the proof of the
lemma. ��
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2.2 Multiparameter subadditive ergodic theorem

We start by recalling a multi-parameter extension of the subadditive ergodic theorem
due to Akcoglu and Krengel. We denote by UN the set of all N -dimensional rectangles
of N

N , i.e. sets of the form
∏N

i=1{ni , . . . ,mi }, with 0 ≤ ni ≤ mi for all i ≤ N .

Theorem 2.3 (Akcoglu–Krengel [1]) Let N ≥ 1, and (L(U ))U∈UN be a sequence of
real-valued random variables, satisfying the following properties:

(i) (Stationarity) For any k, any U1, . . . ,Uk ∈ UN , and any u ∈ N
N , the joint distri-

bution of (L(u+U1), . . . , L(u+Uk)) is the same as that of (L(U1), . . . , L(Uk)).
(ii) (Subadditivity) Given any disjoint rectanglesU1, . . . ,Uk, such that∪k

i=1Ui ∈ UN ,
one has L(∪i≤kUi ) ≤ ∑

i≤k L(Ui ).
(iii) (Integrability) The random variables L(U ) are integrable for all U ∈ UN .
(iv) (Boundedness in mean) One has supU∈UN

E
[|L(U )|]/|U | < ∞.

Then there exists a random variable �, such that almost surely

lim
n→∞

L({0, . . . , n}N )

nN
= �,

and furthermore,

inf
n1,...,nN≥1

E
[

L
(∏N

i=1{0, . . . , ni }
)]

n1 . . . nN
= lim

n1,...,nN→∞
E
[

L
(∏N

i=1{0, . . . , ni }
)]

n1 . . . nN
. (2.3)

Indeed, the existence of the limit � follows from Theorem (2.4) in [1], and (2.3)
can be proved as Lemma (3.4) there. Using this we now explain the existence of the
limit in (1.11).

First, by the elementary exclusion-inclusion formula for the volume of the
Minkowski sum we get for A, B finite subsets of Z

d ,

|R + (A ∪ B)| = |(R + A) ∪ (R + B)|
= |R + A| + |R + B| − |(R + A) ∩ (R + B)|.

Since, R + (A ∩ B) ⊂ (R + A) ∩ (R + B), we have a strong form of subadditivity

|R + (A ∪ B)| + |R + (A ∩ B)| ≤ |R + A| + |R + B|. (2.4)

Now clearly, for any fixed A ⊂ Z
d andR1, . . . ,RN independent simple randomwalk

ranges, the process defined by

L
(

N
∏

i=1

{ni , . . . ,mi }
)

=
∣

∣

∣R1[n1,m1] + · · · + RN [nN ,mN ] + A
∣

∣

∣,

satisfies all the hypotheses of the previous theorem (in particular stationarity follows
from the fact that for any k ≥ 0 and any n ≤ m,R[k + n, k +m] has the same law as
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Xk +R[n,m]), and hence we get the almost sure existence of the limit below for any
finite set A,

fN (A) := lim
n→∞

∣

∣

∣R1
n + · · · + RN

n + A
∣

∣

∣

nN
.

Furthermore, an immediate application of Kolmogorov’s 0−1 law implies that fN (A)

is almost surely constant. Then an application of the dominated convergence theorem
and (2.3) yield

fN (A) = lim
n1,...,nN→∞

E

[∣

∣

∣R1
n1 + · · · + RN

nN + A
∣

∣

∣

]

n1 . . . nN
.

Using (2.4) we deduce that fN also satisfies the strong subadditivity property

fN (A ∪ B) + fN (A ∩ B) ≤ fN (A) + fN (B).

Therefore almost surely as well,

lim
n→∞

fN−1(Rn + A)

n
= lim

n→∞
E
[

fN−1(Rn + A)
]

n
.

Applying twice the dominated convergence theorem yields

fN (A) = lim
n→∞

1

n
· lim
m→∞

E

[∣

∣

∣R1
m + · · · + RN−1

m + RN
n + A

∣

∣

∣

]

mN−1

= lim
n≥1

E[ fN−1(RN
n + A)]

n
= lim

n→∞
fN−1(RN

n + A)

n
.

(2.5)

In the next result we give an expression for the set-function fN (A) generalising the
expression for capacity in the case when N = 1. We give the proof in Sect. 2.4.

Lemma 2.4 Let N be an integer, and consider dimension d ≥ 2N+1. LetR1, . . . ,RN

be independent ranges of double-sided simple random walks in Z
d . Then,

fN (A) =
∑

a∈A

P

⎛

⎝

N
⋂

i=1

{

(Ri (0,∞) +
∑

i< j≤N

R j (−∞,∞) + a) ∩ A = ∅}
⎞

⎠ . (2.6)

2.3 Functionals on trees

A fundamental property of the infinite invariant tree is its invariance in law after
applying the shift on the labels. This fact was first observed by Le Gall and Lin [16]
on the restriction of the tree to T+, and then on the full tree independently by Zhu [23]
and Bai and Wan [6]. The infinite tree has an invariant product measure, and the shift
is actually a reversible map. Le Gall and Lin introduced the infinite tree to be able to
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use ergodic theory to prove asymptotics for the size of the range of the first n labelled
sites of the invariant branching random walk. They then transferred their result to
critical trees conditioned on having total population n, as n goes to infinity. Here, for
simplicity, we only discuss T 0

n , and the reader is referred to [16] to transfer the results
to critical branching random walks conditioned to have population n.

In fact [16] shows that |T 0
n |/n converges almost surely to the probability that a

walk indexed by T+ avoids the origin (except at the root), simply as a consequence of
Kingman’s sub-additive ergodic theorem. By following the same argument, together
with a last exit decomposition, exactly as for (1.1), we obtain that for any finite set
A ⊂ Z

d ,
|T 0

n + A|
n

(P)−−−→
n→∞

∑

x∈A

P(T x++ ∩ A = ∅),

where T++ = T+ \ {∅} (and T x++ is the restriction of the range to T++). This latter
expression turns out to be the branching capacity of A. Indeed, Zhu [22, Proposition
8.1] showed that

BCap(A) =
∑

x∈A

P(T x− ∩ A = ∅) =
∑

x∈A

P(T x++ ∩ A = ∅). (2.7)

Thus, the original part in Theorem 1.1 is to make the link with the set-function f2(A)

obtained with two independent random walks from (1.11).
Now let us mention some natural extensions of our results. We can indeed deduce

that also cap(T 0
n + A)/n converges in probability, and furthermore that the limit is of

order Capd−6(A), when d ≥ 7. Let us just explain the proof in this case. First, applying
twice the multi-parameter ergodic theorem, Theorem 2.3, and using Theorems 1.1
and 1.3, we get that almost surely

lim
n→∞

Cap(T 0
n + A)

n
= lim

n→∞
|Rn + T 0

n + A|
n2

= lim
n→∞

BCap(Rn + A)

n


 lim
n→∞

f2(Rn + A)

n
= lim

n→∞
|R1

n + R2
n + R3

n + A|
n3

= f3(A) 
 Capd−6(A),

(2.8)

whereRn and (Ri
n)i=1,2,3 are independent ranges of simple random walks, indepen-

dent of T 0.

2.4 Dual representation for fN

In this section we give the proof of Lemma 2.4 which again makes use of Theorem 2.3.

Proof of Lemma 2.4 We can write

|R1
n + · · · + RN

n + A|
=

∑

i1≤n

∑

x∈R2
n+···+RN

n +A

1(X1
i1 + x /∈ ∪ j>i1(X

1
j + R2

n + · · · + RN
n + A))
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=
∑

i1,i2≤n

∑

x∈R3
n+···+RN

n +A

1(X1
i1 + X2

i2 + x /∈ ∪ j>i1(X
1
j + R2

n + · · · + RN
n + A))

× 1(X2
i2 + x /∈ ∪ j2>i2(X

2
j2 + R3

n + · · · + RN
n + A)).

Iterating this, we obtain

|R1
n + · · · + RN

n + A|
=
∑

a∈A

∑

i1,...,iN≤n

1(XN
iN + a /∈ ∪ j>iN (XN

j + A)) × 1(XN−1
iN−1

+ XN
iN

+ a /∈ ∪ j>iN−1(X
N−1
j + RN

n + A)) · · · × 1(X1
i1 + · · · + XN

iN

+ a /∈ ∪ j>i1(X
1
j + R2

n + · · · + RN
n + A)).

For all i ∈ {1, . . . , N } and k ≤ n, we set

̂Ri (−k, n − k) = Xi
k − Ri

n and ̂Ri (0, n − k) = Xi
k − Ri [k + 1, n].

Then we can rewrite the expression above as

|R1
n + · · · + RN

n + A|
=
∑

a∈A

∑

i1,...,iN≤n

1((̂RN (0, n − iN ) + a) ∩ A = ∅)1((̂RN−1(0, n − iN−1)

+ ̂RN (−iN , n − iN ) + a) ∩ A = ∅) · · · × 1((̂R1(0, n − i1) + ̂R2(−i2, n − i2)

+ · · · ̂RN (−iN , n − iN ) + a) ∩ A = ∅).

Restricting the sum above over all i1, . . . , iN ∈ (log n, n − log n), dividing through
by nN and applying Theorem 2.3 we deduce that almost surely as n → ∞

1

nN
· |R1

n + · · · + RN
n + A|

→
∑

a∈A

P

⎛

⎝

N
⋂

i=1

{

(Ri [1,∞) +
∑

i< j≤N

R j (−∞,∞) + a) ∩ A = ∅}
⎞

⎠ ,

where R(−∞,∞) corresponds to the range of a double-sided simple random walk.
This now concludes the proof. ��

3 Preliminaries on local times

Our goal in this section is to prove Lemma 3.1 below, which provides second moment
estimates for the local times of the sum of N independent walks. Fix N ≥ 1, and
consider X1, . . . , XN , a sequence of N simple random walks, all starting from the
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origin. Then given any x, z ∈ Z
d , set


z+X1+···+XN (x) :=
∑

t1,...,tN

1
(

z + X1
t1 + · · · + XN

tN = x
)

. (3.1)

Let GN be the N -th convolution power of the simple random walk’s Green’s function
g (so that GN (x − z) = E

[


z+X1+···+XN (x)
]

). Our second moment estimate reads as
follows.

Lemma 3.1 Let N ≥ 1 and d ≥ 2N + 1. There exists a constant C = C(d) > 0, such
that for any z, a, b ∈ Z

d , with ‖z‖ ≥ 2max(‖a‖, ‖b‖), we have

E
[


z+X1+···+XN (a)
z+X1+···+XN (b)
] ≤ C

(

GN (z − a) + GN (z − b)
)

· GN (a − b).

(3.2)

Before we move to the proof of this lemma, let us recall that g(x) 
 1
(1+‖x‖)d−2 ,

which by an immediate induction shows that for any k ∈ {1, . . . , N } (and as long as
d ≥ 1 + 2N ), one has

Gk(x) 
 1

(1 + ‖x‖)d−2k . (3.3)

Proof of Lemma 3.1

Let k, 
,m ∈ {1, . . . , N }, and for a, b, z ∈ Z
d , let

Fk,
,m(z, a, b) =
∑

w

Gk(z − b + w)G
(w)Gm(a − b + w).

The first step towards the proof of Lemma 3.1 is the following claim.

Claim 3.2 One has

∑

y,y′
(g(y)g(y − y′) + g(y′)g(y − y′))Fk,
,m(z, a + y, b + y′)

= Fk+1,
+1,m(z, a, b) + Fk+1,
,m+1(z, a, b).

Proof First of all we notice that Fk,
,m(z, a, b) = Fk,m,
(z, b, a). Therefore it suffices
to prove that

∑

y,y′
g(y)g(y − y′)Fk,
,m(z, a + y, b + y′) = Fk+1,
+1,m(z, a, b).

We have
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∑

y,y′
g(y)g(y − y′)Fk,
,m(z, a + y, b + y′)

=
∑

y,y′,w
g(y)g(y − y′)Gk(z − b − y′ + w)G
(w)Gm(a + y − b − y′ + w)

=
∑

y,u,w

g(y)g(u)Gk(z − b + u − y + w)G
(w)Gm(a − b + u + w)

=
∑

u,w

g(u)G
(w)Gm(a − b + u + w)Gk+1(z − b + u + w)

=
∑

u,v

g(u)G
(v − u)Gm(a − b + v)Gk+1(z − b + v)

=
∑

v

G
+1(v)Gm(a − b + v)Gk+1(z − b + v) = Fk+1,
+1,m(z, a, b)

and this completes the proof. ��
For z, a, b ∈ Z

d , define now

VN (z, a, b) = E
[


z+X1+···+XN (a)
z+X1+···+XN (b)
]

.

The next step is obtained by a simple induction on N ≥ 1.

Lemma 3.3 One has for any z, a, b ∈ Z
d ,

VN (z, a, b) ≤ GN (z − b)GN (a − b) +
N−1
∑

k=1

(

N − 1

k − 1

)

FN ,N−k,k(z, a, b)

+ GN (z − a)GN (a − b) +
N−1
∑

k=1

(

N − 1

k − 1

)

FN ,N−k,k(z, b, a),

with the convention that the two sums are zero when N = 1.

Proof Defining,

WN (z, a, b) = GN (z − b)GN (a − b) +
N−1
∑

k=1

(

N − 1

k − 1

)

FN ,N−k,k(z, a, b),

the statement of the lemma then becomes

VN (z, a, b) ≤ WN (z, a, b) + WN (z, b, a). (3.4)

We will prove this by induction on N . For N = 1 we get
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VN (z, a, b) ≤ E

[
∑

s,t∈N
1(z + Xt = a) · 1(z + Xs+t = b)

]

+ E

[
∑

s,t∈N
1(z + Xs+t = a) · 1(z + Xt = b)

]

= g(z − a)g(a − b) + g(z − b)g(a − b),

and hence (3.4) holds for N = 1. Suppose now that (3.4) holds for N .Wewill establish
it also for N + 1. Summing over all the possible locations of the (N + 1)-st walk and
using the induction hypothesis gives

VN+1(z, a, b) ≤
∑

y,y′
(g(y)g(y − y′) + g(y′)g(y − y′))VN (z, a + y, b + y′)

≤
∑

y,y′
(g(y)g(y − y′) + g(y′)g(y − y′)) · (WN (z, a + y, b + y′)

+ WN (z, b + y′, a + y)
)

.

To simplify notation we let A be the operator given by

A f (z, a, b) =
∑

y,y′
(g(y)g(y − y′) + g(y′)g(y − y′)) f (z, a + y, b + y′)

for any function f . To prove the lemma it thus suffices to show that

AWN (z, a, b) = WN+1(z, a, b). (3.5)

Note first that

∑

y,y′
g(y′)g(y− y′)GN (z−b− y′)GN (a−b+ y− y′) = GN+1(z−b)GN+1(a−b),

which gives the first term in WN+1(z, a, b). Note also that

∑

y,y′
g(y)g(y − y′)GN (z − b − y′)GN (a − b + y − y′) = FN+1,1,N (z, a, b).

By Claim 3.2 we obtain

AFN ,1,N−1(z, a, b) = FN+1,1,N (z, a, b) + FN+1,2,N−1(z, a, b),

which shows that the coefficient of the term FN+1,1,N (z, a, b) in AWN (z, a, b) is given
by 1 + (N−1

N−2

)

which is equal to
( N
N−1

)

. Thus the term FN+1,1,N (z, a, b) appears with
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the same coefficient in bothWN+1(z, a, b) and AWN (z, a, b). Let k ∈ {2, . . . , N−1}.
Using Claim 3.2 again we get that

AFN ,N−k,k(z, a, b) = FN+1,N+1−k,k(z, a, b) + FN+1,N−k,k+1(z, a, b) and

AFN ,N+1−k,k−1(z, a, b) = FN+1,N+1−k,k(z, a, b) + FN+1,N+2−k,k−1(z, a, b).

Wethus see that for k ∈ {2, . . . , N−1} the coefficient of the term FN+1,N+1−k,k(z, a, b)
in AWN (z, a, b) is equal to

(

N − 1

k − 1

)

+
(

N − 1

k − 2

)

=
(

N

k − 1

)

,

which is the same as its coefficient in WN+1(z, a, b). Using Claim 3.2 for a last time
we see that the term FN+1,N ,1(z, a, b) is one of the two terms of AFN ,N−1,1(z, a, b),
and hence its coefficient in AWN (z, a, b) must be

(N
0

) = (N−1
0

) = 1. Therefore, we
see that the coefficients of all the terms appearing in AWN (z, a, b) andWN+1(z, a, b)
are equal and this completes the proof of (3.5). ��

Finally we shall need the following claim.

Claim 3.4 Let N ≥ 1 and d > 2N. There exists C > 0, such that for all k ∈
{1, . . . , N − 1}, and all z, a, b ∈ Z

d , with ‖z‖ ≥ 2max(‖a‖, ‖b‖),

FN ,N−k,k(z, a, b) ≤ C · GN (z)GN (a − b).

Proof First of all note that for all 
,m, such that 
 + m ≤ N ,

G
 ∗ Gm = G
+m .

Moreover, a change of variables gives

FN ,N−k,k(z, a, b) =
∑

u∈Zd

GN (u)GN−k(u + b − z)Gk(u + a − z).

We then have for ‖z‖ ≥ 2max(‖a‖, ‖b‖), using (3.3),

∑

‖u‖≥‖z‖/4
GN (u)GN−k(u + b − z)Gk(u + a − z)

� GN (z)
∑

u

GN−k(u + b − z)Gk(u + a − z) = GN (z)GN (a − b).

On the other hand, if ‖u‖ ≤ ‖z‖/4, since we also have ‖z‖ ≥ 2max(‖a‖, ‖b‖), one
has ‖u + b − z‖ 
 ‖z‖ and ‖u + a − z‖ 
 ‖z‖. Therefore, using again (3.3),
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∑

‖u‖≤‖z‖/4
GN (u)GN−k(u + b − z)Gk(u + a − z)

� GN−k(z)Gk(z)
∑

‖u‖≤‖z‖/4
GN (u) 
 ‖z‖2N

1 + ‖z‖2d−2N 
 GN (z)2

� GN (z)GN (a − b)

and this finishes the proof. ��
Lemma 3.1 now follows from a combination of Lemma 3.3 and Claim 3.4. �

4 Hitting probabilities and capacities

In this section we give the proof of Theorems 1.2 and 1.5. We start by giving the proof
of Theorem 1.2 assuming Theorem 1.5 and then give the proof of the latter for which
we mainly follow the arguments of [12], see also [11], which extends the approach of
[8].

Proof of Theorem 1.2 The proof follows from the combination of four distinct obser-
vations: (i) Theorem 1.5 with N = 2, (ii) the hitting time asymptotics for the infinite
invariant tree (1.4), (iii) the fact that BCap(A) 
 Capd−4(A) proved in [5], and
finally (iv) the asymptotic (3.3) with k = 2. ��

The rest of this section is devoted to the proof of Theorem 1.5.
Let X1, . . . , XN be i.i.d. simple random walks on Z

d started from 0 with ranges
R1∞, . . . ,RN∞ respectively. For γ > 0, recall that we defined kγ (x, y) = (1 + ‖y −
x‖)−γ , and now given a probabilitymeasure ν on A, to lighten notationwe set Eγ (ν) =
Ekγ (ν), where Ekγ is defined by (1.2).

Lower Bound. It suffices to prove that if ν is a probability measure on A, then

P
(

(x + R1∞ + · · · + RN∞) ∩ A �= ∅)
GN (z)

� 1

Ed−2N (ν)
, (4.1)

with an implicit constant that is independent of ν. To this end, for any probability
measure ν with support on A, let

Zν =
∑

a∈A

ν(a) · 
x+X1+···+XN (a).

Then it is immediate that

P
(

(x + R1∞ + · · · + RN∞) ∩ A �= ∅) ≥ P(Zν > 0) ≥ (E[Zν])2

E
[

Z2
ν

] , (4.2)
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where for the last inequality we used the Paley-Zygmund inequality. For the first
moment of Zν , we have for any x with ‖x‖ ≥ 2 · diam(A), using (3.3),

E[Zν] =
∑

a∈A

ν(a)GN (x − a) � GN (x).

For the second moment, by Lemma 3.1 we have for x with ‖x‖ ≥ 2 · diam(A),

E

[

Z2
ν

]

=
∑

a,b∈A

ν(a)ν(b)VN (x, a, b) � GN (x)
∑

a,b∈A

ν(a)ν(b)GN (a − b)

� GN (x)Ed−2N (ν). (4.3)

Plugging these two bounds into (4.2) yields (4.1).

Upper Bound. We define N random times, which are not stopping times. First,

T1 = inf{t1 ≥ 0 : ∃ t2, . . . , tN s.t. x + X1
t1 + · · · + XN

tN ∈ A},

and then inductively for i = 2, . . . , N ,

Ti = inf{ti ≥ 0 : ∃ ti+1, . . . , tN s.t. x + X1
T1 + · · · + Xi−1

Ti−1
+ Xi

ti + · · · + XN
tN ∈ A}.

We next define a probability measure μ on A by setting for a ∈ A

μ(a) = P

(

x + X1
T1 + · · · + XN

TN = a
∣

∣ T1 < ∞
)

.

It then suffices to prove that for ‖x‖ ≥ 2 · diam(A),

P(T1 < ∞)

GN (x)
� 1

Ed−2N (μ)
. (4.4)

To this end we define the variable Zμ = ∑

a∈A μ(a)
x+X1+···+XN (a), and if
(F i

n)n≥0 stands for the natural filtration of the walk Xi , then we define the multi-
parameter process

M(t1, . . . , tN ) = E

[

Zμ

∣

∣ F1
t1 ∨ · · · ∨ FN

tN

]

=
∑

a∈A

μ(a)
∑

s1,...,sN

∑

x1,...,xN−1

P

(

X1
s1 = x1

∣

∣ F1
t1

)

· · · P
(

XN
sN = a − x − x1 − · · · − xN−1

∣

∣ FN
tN

)

.

(4.5)

We then have almost surely for all t1, . . . , tN ∈ N
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M(t1, . . . , tN )

≥
∑

a∈A

μ(a)
∑

s1≥t1,...,sN≥tN

∑

x1,...,xN−1∈Zd

P

(

X1
s1 = x1

∣

∣ F1
t1

)

· · · P
(

XN
sN = a − x − x1 − · · · − xN−1

∣

∣ FN
tN

)

=
∑

a∈A

μ(a)
∑

x1,...,xN−1∈Zd

g(X1
t1 − x1) · · · g(XN−1

tN−1
− xN−1)

× g(x + x1 + · · · + xN−1 + XN
tN − a)

=
∑

a∈A

μ(a)GN (x + X1
t1 + · · · + XN

tN − a).

Therefore, almost surely we get

sup
t1,...,tN

M(t1, . . . , tN ) ≥ 1(T1 < ∞)
∑

a∈A

μ(a)GN (x + X1
T1 + · · · + XN

TN − a),

and hence squaring both sides and taking expectations we obtain

E

[

sup
t1,...,tN

M2(t1, . . . , tN )

]

≥ E

⎡

⎣

(

∑

a∈A

μ(a)GN (x + X1
T1 + · · · + XN

TN − a)

)2
∣

∣ T1 < ∞
⎤

⎦ · P(T1 < ∞)

=
∑

b∈A

μ(b)

(

∑

a∈A

μ(a)GN (b − a)

)2

· P(T1 < ∞) � (Ed−2N (μ))2 · P(T1 < ∞) ,

where in the last step we used the Cauchy-Schwarz inequality and (3.3).
By monotone convergence it then suffices to prove that for any u1, . . . , uN ,

E

[

sup
t1≤u1,...,tN≤uN

M2(t1, . . . , tN )

]

� GN (z)Ed−2N (μ), (4.6)

with an implicit constant that is independent of u1, . . . , uN . This together with the
inequality above would conclude the proof of (4.4).

Using the product expression for M from (4.5), it is easy to check that the process

t1 �→ sup
t2≤u2,...,tN≤uN

M(t1, t2, . . . , tN ),
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is a non-negative submartingalewith respect to thefiltration (F1
t1∨F2

u2∨· · ·∨FN
uN )t1≥0.

Applying Doob’s L2-inequality we then deduce

E

[

sup
t1≤u1

(

sup
t2≤u2,...,tN≤uN

M2(t1, t2, . . . , tN )

)]

≤ 4 · E

[

sup
t2≤u2,...,tN≤uN

M2(u1, t2, . . . , tN )

]

.

Repeating the same argument N times, gives

E

[

sup
t1≤u1,...,tN≤uN

M2(t1, . . . , tN )
]

≤ 4N · E

[

M2(u1, . . . , uN )
]

≤ 4N · E[Z2
μ],

where for the final inequality we used Jensen’s inequality. By (4.3) for x with ‖x‖ ≥
2 · diam(A), we get

E

[

Z2
μ

]

� GN (z)Ed−2N (μ).

Altogether this proves (4.6) and thus completes the proof.

5 Hitting probabilities and ergodic limits

In this section, we prove Proposition 1.6. The proof is divided in two parts. First we
prove (1.14) in Sect. 5.1, which is the easiest direction, and then (1.15) in Sect. 5.2,
which is slightly more demanding. We note that (1.15) follows in fact from a combi-
nation of Theorem 1.5 and Lemma 2.2, but we provide here another direct proof, as it
might be of independent interest.

5.1 Proof of (1.14)

Let N ≥ 2, and assume that d ≥ 2N + 1. Recall the definition of the functions GN

from the beginning of Sect. 3. Since R∞ and −R∞ have the same law, it amounts to
proving that

lim inf‖z‖→∞
P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R∞ + A) �= ∅)
GN (z)

� ̂fN (A),

where R∞ is the range of a random walk (Xk)k≥0, which is independent of
R1∞, . . . ,RN−1∞ , and

̂fN (A) = lim
n→∞

Capd−2(N−1)(R1
n + A)

n
.
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(The existence of the limit here follows from Lemma 2.2.) Let ε > 0 and let τr =
inf{k ≥ 0 : Xk /∈ B(0, r)}. Then we get for ‖z‖ large enough, using Theorem 1.5 for
the second inequality,

P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R∞ + A) �= ∅)
GN (z)

≥ P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R[0, ε‖z‖2] + A) �= ∅, τ‖z‖/2 > ε‖z‖2)
GN (z)

� GN−1(z)

GN (z)
· E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A) · 1(τ‖z‖/2 > ε‖z‖2)
]

� 1

‖z‖2 · E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A)
]

− 1

‖z‖2 · E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A) · 1(τ‖z‖/2 ≤ ε‖z‖2)
]

.

As ‖z‖ → ∞ we have that

1

‖z‖2 · E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A)
]

→ ε̂fN (A).

Indeed, the convergence holds in L1 since the sequence
(

Capγ (Rn+A)

n

)

n
is uniformly

bounded by some deterministic constant, for any γ > 0. Furthermore, by Cauchy-
Schwarz we get

E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A) · 1(τ‖z‖/2 ≤ ε‖z‖2)
]

≤
√

E
[

Capd−2(N−1)(R[0, ε‖z‖2] + A)2
]

P
(

τ‖z‖/2 ≤ ε‖z‖2).

By a standard random walk estimate we get for a positive constant c that

P

(

τ‖z‖/2 ≤ ε‖z‖2
)

≤ exp(−c/ε).

Using again that
(

Capd−2(N−1)(Rn+A)

n

)

n
is bounded we get that it also converges to

̂fN (A) in L2. Hence this gives for ‖z‖ sufficiently large

E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A)2
]

≤ 2‖z‖4 · ̂fN (A)2,

using also that ̂fN (A) is positive (since d ≥ 2N + 1). Therefore we get

E

[

Capd−2(N−1)(R[0, ε‖z‖2] + A) · 1(τ‖z‖/2 ≤ ε‖z‖2)
]

� ‖z‖2 ̂fN (A) exp(−c/(2ε)).
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Putting everything together now gives that for ‖z‖ sufficiently large

P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R∞ + A) �= ∅)
GN (z)

� ε̂fN (A) − exp(−c/(2ε))̂fN (A) � ̂fN (A),

by taking ε sufficiently small. This finishes the proof. �

5.2 Proof of (1.15)

We use here the same notation as in Sect. 5.1. We define for i ∈ Z, ri = 2i‖z‖, and
let I be the maximal index such that r−I ≥ 4 diam(A). Now for i ≥ −I , define

Bi = ∂B(z, ri+1) ∪ ∂B(z, ri−1).

and for i ≥ −I , and k ≥ 0, let

τ ki = inf
{

n ≥ σ k−1
i : Xn ∈ ∂B(z, ri )

}

, and σ k
i = inf

{

n ≥ τ ki : Xn ∈ Bi

}

,

with the convention σ−1
i = 0. To simplify notation we will also write τi = τ 0i and

σi = σ 0
i , for i ≥ −I . Note that by definition one has τ0 = 0. Then let for i ≥ −I ,

R(i) =
⋃

k≥0

R[τ ki , σ k
i ].

Observe that on the event {τ−I = ∞}, one has

R∞ =
⋃

i≥−I

R(i).

Note that, at least if ‖z‖ is large enough, one has for i ≥ I , R(i) + A ⊂ B(z, ri+2) \
B(z, ri−2). In particular it is always possible to split R(i) + A into a finite number
(independent of z and A) of pieces with diameter at most ri/8 each. Then using
Theorem 1.5 and a union bound, we obtain

P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R(i) + A) �= ∅)

� GN−1(ri ) · E

[

Capd−2(N−1)(R(i) + A)
]

.

Using another union bound and the above we then get, with g(r) = r2−d for r > 0,
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P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R∞ + A) �= ∅)

≤ P(τ−I < ∞) +
∞
∑

i=−I

P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R(i) + A) �= ∅)

� g(z)

g(diam(A))
+

∞
∑

i=−I

GN−1(ri ) · E

[

Capd−2(N−1)(R(i) + A)
]

, (5.1)

where for the last inequality, we used the well-known fact that for a simple random
walk starting from z, the probability to hit a ball B(0, r), with r < ‖z‖/2, is of order
g(z)/g(r). Now one has for any −I ≤ i < 0, using the transience of the walk, and
recalling that Ex denotes the expectation with respect to the law of a simple random
walk starting from x ,

E

[

Capd−2(N−1)(R(i) + A)
]

≤ P(τi < ∞) · sup
x∈∂B(z,ri )

Ex

[

Capd−2(N−1)(R(i) + A)
]

� g(z)

g(ri )
· sup
x∈∂B(z,ri )

(
∑

k≥0

Px (τ
k
i < ∞)

)

· Ex

[

Capd−2(N−1)(R[0, σi ] + A)
]

� g(z)

g(ri )
· sup
x∈∂B(z,ri )

Ex

[

Capd−2(N−1)(R[0, σi ] + A)
]

. (5.2)

Likewise for any i ≥ 0, one has

E

[

Capd−2(N−1)(R(i) + A)
]

� sup
x∈∂B(z,ri )

Ex

[

Capd−2(N−1)(R[0, σi ] + A)
]

. (5.3)

Now we claim that for any i ≥ −I , one has

sup
x∈∂B(z,ri )

Ex

[

Capd−2(N−1)(R[0, σi ] + A)
]

� ̂fN (A) · r2i . (5.4)

Let us postpone the proof of the claim and conclude the proof of (1.15). Plugging (5.4)
into (5.2) and (5.3), and using (5.1) we get using that d ≥ 1 + 2N ,

P
(

(z + R1∞ + · · · + RN−1∞ ) ∩ (R∞ + A) �= ∅) � g(z)

g(diam(A))
+ ̂fN (A) · GN (z).

Dividing both sides by GN (z), and letting ‖z‖ → ∞ concludes the proof of (1.15).
Thus it only remains to prove the claim (5.4). For this one can just write, using

monotonicity of γ -capacities, for any x ∈ ∂B(z, ri ), and some constant c > 0,
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Ex

[

Capd−2(N−1)(R[0, σi ] + A)
]

=
∑

k≥0

Ex

[

Capd−2(N−1)(R[0, σi ] + A) · 1(kr2i ≤ σi < (k + 1)r2i )
]

�
∑

k≥0

Ex

[

Capd−2(N−1)(R[0, (k + 1)r2i ] + A) · 1(σi ≥ kr2i )
]

�
∑

k≥0

Ex

[

Capd−2(N−1)(R[0, (k + 1)r2i ] + A)2
]1/2 · P(σi ≥ kr2i )1/2

� ̂fN (A) ·
∑

k≥0

kr2i · exp(−ck) � ̂fN (A) · r2i ,

as wanted, where for the penultimate bound we used again that since
(

Capd−2(N−1)(Rn+A)

n

)

n
is bounded, it also converges to ̂fN (A) in L2. �

6 Capacity of the sausage in d = 4

In this section we prove Proposition 1.7. Recall that we assume here that d = 4.
Following the notation of [14], we set a4 = 2/π2.

Claim 6.1 Fix M > 0. There exists a positive constant c and n0 so that for all n ≥ n0,
if ξ is a geometric random variable of parameter 1/n, then for all x with ‖x‖ ≤ M
we have for all ε ∈ (0, 1),

P

⎛

⎝

∣

∣

∣

∣

∣

∣

ξ
∑

k=0

g(Xk − x) − 2a4(log n)

∣

∣

∣

∣

∣

∣

≥ ε log n

⎞

⎠ ≤ c

ε2 log n
.

Proof Let

� =
ξ
∑

k=0

(

g(Xk − x) − g(Xk)
)

.

By the gradient estimate for Green’s function (see e.g. Theorem 1.5.5 in [14]), one
has

|g(Xk − x) − g(Xk)| � 1

1 + ‖Xk‖3 .

Furthermore, a standard computation gives

E

[ ∞
∑

k=0

1

1 + ‖Xk‖3
]

=
∑

x∈Z4

g(x)

1 + ‖x‖3 < ∞.
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Therefore Markov’s inequality gives that

P
(|�| ≥ ε

2
log n

)

� 1

ε log n
.

To conclude the proof we use the concentration results proved by Lawler. Indeed, he
shows in Lemma 4.2.1 in [14] that

P

⎛

⎝

∣

∣

∣

∣

∣

∣

ξ
∑

k=0

g(Xk) − 2a4(log n)

∣

∣

∣

∣

∣

∣

≥ ε

2
log n

⎞

⎠ � 1

ε2 log n
.

��
We now introduce some notation. Fix a set A and let X be a simple random walk

starting from the origin with range R. Let ˜R be an independent copy of R. Let ξ

n

and ξ rn be two independent geometric random variables of parameter 1/n. For every
x ∈ A we set

Ax
n = {

(x + ˜R[1,∞)) ∩ (R[−ξ

n , ξ rn ] + A) = ∅}

exn = 1(x /∈ (R[1, ξ rn ] + A))

U x
n =

∑

y∈A

∑

−ξ

n≤k≤ξ rn

g(x, Xk + y).

The next lemma is an extension of a beautiful identity found by Lawler [14, Theorem
3.6.1], which corresponds to the case A = {0}. Here we mainly follow the notation
and presentation of [6, Lemma 2.12].

Lemma 6.2 We have

∑

x∈A

E
[

1(Ax
n) · exn · U x

n

] = |A|.

Proof For every nearest neighbour path (x1, . . . , xm) we define

B(m, x1, . . . , xm) = {ξ

n + ξ rn = m, X−ξ


n+k − X−ξ

n

= xk, ∀ 1 ≤ k ≤ m},

and for all 0 ≤ j ≤ m we define

B(m, j, x1, . . . , xm) = {ξ

n = j, ξ rn = m − j, X−ξ


n+k − X−ξ

n

= xk, ∀ 1 ≤ k ≤ m}.

Using the independence of the increments of the walk and the geometric random
variables we then obtain

P
(

B(m, j, x1, . . . , xm)
∣

∣ B(m, x1, . . . , xm)
) = 1

m + 1
.
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Setting x0 = 0, we then have

∑

x∈A

E
[

1(Ax
n) · exn · U x

n
]

=
∑

x∈A

∞
∑

m=0

∑

(x1,...,xm )

P(B(m, x1, . . . , xm))

m + 1
·

m
∑

k=0

m
∑

j=0

1(x + x j /∈ ({x j+1, . . . , xm} + A))

× P
(

(x + x j + ˜R[1,∞)) ∩ ({x0, x1, . . . , xm} + A) = ∅)
∑

y∈A

g(x + x j − xk − y).

Recall that the last exit decomposition formula [14, Proposition 2.4.1(d)] entails that
for any finite set B ⊂ Z

d , and any b ∈ B,

1 =
∑

b′∈B
g(b − b′) · P

(

(b′ + ˜R[1,∞)) ∩ B = ∅).

Applying this to the set B = {x0, . . . , xm} + A, and b = xk + y, with y ∈ A and
k ∈ {0, . . . ,m} fixed, we get

1 =
∑

x∈A

m
∑

j=0

1(x + x j /∈ ({x j+1, . . . , xm} + A))P((x + x j + ˜R[1,∞))

∩ ({x0, x1, . . . , xm} + A) = ∅) · g(x + x j − xk − y).

Substituting this above we obtain

∑

x∈A

E
[

1(Ax
n) · exn · U x

n

] =
∞
∑

m=0

∑

(x1,...,xm )

P(B(m, x1, . . . , xm)) · |A| = |A|,

and this concludes the proof. ��
Lemma 6.3 We have

∑

x∈A

E
[

1(Ax
n) · exn

] = (1 + o(1)) · |A|
4a4 log n

.

Proof We have from Lemma 6.2 that

∑

x∈A

E
[

1(Ax
n) · exn · U x

n

] = |A|.

We now get

∑

x∈A

E
[

1(Ax
n) · exn

] = |A|
4a4 log n

+ 1

4a4 log n
·
∑

x∈A

E
[

1(Ax
n) · exn · (4a4 log n − U x

n )
]

.
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For every x ∈ A and ε > 0 we let

Bx
n = {|U x

n − E
[

U x
n

] | ≥ ε log n}.

Then we have

E
[

1(Ax
n) · exn · |E[U x

n

] − U x
n |] ≤ ε log n · E

[

1(Ax
n) · exn

]

+ E
[

1(Ax
n) · |E[U x

n

] − U x
n | · 1(Bx

n )
]

.

We now explain that it suffices to prove that

E
[

1(Ax
n) · |E[U x

n

] − U x
n | · 1(Bx

n )
]

� 1

(log n)1/4
. (6.1)

Indeed, once this is established, then we get

∣

∣

∣

∣

∣

∑

x∈A

E
[

1(Ax
n) · exn

] − |A|
4a4(log n)

∣

∣

∣

∣

∣

≤ ε
∑

x∈A

E
[

1(Ax
n) · exn

] + O
(

1

(log n)5/4

)

,

and since this holds for any ε > 0, this concludes the proof. So we now turn to
prove (6.1). By the Cauchy-Schwarz inequality we obtain

E
[

1(Ax
n) · |E[U x

n

] − U x
n | · 1(Bx

n )
] ≤

√

P
(

Ax
n ∩ Bx

n

) · E
[

(E
[

U x
n

] − U x
n )2

]

≤
√

P
(

Ax
n ∩ Bx

n

) · log n

usingClaim6.1 for the last inequality. It remains to bound the last probability appearing
above. To do this we define

U x,1
n =

0
∑

k=−ξ

n

g(x, Xk) and U x,2
n =

ξ rn
∑

k=0

g(x, Xk),

and also two events for i = 1, 2

Bx,i
n = {|U x,i

n − 2a4 log n| ≥ ε log n/4}.

Then it is clear that Bx
n ⊆ Bx,1

n ∪ Bx,2
n , at least for n large enough, and we have

P
(

Ax
n ∩ Bx

n

) ≤ P

(

(x + ˜R[1,∞)) ∩ (R[−ξ

n , 0] + A) = ∅,Bx,2

n

)

+ P

(

(x + ˜R[1,∞)) ∩ (R[0, ξ rn ] + A) = ∅,Bx,1
n

)

= 2P

(

(x + ˜R[1,∞)) ∩ (R[−ξ

n , 0] + A) = ∅

)

P

(

Bx,2
n

)

.
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Since x ∈ A we get

P

(

(x + ˜R[1,∞)) ∩ (R[−ξ

n , 0] + A) = ∅

)

≤ P

(

˜R[1,∞) ∩ R[−ξ

n , 0] = ∅

)

� 1√
log n

,

using Corollary 3.7.1 in [14] for the last inequality. Moreover, by Claim 6.1 we get
that

P

(

Bx,2
n

)

� 1

log n
,

and hence altogether this gives

E
[

1(Ax
n) · |E[U x

n

] − U x
n | · 1(Bx

n )
]

� 1

(log n)1/4
,

concluding the proof. ��
Proof of Proposition 1.7 Recall that for a finite set B ⊂ Z

d , one has cap(B) =
∑

b∈B P((b + R[1,∞)) ∩ B = ∅), see [14, Section 2.2]. We thus have

E
[

Cap(Rn + A)
]

=
∑

x∈A

n
∑

j=0

P
(

x /∈ (R[1, n − j] + A), (x + ˜R[1,∞)) ∩ (R[− j, n − j] + A) = ∅) .

We then get the following bounds for m = n/(log n)2

E
[

Cap(Rn + A)
]

≥ n ·
∑

x∈A

P
(

x /∈ (R[1, n] + A), (x + ˜R[1,∞)) ∩ (R[−n, n] + A) = ∅) and

E
[

Cap(Rn + A)
]

≤ m · |A| + (n − m) ·
∑

x∈A

P
(

x /∈ (R[1,m] + A), (x + ˜R[1,∞))

∩(R[−m,m] + A) = ∅) ,

and we conclude using Lemma 6.3. ��
Remark 6.4 As mentioned in the introduction, it would be possible to strengthen the
result of the proposition by proving an almost sure convergence, following the argu-
ments of [4]. The idea is to obtain good bounds on the variance of Cap(Rn + A), and
then use Chebyshev’s inequality and the Borel-Cantelli lemma. The variance estimates
are based on the fact that the capacity is almost an additive functional, with an error
term (called cross-term in [4]) having small second moment. This approach is robust
and works as well when we consider Rn + A for a finite set A.
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7 Open problems

We discuss some open problems related to our present analysis.

General γ -capacity. It would be interesting to show that for any γ ∈ (2, d), one has

lim
n→∞

Capγ (Rn + A)

n

 Capγ−2(A).

The results of this paper show that it is true when γ = d − 2k, for some integer k, and
Lemma 2.2 proves one direction for general γ > 2, but the other direction is missing.

Hitting Times. In Theorem 1.5 we established that the probability that a sum of N
simple randomwalks started from z hits a finite set A is of orderGN (z) ·Capd−2N (A),
when d ≥ 2N + 1 and ‖z‖ → ∞. A natural question is whether the quantity

1

GN (z)
P
(

z + R1∞ + · · · + RN∞ ∩ A �= ∅)

has a limit as ‖z‖ → ∞.
Another natural question is whether the analogue of Theorem 1.5 holds for the sum

of invariant trees. More precisely, when d ≥ 4N + 1 and A is a finite subset of Z
d , is

the quantity

1

G2N (z)
P
(

z + T 1∞ + · · · + T N∞ ∩ A �= ∅)

of order Capd−4N (A) as ‖z‖ → ∞? One difficulty here will be to be able to define
hitting times of the set A for which we can decouple future and past for each invariant
tree.

Tails of local times. In Theorem 1.2 we stated an intersection equivalence between the
sum of two simple random walks and an infinite invariant tree. However, the equiva-
lence between these two processes is not expected to hold beyond hitting probabilities.
Obtaining tails for the local times of additive walks is an open problem. We expect
the local times of the sum of two walks to decay as a stretched exponential when
d ≥ 5 as opposed to an exponential decay in the case of the invariant tree (see [5,
Theorem 1.6]).

Critical models. There is a range of critical models for which several questions arise:
the Minkowski sum of two simple random walks in d = 4, the Minkowski sum of 3
walks in d = 6 and so on. Interesting questions include:

(i) The fluctuations of the capacity of a sausage obtained as we roll a finite set over
the trajectory of the process.

(ii) The tail of the local times, where we expect a stretched exponential tail. It would
be interesting to have a representation of the rate function.

(iii) The folding phenomenon for additive walks or trees, and the first estimates we need
is an upper bound on the probability to cover a region up to a certain density (mea-
sured in a certain space-scale). A typical example of such a folding phenomenon
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is the event of having a large intersection between two invariant trees in dimension
d ≥ 9, and the approach should follow the analogous problem of intersection of
two random walks in d ≥ 5 studied recently in [3].
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