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Asstract. — In this paper, we study a probabilistic reinforcement-learning model for ants
searching for the shortest path(s) from their nest to a food source, represented here by two
vertices of a finite graph. In this model, the ants each take a random walk on the graph, start-
ing from the nest vertex, until they reach the food vertex, and then reinforce the weight of the
set of crossed edges. We show that if the graph is a finite tree, in which the set of leaves is
identified with a single food vertex, and the root with the nest vertex, and if there is an edge
between the nest and the food, then almost surely the proportion of ants that end up taking this
last edge tends to 1. On the other hand we show on three other examples that in general ants
do not always choose the shortest path. Our techniques use stochastic approximation methods,
as well as couplings with urn processes.

Risumi: (Le processus de fourmis renforgant leur trace ne trouve pas les chemins géodésiques)

Nous étudions un modeéle de renforcement par apprentissage pour les fourmis cherchant le
chemin le plus court pour aller de leur nid & une source de nourriture, représentés ici par deux
sommets d’un graphe fini. Dans ce modeéle les fourmis accomplissent chacune a leur tour une
marche aléatoire sur le graphe, partant du sommet nid, jusqu’a atteindre le sommet nourriture,
puis renforcent le poids de I’ensemble des arétes traversées. Nous montrons que si le graphe est
un arbre fini, dans lequel ’ensemble des feuilles sont identifiées & un seul sommet nourriture,
et la racine au sommet nid, et s’il existe une aréte entre le nid et la nourriture, alors presque
stirement la proportion de fourmis qui finit par emprunter cette derniere aréte tend vers 1. D’un
autre c6té nous montrons sur trois autres exemples qu’en général les fourmis ne choisissent
pas toujours le chemin le plus court. Nos techniques utilisent des méthodes d’approximation
stochastique, ainsi que des couplages avec des processus d’urnes.
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1. INTRODUCTION AND MAIN RESULTS

Context. — 1t is believed that ants are able to find shortest paths between their nest
and a source of food with no other means of communication than the pheromones
they lay behind them. This phenomenon has been observed empirically in the biology
literature (see, e.g., [GADP89, DAGP90, MTNS13]), and reinforcement-learning has
been proposed as a model for describing it (see, e.g. [MTNS13]). In the survey of
[DS04, Ch.1], this phenomenon is called stigmergy: “ants stimulate other ants by
modifying the environment via pheromone trail updating”.

In this paper, we study a probabilistic reinforcement-learning model for this phe-
nomenon of ants finding shortest path(s) between their nest and a source of food.
In this model, which was introduced in our previous paper [KMS20], the nest and
the source of food are two nodes N and F of a finite graph ¢, and the ants per-
form successive random walks starting from N and stopped when first hitting F. The
distribution of the n-th ant’s walk depends on the trajectory of the previous n — 1
random walks in a way that models ants leaving pheromones on the edges they cross:
each edge has a weight which is equal to 1 at the start and which increases by 1
at time n if and only if the n-th ant has deposited pheromones on that edge. The
transition probabilities of the random walk of the (n + 1)-th ant are proportional to
the edge-weights at time n. The reinforcement is thus linear.

In [KMS20], the ants deposit pheromones only on their way back: i.e., when they
come back to the nest after having hit F'. Two cases are studied in [KMS20]:

— In the “loop-erased” ant process, or model (LE), ants come back to the nest
following the loop-erasure of the time-reversed version of their forward trajectory.

— In the “geodesic” ant process, or model (G), they come back following the shortest
path between F' and N within the trace of their forward trajectory (ties are broken
uniformly at random).

The conjecture is that, under these two versions of the model, when time goes to
infinity, almost all ants go from N to F through a shortest path, i.e., the ants indeed
find the shortest path(s) between their nest and the food. This conjecture is proved
in [KMS20] for model (LE) in the case when ¥ is a series-parallel graph, and in the
model (G) in the case when ¢ is a five-edge graph called the lozenge.

Main contribution. In this paper, we look at the same model but assuming that
ants deposit pheromones on their way forwards to the food, i.e., the weight of an edge
increases by one at time n if and only if the n-th ant has crossed this edge at least
once on its way from N to F. We call this model the “trace-reinforced” ant process,
or model (T). In the biology literature, all cases of ants depositing pheromones on
their way forwards, backwards or both are considered (see [DS04, Ch.1]).

Maybe surprisingly, this small change to the reinforcement rule leads to a drastically
different behaviour: indeed, we prove that, in the trace-reinforced ant process, in
general, the ants do not find the shortest path(s) between their nest and the source of
food, except in some very particular cases. Indeed, in Theorem 1.3, we show that on a
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THE TRACE-REINFORCED ANTS PROCESS DOES NOT FIND SHORTEST PATHS 3

family of graphs called “tree-like”; in which there is a unique edge between N and F'
(N and F are at distance 1), the ants do find the shortest path. However, one can find
graphs, with N and F' at distance one, which are not tree-like and such that the ants
do not find shortest paths (see Proposition 1.4, Theorem 1.5 and Proposition 1.6).

The fact that ants do not always find shortest paths when depositing pheromones
only on their way forward has been observed empirically on ants (see [DS04, §1.1.2]):
“The observation of real ant colonies has confirmed that ants that deposit pheromone
only when [going forward] to the nest are unable to find the shortest path between their
nest and the food source”. Our analysis proves that the model introduced in [KMS20]
exhibits the same behaviour.

Our second main finding, which might also be surprising at first glance, is that
although we use a linear reinforcement mechanism (see the discussion below), in
all the graphs we consider, the sequence of normalised edge-weights converges to a
deterministic limit. In fact, we conjecture that this is a general phenomenon, and that
on all graphs with no multiple edges linked to node F', the sequence of the normalised
weights converges almost surely to a deterministic limit:

Consecrure 1.1. — If, for all n = 0, for all e € E, we let W.(n) denote the
weight of edge e at time n, then there exists a deterministic family (Xe)eer Such that
(Wen)/n)ece = (Xe)ecr almost surely when n — +oo. Furthermore, if in addition
the distance between N and F is at least 2, then x. > 0 for alle € E.

Discussion. — Other probabilistic reinforcement models inspired by urns exist in the
probability literature. As far as we know these models are all self-reinforced ran-
dom walks models with super-linear reinforcement; see for example Le Goff and Rai-
mond [LGR18] and Erhard, Franco and Reis [EFR19].

The ant process can be seen as a “path formation” model: the quantity of interest
is the subgraph of ¢4 obtained by removing from ¢ all edges whose normalised weight
converges to zero. If this limiting graph is different from ¢, then we say that “some
path(s) has formed”.

Another model for path formation is the Pélya urns with graph based interactions
of Benaim, Benjamini, Chen and Lima [BBCL15] and its generalisation to WARMs
of [vdHHKRI16]. In the latter (and in more recent paper on the same model such as
Hirsch, Holmes and Kleptsyn [HHK20]), only super-linear reinforcement is considered
because it leads to path formation; in contrast, it is believed that, under linear rein-
forcement, the limiting graph would be equal to ¢. In [CH21], Couzinié and Hirsch
consider the sub-linear WARM model. They show that, for bounded degree (possibly
infinite graphs), if the reinforcement is sufficiently weak, or if 4 = Z, then the limiting
edge-weights exist and are deterministic. In [BBCL15], and later [CL14] and [Lim16],
the cases of sub-linear, super-linear and linear reinforcement are considered. In the
linear case, if the original graph ¢ is regular and not bipartite, then the vector of
normalised weights converges almost surely to a non-deterministic limit.

Given these examples from the literature, it is quite surprising that in the ant
process, with linear reinforcement, the vector of normalised weights always converges
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4 D. Krous, C. MaLLer & B. Sciiarira

to a deterministic limit. In fact, this difference of behaviour can be observed when
looking at the simplest probabilistic model with linear reinforcement: (generalised)
Pélya urns. A d-colour Pélya urn of replacement matrix R = (R; ;)1<i,j<a is defined
as follows: at time zero, there is one ball of each colour in the urn, and at every
time step, we pick a ball uniformly at random among the balls in the urn, and if its
colour was 4, we return it to the urn together with R; ; balls of colour j (V5 such that
1 < j < d). If R is the identity, it is known (see Markov [Marl7]) that the vector
U (n) whose coordinates are the number of balls of each colour divided by n converges
almost surely to a Dirichlet (1,...,1)-distributed random variable. In contrast, if the
matrix R is irreducible, then U (n) converges almost surely to a deterministic limit
(see Janson [Jan04] and the references therein).

Interestingly, in a not-yet-available paper [HK] (whose results have been an-
nounced), Holmes and Klepstyn also exhibit a linear reinforcement model which,
on some graphs, converges to a deterministic limit, a result that resonates with
Conjecture 1.1.

A similarity between this paper, the Pdlya urns with graph-based interaction
of [BBCL15] and the WARMs of [vdHHKRI16] is the method of proof since we also
use stochastic approximation. In particular, we use the ODE method for stochas-
tic approximation, and apply results from Benaim [Ben99] and Pemantle [Pem07].
However, the analysis of these stochastic approximations in the different examples
of graphs we consider is quite different from the one in [BBCL15] and [vdHHKRI16].
In fact, as we later explain in more details, each of our examples requires an ad-hoc ar-
gument, which suggest that proving our conjecture on the convergence of edge-weights
in great generality is a difficult open problem.

That said, we prove a general result ensuring that on any finite graph, the sequence
of normalised edge weights is a stochastic approximation, in a sense which is recalled
in Definition 2.3 below, with a vector field F' which is Lipschitz on a suitable convex
compact subspace of the Euclidean space (see Proposition 2.7).

1.1. DEFINITION OF THE MODEL AND MAIN RESULTS. Let 4 = (V,E) be a finite
(undirected) graph with vertex set V and edge set E, with two distinct marked
nodes called N (for “nest”) and F (for “food”). We define a sequence (W (n) =
(We(n))eer)n>o0 of random weights for the edges of ¢ recursively as follows:
— At time zero, all weights are equal to 1, i.e., W.(0) =1 for all e € E.
~ Given W (n), we sample a random walk (X;"*");>¢ on ¢ according to the fol-
lowing distribution:
~ the walk starts at node N, i.e., X"*" = N,
— it stops when first hitting F, i.e., P(X{{{" =F|X;""" =F) =1 for all i >0,
—foralli >0, forallu e V~{F},veV,
W{u,v} (TL) 1
Zu/~u W{uyu’} (TL) {uv}eE,

where u’ ~ u if there is an edge linking the vertices v’ and u.

P(XI5Y = 0| X = u) =
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We let y(n 4 1) be the set of edges that were crossed at least once by the random
walk X ™*9; we call this the “trace” of the (n + 1)-th walker. For all e € E, we set
We(n 4 1) = We(n) + Leey(nt1)-

We call this process the “trace-reinforced” ant process on ¢. In our first result,
we focus on graphs that are “tree-like” in the following sense:

Derinirion 1.2, — We say that a graph 4 = (V, E) with two marked nodes N and F’
is tree-like if the graph whose vertex set is V'~ {F} and whose edge set is E minus
all edges that contain F' is a tree (i.e., a graph with no cycle).

Tueorem 1.3. — Assume that 4 = (V, E) is tree-like and that the edge a = {N,F}
belongs to E with multiplicity 1. Then, almost surely when n — 400,

Wa(n) We(n)

—1 and — 0, forallee EX {a}.

In other words, following this reinforcement algorithm, the ants eventually find the
shortest path between their nest and the source of food, i.e., the proportion of ants
that go from N to F by only crossing the edge {N, F'} is asymptotically equal to one,
and the proportion of ants that cross any other edge asymptotically equals zero.

Note that if the edge {N, F'} appears with multiplicity ¢ in E (i.e., there are ¢
edges from N to F' in parallel), then it is easy to deduce from Theorem 1.3 that the
normalised weights of all other edges go to zero almost surely, and the weights of
the £ edges from N to F converge almost surely, as a ¢-tuple, to a Dirichlet random
variable with parameters (1,...,1).

A natural extension of the set of tree-like graphs is the set of series-parallel graphs,
which were considered for instance in [HJ04] and in our previous paper [KMS20]. One
could then ask whether the previous theorem extends to this class of graphs, that is,
if the distance from the source to the food is one, do the weights of all edges not
directly connected to both N and F' go to zero? Maybe surprisingly, the answer is no.
Indeed our next result provides a counter-example, which is depicted by Figure 1 and
which we call the cone graph.

ay bl

as b2

2 bs

as b4
1 ! l
4 | |
ap bq

Ficure 1. The cone Ficure 2. The (p, g)-path Ficure 3. The lozenge

graph of Theorem 1.5
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6 D. Krous, C. MaLLer & B. Sciiarira

Prorosirion 1.4. Let 4 be the graph of Figure 1. If we let W;(n) be the weight of
edge i at timen (using the numbering of edges of Figure 1) and W (n) = (W;(n))1<i<4,
then almost surely when n — 400,
W(n)
n

—(1,1/3,1/3,0).

The following result shows that Theorem 1.3 does not extend to tree-like graphs
where N and F are at (graph-)distance at least 2 from each other. For two integers
p > 1and ¢ > 1, we define the (p, ¢)-path graph as the graph with two parallel paths
between N and F', one of length p and one of length ¢ (see Figure 2).

Tueorem 1.5. — Let ¢ = (V,E) be the (p,q)-path graph. We let aq,...,ap
(resp. b1,...,by) denote the edges of the path of length p (resp. q), numbered from the
closest to the nest to the closest to the food.

If min(p, q) > 2, then, almost surely for all 1 <k <p and 1 <L < q,

lim Wa, (n) —aof  and lim W, (n) — B,
n—-+oo n n—-+oo n

where (v, B) is the unique solution in (0,1)% of

of + B4 =1,
a?(1—a) = g1 - B).

Note that, if p = ¢ > 2, the solution of (1.1) is explicit and given by a = § = 2-/7,
Now to give further support to our conjecture that normalised edge weights always
converge to a deterministic limit (when the edges connected to F are simple), we look
at the lozenge graph in Figure 3; this example, which was also considered in [KMS20],
is different from all other cases so far, in the sense that it does not belong to the class

(1.1)

of “series-parallel” graphs.

Prorosition 1.6. Let 4 be the lozenge graph of Figure 3. If we let W;(n) denote
the weight of edge i at time n (with the edges numbered as in Figure 3), and W (n) =
(Wi(n))i1<igs, then almost surely as n — +o0, we have

W(n)

— (w*,1/2,1/2,w",1/2),
where w* is the unique solution of 2x3 + 42 — 22 — 3/2 =0 in (0,1).

The fact that the limiting weights of edges 2 and 5 are equal to 1/2 should not
come as a surprise. Indeed, by symmetry they must be equal (assuming they are
deterministic), and since each ant reinforces exactly one of these two edges at each
step, their common value has to be 1/2. Similarly for the edges 1 and 4, except that
since each ant can reinforce both of them, one has now w* > 1/2. However, the fact
that the limiting weight of edge 3 equals 1/2 seems to be merely a coincidence.

Notation. — Given some filtration (%, ), >0, and Z some random variable, we will use
the notation E,[Z] to denote the conditional expectation of Z with respect to .%,.
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2. PrRELIMINARIES

2.1. Urn~ processes. — We state here a result concerning (generalised) Pélya urn
processes. Given a function G : [0,1] — [0, 1], we call G-urn process, a process (X, )n>0
with integer values, such that almost surely X, 11 € {X,,, X, + 1}, and for all n > 0,

P(Xn-‘rl =X, +1 | X07' . aXTL) = G()?n)a

with X,, := X,,/(n+2). In general we will assume that it starts from 1 at time 0,
i.e., that Xy = 1, but we shall also consider other initial conditions. We then say
that it starts from some value k at time m, if we condition the process on the event
{Xm =k}

Informally X,, corresponds to the number of (say) red balls after n draws in a
Pélya urn with two colours, where at each step, we draw a ball in the urn at random,
and replace it into the urn with an additional ball of the same colour. At each draw,
the probability to pick a red ball is G(p) if the proportion of red balls in the urn is p.

We will need the following standard result (which follows for instance from Corol-
lary 2.7 and Theorem 2.9 in [Pem07]).

Proposition 2.1. Let (X,)n>0 be a G-urn process, with G a C*-function. Then
almost surely (Xn)nZO converges towards a stable fized point of G, that is a (possibly
random) point p € [0, 1], such that G(p) = p and G'(p) < 1.

In particular if there exists ¢ > 0, such that G(x) > z, for all x € (0,c
(resp. G(x) < x for all x € (1 —¢,1)), then almost surely liminf, 0 X, > ¢

(resp. limsup X,, <1 —¢).
We shall also use the following corollary.

Cororrary 2.2, — Let (X,,)n>0 be an integer valued process adapted to some filtration
(Fn)n>o0, such that almost surely for alln 20, X, 41 € {X,, X, + 1}, Xo =1, and
for some function G : [0,1] — [0, 1],

(2.1) P(Xpi1 = X, +1|.%,) = G(X,),
with X, := X,,/(n+2). If there exists n,c > 0, such that G(z) > (1 + n)z, for all

x € (0,¢), then almost surely liminf, . X, > c.
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8 D. Krous, C. MaLLer & B. Sciiarira

Proof. — For € € (0,7), consider G. : [0,1] — [0,1], a C! function such that
r < Ge(x) < (L+n)x, for all x € (0,¢ —¢), Ge(x) < (1 +n)z, for x € (¢ —¢,c¢), and
Ge =0 on [¢, 1]. By assumption on G, one has G(x) > G.(x), for all z € [0,1]. It fol-
lows that (X,,),>0 stochastically dominates a G.-urn process, and applying Propo-
sition 2.1, we deduce that almost surely lim inf )/(\'n > ¢ — e. Since this holds for all
¢ € (0, ¢), the result follows. O

In our applications, the process (X, )n>0 will often be one coordinate of a higher-
dimensional process (X,,)n>0, and (%, )n>0 will simply be the natural filtration of
the process (X ,)n>0.

2.2. StocHasTic APPROXIMATION AND THE ODE MeTHOD. — We use the following defi-
nition for a stochastic approximation (note that we do not seek for the most general
definition here, but it will be sufficient for our purpose).

DeriNiTion 2.3. — A stochastic approzimation is a process (X, )n>0, adapted to some

filtration (%, )n>0, With values in a convex compact subset & C R%, for some d > 1,

that satisfies an equation of the type

F(Xn) + &1+ 10
n+2

where the vector field F' : & — R is some Lipschitz function, the noise &,11 is

Fni1-measurable and satisfies E,, [€,11] = 0, for all n > 0, and the remainder term r,

(2.2) Xpr1=Xn +

, for all n > 0,

is .%,-measurable and satisfies almost surely ||r,|| < C/n, for some deterministic
constant C > 0.

Remark. — The fact that we assume & to be a convex compact subset of R? enables
to easily extend F into a Lipschitz continuous function defined on R?, simply by
composing it with the orthogonal projection on &. We then fall into the setting of
Benaim [Ben99], and we can rely on its results. Thus in the following, we will identify F’
with its Lipschitz extension on R?, as defined here.

Remark. — The choice of renormalisation factor equal to 1/(n + 2) in Equation (2.2)
is arbitrary and can be replaced by 1/(n + 3) (as in Sections 4 and 6). In Sections 4
and 6, we explain why the chosen renormalisation is the most convenient.

The idea underlying the ODE method is that the trajectories of a stochastic ap-
proximation asymptotically follow the solutions of the differential equation

(2.3) Y= F(y).

We recall that if for z € RY, we let (®;(z));>0 be the (unique because F is Lipschitz)
solution of (2.3) starting at z, then this defines a flow, in the following sense.

Derivition 2.4. — Let .4 be some metric space. A flow (or semi-flow) on .# is an
application ® : Ry x .# — .#, such that &g = Id, and ®;ys(z) = D; 0 D, (x), for all
s,t >0,and z € 4.
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THE TRACE-REINFORCED ANTS PROCESS DOES NOT FIND SHORTEST PATHS 9

— A subset & C . is said to be invariant, if ®,(z) € o, for all x € & and all
t>0.
— An attractor is a set o/ that admits a neighbourhood % C ., such that

NUe(#)=.
t>0 s>t
We will frequently use the following result due to Benaim [Ben99, Prop.4.1,
Rem. 4.5, Prop. 5.3, Th.5.7] (see also e.g., [Pem07, Prop. 2.10 & Th. 2.15]).

Tueorem 2.5. Let (X,)n>1 be a stochastic approzimation. If there exists a deter-
ministic constant C' > 0, such that almost surely sup,,~; [|€.]| < C, then almost surely,
the limiting set L(X) = (,50 Upmsn{Xm} is invariant by the flow of the ODE (2.3),
connected, and the flow of the ODE restricted to L(X) admits no other attractor than
L(X) itself.

We will also use the following corollary of Theorem 2.5:

Corovrrary 2.6. — Under the assumptions of Theorem 2.5, if there exist a set % C &
and p € U such that

(i) almost surely, L(X) C %, and
(ii) for all w € %, the solution of the ODE (2.3) started at w converges to p,

then L(X) = {p} almost surely.

Proof. — First note that either L(X) = {p} or there exists a (possibly random)
point € L(X)~ {p}. In the first case, the conclusion of Corollary 2.6 holds trivially.
In the second case, we show that (i) and (ii) together with Theorem 2.5 imply that
p € L(X). Indeed, by (i), we have that & € % . Thus, by (ii), the solution ¢ — ®(t)
of the ODE started at = converges to p when time goes to infinity. Theorem 2.5
ensures that L(X) is invariant by the flow of the ODE, and thus that ®(¢) € L(X)
for all ¢ > 0. Since L(X) is closed (as the intersection of closed sets), this implies that
lims, 100 () = p € L(X), as claimed. Finally, by Theorem 2.5, the flow restricted
to L(X) admits no other attractor than L(X) itself, and by (ii), p is an attractor of
the ODE restricted to L(X) C % ; this implies that L(X) = {p}, as required. O

2.3. THE PROCESS OF EDGE WEIGHTS SEEN AS A STOCHASTIC APPROXIMATION. — Consider
a finite graph ¥ = (V, E), with two marked vertices N and F. Recall that W (n) =
(We(n))ecr denotes the sequence of the weights of the edges of the graph after n
steps of the trace-reinforced ant process, and let .%,, := (W (0),..., W (n)).

For any edge e € E, and any n > 0, we let X.(n) := W,(n)/(n+1), and X (n) =
(Xe(n))eer- Next for any w € [0,1]7, and any e € E, we let p.(w) be the probability
that the edge e belongs to the trace of a random walk on the graph ¢ endowed with the
weights w, starting from N and killed at F. Then we define F : [0,1]¥ — [0,1]", by

(2.4) F.(w) := pe(w) — w,, foranyecE.
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10 D. Krous, C. MaLLer & B. Sciiarira

Given w € [0,1]%, we set

T (T) 1= Zwe, forall zx € V,
where e ~ z means that we sum over all edges e € E that have x € V as endpoint, and
recall that this defines a reversible measure for the random walk on ¢ endowed with
the weights w. We also let &(¥) be the number of self-avoiding paths from N to F
in ¢, which we number in some arbitrary order: ¢i,...,cg ). For i =1,..., &(9),
we define

& ={we0,1]" : mp(N) > 1, and we > 1/&(¥) for all e € ¢;}.
Note that each & is a convex compact subset of [0, 1]Z. Then we further define,

Y Ai=1,and \; >0, for alli}

25) &= D £) = {8 \w,
( 5) COIIV(U 1 1) 21:1 AzwL ’UJLEéo“ for all ¢

1=

the convex hull of the union of the &;’s, which is also a convex compact subset of
[0,1]F. One has the following general fact.

Prorosition 2.7. — The function F is Lipschitz on the space &. Furthermore the
process (X (n))n>o0 s a stochastic approximation on &. More precisely,
1
F(X 1
— (F(X () + €0+ 1)),

where for any e € E, E(n+ 1) := 1{W,.(n+ 1) = We(n) + 1} — p.(X (n)).

(2.6) X(n+1)=X(n)+

Remark. We stress that the proof of this result works in a wider setting, including
the two variants of the process considered in our previous paper [KMS20].

Proof. — For the first part, we use a coupling argument. For all w,w’ € &, we define
(Xn)n>0 as the random walk on ¢ equipped with edge-weights w, and (X ),>0 as
the random walk on ¢ equipped with edge-weights w’. Both walks start at N and are
killed when they first reach F'. We couple (X,,)n>0 and (X],),>0 until the first time
when they differ, in a way that maximises the probability that they stay equal after
each step. We let 7 be the random time when the walks first differ. If 7 denotes the
first time when (X,,),>0 hits F, then

H(w) = F(w)lloo = max|F.(w) — Fe(w)]
< max [pe(w) = pe(w')] + [lw = w'lloc <P(T <7p) + [l — w']|oo

@7) <SPG = X, Xt # X, b < 7r)Hw — 0

k>0
1 w w'

= _ P(Xk:X]Ic:-Tyk<TF) e e +||w_w/||007
P> M ey

where the first inequality is obtained from (2.4) using the triangle inequality, the
second inequality is a general fact which holds for any coupling of the two walks,
since if an edge is crossed by only one of the two walks, then necessarily 7 < 77, and
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THE TRACE-REINFORCED ANTS PROCESS DOES NOT FIND SHORTEST PATHS 11

the last equality in (2.7) holds because our coupling maximises the probability of the
two walks staying equal. From (2.7), we get

| F(w) — F(w')]loo
< % NN P =Xp=a k<)Y (m —wel T (@) _”“’(x)>

TEV k>0 e~z T () T (2) 'Ww/(xl)
Jr”'w —w ”oo
! > [we — we| [T (7) — o (7))
< - P(X), ==, k e~ e
5 D0 Y P(Xe =, k < 7r) ( R
z€V k>0 ,
""”w —-—w ”oo

<3 Gl — o —
zeV e~x
with G (-, ) the Green’s function on the graph ¢ endowed with the weights w (i.e.,
the mean number of visits to the second argument for a random walk starting from the
first argument, up to its hitting time of F’). Using the reversibility of the measure 7,
we deduce that (see e.g. [LP16, Ex.2.1(e)]),

Gw(N,z)  Gy(z,N)
T (2) \ T (V)
Using also that G (z, N) < G (N, N), we get

IFw) = Fw)l < S50 X e uthtw =l
2Gw (N, N)
Tw(N)
with [Jw —w’|1 = > . p |we —w]|. Now by definition, for w € &, one has m, (N) > 1,
and we claim that G, (N, N) is also bounded by a positive constant independent
of w (only depending on the graph ¢). Indeed, by [LP16, Eq. (2.4)], for a random
walk starting from N, the number of returns to N before hitting F' is a geometric
random variable with mean 7y, (N)/%(g w) (N, F), where €(q ) (N, F') denotes the
effective conductance between N and F' in the graph ¢4 endowed with the weights w.
Moreover, by definition of &, for any w € &, there exists a self-avoiding path from N
to F such that all the edges on this path have a weight larger than &(%)~2 (we recall
that &(¥¢) denotes the number of self-avoiding paths between N and F' in ¢). Such
a path has an effective conductance larger than (hpmax(4) - &(4)?)~!, where hpax(9)
denotes the maximal length of a self-avoiding path from N to F in ¢4. By Rayleigh’s
monotonicity principle, we also have Gy )(N, F) = (hmax(¥) - 6(4)?)!. Finally,
note that (V) is bounded by the degree of N, say de (V). In total, this implies

that, for all w,w’ € &,

|F(w) = F(w)]oo < K(F) - lw — w1,

with K(94) := 142 (1 + dy(N) - hmax(¥) - 6(¥)?), a constant which only depends on
the graph ¢. This concludes the proof of the fact that F' is Lipschitz on &.

(Ve e V).

<(1+ ) lhw = w1,
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Since (2.6) is straightforward by definition of the model, it only remains to show
that X (n) belongs to &, for all n > 0. The fact that 7x,)(N) > 1 follows from the
fact that, by definition of the model, at each step at least one of the edges incident
to N is reinforced. Furthermore, at each step, at least one of the self-avoiding paths
from N to F' is reinforced, which implies that, at any time n > 0, at least one of
these self-avoiding paths has been reinforced at least n/&(¥) times. In other words,
for all n > 0, X (n) belongs to at least one of the &;’s, and thus X (n) belongs to &
as claimed. ]

2.4. Case WHEN N AND F' ARE AT DISTANCE ONE. — In this section, we prove the follow-
ing general fact: if V and F' are at distance 1, then the only simple paths from N to F'
which “survive” asymptotically are those of length one. In other words, asymptoti-
cally, almost all of the ants reach F' by last crossing one of the edges that connect N
and F'. However, it is not true in general that the only edges which survive are those
from N to F; the cone graph of Proposition 1.4 is a counter-example.

Prorosition 2.8. — Assume that & is a finite graph with two marked vertices N
and F, connected by at least one edge. Let (W (n)),>o be the process of edge-weights
of the trace-reinforced ant-process on 4. Then for any edge e connected to F but not
to N, one has We(n)/n — 0 almost surely.

Proof. First note that it is enough to prove the result in the case when there
is a unique edge a = {N,F} (i.e., it has multiplicity one). Indeed, if {N, F'} has
multiplicity m > 2, then, by definition of the ant process, at most one of these m
edges belongs to the trace of each ant. Hence, the process obtained by adding the
weights of theses edges into one weight is the ants process on the graph in which
the m parallel edges have been merged into one edge with initial weight m.

Assume that w is such that w, ¢ {0,1}. Let ¢’ be the graph obtained by removing
edge a from ¥: i.e., 4’ = (V,E’) where E' = E \ {a}. We equip the edges of ¢’ with
the weights (we)ecpr, and let g (w) denote the conductance between N and F in ¢’
equipped with these weights. We denote p,(w) the probability to reinforce the edge a
when the weights over the graph are given by w. With this notation, we have
wa

pa(w) - ’LUa—F%gI('QU).

We let k denote the number of edges connected to N in ¢’, and £ denote the number of
edges connected to F in ¢’. We define the graph ¢(k, ¢) as the graph with vertex set
{N, F, P} and with edge set { N, P} with multiplicity k and {P, F'} with multiplicity ¢
(see Figure 4). We equip the k edges between N and P in ¥(k,f) with the same
weights as the k edges connected to N in ¢’, and the ¢ edges between P and F' in
4 (k, ) with the same weights as the ¢ edges connected to F' in 4’. The graph ¢ (k, ()
can be obtained from ¥’ by merging all vertices different from N and F into one
node called P, or equivalently by adding edges between all pair of vertices disjoint
of N and F, and assigning an infinite weight to all edges not connected to N or F.
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THE TRACE-REINFORCED ANTS PROCESS DOES NOT FIND SHORTEST PATHS 13

By Rayleigh’s monotonicity principle (see [LP16, §2.4]), the conductance €% ) (w)
of 4(k,0) is at least equal to the conductance of ¥’.

Ficure 4. The graph ¢(k, £).

The conductance of 4 (k, ¢) with these weights is given by

We Y. W,

TN~ TP~ k(1 —w,)
¢ _ ecE’: Nrve ecE’: Froe < a
g(k,f)( ) We + Z W, ~ k + 1 _ wa7
ecE’: Nre ecE’: F~e

where X ~ e denotes that the vertex X is an endpoint of e, where we have used that
for all e € £, w, < 1, and also that »_ .. p., we = 1, and thus

Z We = 1 — wy.

ecE’: F~e
Therefore,
Wq
pa(w) = k(1—wa) "
Wq, + k+1—wq
Thus, (W,(n))n>o stochastically dominates a G-urn process with
x
Gl@) = —aay
x + k+1—=x

Note that G(z) = z if and only if = € {0,1}, and one can compute that
G'(0)=(k+1)/k>1.

Thus Corollary 2.2 shows that W, (n)/n converges almost surely to 1, and as a con-
sequence one also has that W,(n)/n converges almost surely to 0 for all e connected
to F' different from a. This concludes the proof. O

3. Proor or THEOREM 1.3

First note that Proposition 2.8 implies that W, (n)/n — 1, almost surely. Note also
that by definition of the model, it now suffices to show that the normalised weight
of all the other edges connected to N go to zero almost surely, as the weight of any
edge e in the tree is always smaller than the weight of the unique edge connected to N
on the path from e to N.

So let e be some edge connected to IV, which is different from a. By assumption,
the graph ¥ is a tree rooted at N and whose leaves have been merged into F'. Thus,
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14 D. Krous, C. MaLLer & B. Sciiarira

since the ants are stopped when first hitting F', the first time each ant crosses the
edge e has to be from N to the other extremity of e. Moreover, if an ant crosses the
edge a it is stopped immediately. This implies that the probability to cross e before
reaching F' on ¢ is smaller than on the graph consisting only of the two edges a and e
(in parallel between N and F'). This gives for all n > 0, almost surely,
We(n) We(n)

(3.1) P(We(n+1)=W,(n)+1|W(n)) < = = = ,

We(n) +Wa(n) — W, (n) + W,(n)
where we recall that we write /W(n) =W(n)/(n+2). Now let € > 0 be fixed. We know
that almost surely, for n large enough, W, (n) > 1—e. On the other hand on the event

when Wa(n) > 1 — ¢, for all n larger than some integer ng, we know by (3.1) that
(We(n))n>n, is dominated by a G-urn process with G(z) = z/(z + 1 — €). Then
Proposition 2.1 shows that almost surely, limsup,,_, . W.(n) < e. Since this holds for
all € > 0, this concludes the proof.

4. THE coNE

We first note that by Proposition 2.7 and the specific features of the cone, the
process W (n) := W (n)/(n + 2) is a stochastic approximation on the space

E' ={w=(wy,...,wy) € E: w1 +wyg =1, wy < way + w3},

with & as defined in (2.5). More precisely, for all n > 0, we have

— D 1 —

Wn+1)=W(n)+ p— (F(W(n)) + &nt1),
with &,11 some martingale difference, and for all 1 < ¢ < 4, F;(w) = p;(w) — w;,
where p;(w) is the probability that edge ¢ belongs to the trace of a random walk on

the graph endowed with weights w, which starts from N and is killed at F.

Remark. — Note that, for the cone graph, it is convenient to define ﬁ\/(n) as
W (n)/(n + 2) rather than as W(n)/(n + 1). This is because, by definition of the
process, for all n > 0, Wi(n) + Wy(n) = n + 2; indeed, W7(0) + Wy4(0) = 2 and, at
each step we increase exactly one of Wi (n) and Wy(n) by one.

To calculate py (and thus ps, by symmetry), we decompose according to the first
step of the ant: to reinforce edge 2, it has to either go straight through edge 2 (in which
case, no matter what it does later, edge 2 will be reinforced), or go through edge 3.
In the latter case, the second step of the ant has to be either through edge 2 (edge 2
gets reinforced no matter what happens next) or back through edge 3, in which case
we start again. Hence,

wa ws wo w3
po(w) = + ( + pg(w)).
w1 + wo + ws w1 + w2 + w3 \wgy + w3 + Wy Wo + w3 + Wy

Solving this in terms of pa(w) gives

wa (wg + 2ws + wy)
5.

w) =
pa(w) (w1 + wa + w3)(w + w3 + wa) — w3
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To calculate p; (w), we use the electrical networks method (see, e.g. [LL10]) to see that
the probability, starting from N, to cross edge 1 before edge 4 is wy divided by the total
conductance between N and F. The latter conductance is given by w; 4 (watws)ws

wa+w3z+wy’
which yields
w1

p1(w) = —wl s wn

watwsz+wa
Thus, the coordinates of the function F' are given by

w wa(wo + 2wz + w
Fi(w)=—— e —wn, Fa(w)= g fRus b we)
ler% (w1 + wo + w3)(we + w3 + wa) — w3

W2 TW3TW4q
2
Fy(w)=—F,(w), Fy(w) = ws 2wz + ws +w) — ws.

(w1 4 wa + w3)(wa + w3 + wy) — w3
Now our aim is to use the ODE method and for this we proceed in 4 steps:

(1) we first remind that lim W (n) = 1 almost surely as n — 400, thanks to
Proposition 2.8,

(2) we prove that liminf, | W, (n) A /Wg(n) > 0 (where z A y denotes the mini-
mum of z and y),

(3) we prove that for any w in % := {w € &: w1 = 1, waws # 0}, the solution of
y = F(y) started at w, converges to (1,1/3,1/3,0),

(4) we finally apply Corollary 2.6, together with (1), (2) and (3) to conclude.

For (2), note that, if w € &', wy — 1, we — 0, and wy — 0, then
(w1 + w2 4+ ws3) (w2 + w3 4 wy) —w§ ~ W2 + W3 + W4 + Waw3 + W3wW4 ~ W2 + W3 + Wy,
because wows = o(ws) and wzws = o(ws). This implies
’wg(’LUQ + 2U)3 + U)4) U)Q(’LUQ —+ 2’[03 —+ ’LU4) — ’LUQ(U)Q + ws —+ ’LU4)
Fr(w) ~ —wy =
wg + w3 + wy Wy + w3 + wy
Wo2Ws3
w2 + ws —+ waq ’

Finally, since, for all w € &', wy < ws + w3, we get that, as w; — 1, wy — 0 and

wy — 0,

wows(1 4 o(1)) S W2 Aws
2(’(1)2 + ’LU3> - 4

In other words, there exists € > 0 such that, for all w € & with wy < ¢, and wy > 1—-¢,

FQ(’U)) 2

(14 o0(1)).

A

(4.1) Fy(w) > 2013

By symmetry, for all w € &’ such that ws < e, and wy > 1 — ¢,
VAN

(4.2) Fy(w) > %

Thus, if we set H(z) = 921,<./8, by Equations (4.1), and (4.2), and since /Wl(n) -1
almost surely as n — oo, we get that, for all sufficiently large n, the random variable
O (n) := Wa(n) A Ws(n) satisfies almost surely on the event when Ws(n) # Ws(n),

(4.3) P(®(n+1)=®(n) +1|W(n)) = H(d(n)),
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16 D. Krous, C. MaLLer & B. Sciiarira

with ®(n) := ®(n)/n. This is however not sufficient to apply Corollary 2.2, since when
Wa(n) = Ws(n), one has ®(n + 1) = ®(n) + 1, only when both edges 2 and 3 are
reinforced at the next step, which holds with smaller probability. To overcome this
issue, we introduce the following quantity:

U(n) == &(n) + i {Wa(k) = Wa(k), Wa(k +1) # Wa(k + 1)}
k=0

Note that contrarily to ®, the function W increases by one unit as soon as at least
one of the two edges 2 or 3 is reinforced, whatever their weights are at this time
(in particular this holds even when they are equal). Therefore, (4.1) and (4.2) imply
that, almost surely for all sufficiently large n,

(4.4) P(U(n+1)=U(n)+ 1| W(n)) > H(d(n)).
We now claim that almost surely one has ®(n) ~ ¥(n) as n — +oo, which by Corol-
lary 2.2 implies lim inf ®(n) > 0, because H'(0) = 9/8 > 0.

In fact we prove a stronger statement: almost surely for all n large enough,

(4.5) U(n) < ®(n) + d(n)/4.
To see this, set
Z, = max(Wh(n), Wa(n)) — min(Wa(n), Wa(n)) (vn > 1).

Note that, conditionally on the event that edge 2 or 3 is reinforced but not both, the
one with largest weight is more likely to be reinforced than the other. This implies
that the process (Zy)r>0 taken at its jump times (i.e., the times k =0 and all k > 1
such that Zy # Zj_1) stochastically dominates a simple random walk (rSRW,,),>0
on Z, = {0,1,...} reflected at 0. We let L(n) denote the number of times (Zj)k>0
returns to zero before time n, i.e.,

L(n) =Y 1{Z, =0},
k=0

and N (n) the number of jump times of (Z)r>o during its first L(n) excursions out of
zero (equivalently the number of times only one of the two edges 2 or 3 is reinforced
before the last time before n when the weights of edges 2 and 3 are equal). Then, for
all integers n, L(n) is stochastically dominated by the number of returns to the origin
of (rSRWp,) k>0 before time N(n). Moreover, by definition,

n—1
(4.6) ¥(n)—®(n) = Z 1{Wa(k) = W5(k), Wa(k+1) # Ws(k+1)} <14 L(n).

k=0
During each excursion out of the origin, the probability to hit level N%/8 is equal to
N—5/8 by a standard Gambler’s ruin estimate. Moreover, by Hoeffding’s inequality,
for any N > 1, the probability for a simple random walk started at level N°/8 to
hit 0 before time N is bounded by 2N exp(—N1/4/2). Therefore the probability that
(rSRW},)1>0 returns more than N3/4/2 times to the origin before time N is bounded
by (1 — N=3/8)N"/2 L oN exp(—N/4/2) < exp(—N/8/4), for all large N. Using
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THE TRACE-REINFORCED ANTS PROCESS DOES NOT FIND SHORTEST PATHS 17

the Borel-Cantelli lemma, we deduce that, almost surely for all large N, (rSRWy)x>0
returns at most N3/4 /2 times to the origin before time N. This implies that, almost
surely for all large n,

L Ny,

(4.7) L(n) < 5

On the other hand, during each excursion of the process (Zx)r>o out of zero, the
process (®(k))k>0 increases by at least half the number of jumps made by (Zx)k>0
during this excursion. It follows that N(n) < 2®(n), for all n > 0, and together
with (4.6) and (4.7), this concludes the proof of (4.5), and thus of point (2).

(3) Let w € %, and let ®(t) = (P1(t), Pa(t), P3(t), Pa(t)) be the solution of
y = F(y) started at w. We need to prove that ®(t) — (1,1/3,1/3,0).

08}

0.6

4 4 e o 4 A A o o a—
4 s & w a a A e o —a—
R N ol ol =l el e
s s A s a A A A o e ——
f A A & a4 o o o — —a—
4 4 e e e 4 o o ———

Ve m w w me e— e— ———
R OWM WM W W we e e

» L B T T

L e T T T

Ficure 5. The vector field F(w) on & N {w; = 1} in the cone case.

For all w € %, we have

ws (wo + 2w
FZ(w): 2( 2 3) 2 — Wa,
(14 we + ws)(wa + ws) — w3
U)3(2’LU2—|—1U3)

(1 + we + ws3)(we + w3) — w3

and F3(w) =

— ws.

Note that Fy(w) = 0 if and only if wy =0 or

wy + 2ws = (1 4wy + w3)(wa + w3) — w3 <= wz = w3 + 2waws.
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8 D. Krous, C. MaLLer & B. Sciiarira

Similarly, F3(w) = 0 if and only if ws = 0 or wy = w3 + 2wows. Thus, for all
w e &N{w =1}, F(w) =0 if and only if wy = ws = 0 or wews # 0 and

Wy = w% + 2wows Wy = w% + 2wows 1 = 3wy

{’LU3 :w§+2w2w3 {wg—w2 :wg —w§ {wg = W2
— —

ie.,, wy = w3z = 1/3. Thus the only zeros of F on & N {w; = 1} are (1,0,0,0)
and (1,1/3,1/3,0). Similar calculations show that Fh(w) > 0 if and only if
we < w3 /(1 —2ws3), and F3(w) > 0 if and only if w3 < w3 /(1 — 2w,). In Figure 5,
we plot the vector field (Fa(1, we,ws,0), F5(1,ws,ws,0)) with wy on the horizontal
axis and ws on the vertical axis. The blue curve is where F5 = 0, the purple curve
where F3 = 0. Note that [0,1]? \ ({wz = w3 /(1 — 2wz)} U {ws = w3 /(1 — 2w3)}) has
four connected components: on the bottom-left one, F5, F3 > 0, on the top-right one,
Fy, F3 < 0, on the bottom right one, F, < 0 while F3 > 0, and, finally, on the top-left
one, Fy > 0 while F3 < 0.

Thus, any solution of the ODE started in % converges to (1,1/3,1/3,0), as claimed.

(4) Finally, we prove that W(n) — (1,1/3,1/3,0) almost surely as n — +o0.
For this we apply Corollary 2.6: in Steps (1) and (2), we have shown that
lim,, 4 oo /V[71 (n) = 1 and liminf, 4 Wg(n) A Wg(n) > 0. This implies that
almost surely the limiting set L(W') of the process (ﬁ\/(n))n>o is contained in % .
Then (3) and Corollary 2.6 imply that L(W') = {(1,1/3,1/3,0)}, as wanted.

5. Two PARALLEL PATHS: PROOF OF THEOREM 1.5

Recall that, in Theorem 1.5, the graph &4 = (V, E) is the (p + ¢)-path graph of
Figure 2. In this section, we assume that min(p, ¢) > 2. We let a4, ..., a, denote the p
edges on one of the paths from N to F' (ordered from N to F, i.e., a; links to N
while a, links to F'), and by, ..., b, denote the edges on the other path from N to F
(also ordered from N to F).

Finally, for all e € E = {a1,...,ap,b1,...,0q}, we let We(n) denote the weight of
edge e at time n and set W(n) = (Wq, (n),..., W, (n), Wy, (n),..., Wy, (n)), for all
n > 0.

The proof of Theorem 1.5 uses the ODE method, as for the cone graph in the
previous section. We roughly follow the same steps here, but there are some important
differences. We first show in Section 5.1 that almost surely the limiting set L(W') of
the sequence of normalised weights ﬁ\/(n) := W(n)/(n+1), is contained in (0, 1]P+4.
Then, in Section 5.2, we give an explicit expression for the vector field F' appearing in
the stochastic approximation satisfied by (‘//‘\/(n))n>o. In this section, we also define a
sequence of compact sets (K, ), >0 in [0, 1]P72, which we prove to be decreasing. Then
in Section 5.3, we show that L(W') C K,,, for all n > 0, and finally in Section 5.4, we
prove that the intersection of the K,,’s is reduced to a single point, which is precisely
the limiting point arising in the statement of Theorem 1.5.
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5.1. PROOF THAT NONE OF THE EDGES HAS A LIMITING WEIGHT EQUAL TO ZERO
We prove here the following result.
Prorosition 5.1. Let p and q be integers such that min(p,q) > 2. If 4 = (V,E) is

the (p, q)-path graph, then there exists a constant ¢, q > 0, such that almost surely for
alle e E,

W,
lim inf () > Cpog-
n—-4o0o n
This proposition is proved by induction on k for ay, € {a1,...,a,} and by induction
on £ for by € {b1,...,b,}. We prove the base case separately in the following lemma.

Lemma 5.2, — In the (p + q)-path graph, if ¢ = 2, then there exists ¢ > 0, such that
almost surely, liminf,, o Wy, (n)/n = ¢, and by symmetry, if p > 2, then almost
surely, iminf,,_, o Wp, (n)/n > c.

Proof. — For all n > 0, we have
P(Wa,(n+1) = Wa,(n) + 1| W(n)) =P(a; € y(n+1) | W(n))

(5.1) _ Wa, (n)
Wa, (n) +1/(301, W, (n)=1)

Note that, by definition of the model, for all n > 0, we have either a, € y(n + 1) or
by € v(n + 1) but not both. This implies that, for all n > 0,

W, (n) + Wy, (n) =n + 2.

By definition of the model again, we have that a, € y(n +1) = ap,—1 € y(n +1) =
o= a €v(n+l),and by € y(n+1) = bg—1 € y(n+1) = - = by €y(n+1),
which imply that, for all n > 0,

Wap(n) < Wap—l(n) g o g Wal (n) g n+ 17
and Wy, (n) < Wy, (n) <--- < Wy, (n) <n+1.
Thus, (5.1) implies that
Wa, (n) Z(n)

P(Wa, (n+1) = Wa,(n) + 1| W(n)) >

Wa, () + 1/q(n+ )71~ Z(n) +1/q’
where we have set Z(n) := Wy, (n)/(n + 1), for all n > 0. This implies that
(Wa, (n))n>0 stochastically dominates a G-urn process, where, for all z € [0, 1],

G(z) =

z
z2+1/q

Note that G(z) = z if and only if z = 0 or z = 1—1/¢ (which is positive because ¢ > 2,
by assumption); furthermore, one can check that G is C* and G’(0) = ¢ > 1, implying
that the normalised G-urn process converges almost surely to ¢ := 1 —1/¢ > 0, when
n — +o00, by Proposition 2.1. This concludes the proof. |
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Proof'of Proposition 5.1. We prove the result by induction on k € {1,...,p}. The
case k = 1 follows from Lemma 5.2. Assume the result holds true for some k < p, i.e.,
there exists ¢ € (0,1/2) such that almost surely liminf W,, (n)/n > c. Let us define
the events
E,, :={W,,.(n) > cn, Vn = m} (m>1).

Then, J,,, Em holds almost surely.

Let 7, be the time when edge ay, is reinforced for the n-th time (so by definition
W, (mn) = n+ 1). Note that by definition 7,, > n for all n > 1. Thus, for all n > m,
on E,,, using that W,, _,(7,) <7, + 1 and 7, < (n+ 1)/c, one has

Wa, () > c(n+1) > /2.
Wa (Tn) + Way_y(10) ~ c(n+1)+n+1+c

It follows that, almost surely on the event F,,, if the weight of ay41 is zero, then, for

all n > m, the 7,-th ant makes at least a geometric number of crossings of edge ay,
with success probability v := 1—¢/2, before jumping across edge ax_1. Consequently,
on E,,, and for n > m, the probability to reinforce edge a4 at time 7, is at least
1 — (1 = p(n))*n, where (X,,)n>0 is a sequence of i.i.d. geometric random variables
with parameter v, and

p(n) - Wak+1 (T’ﬂ)
Wapir (Tn) + 1+ 1
Thus, letting uy1(n) = We,,, (7n)/(n + 1), we find

E[Wak+1(7—n+1) - Wak+1(7—n) | yTn] = ]E[l - (1- p(n))Xn | Wak+1(7—n)]

4 v(1 —p(n))
1= (1=v)(1-p(n))
p(n) _ ukt(n)

1= =v)A=p(n)  wea(n) + v
with (#;)i>0 the natural filtration of the process, and where we used that EzXn =
ve/(1 — (1 —v)z) for all x € (0,1). It follows that on the event E,,, the process
(Waysr (Tn))n=m stochastically dominates a G-urn process (starting from Wy, . (7)),
with G(z) := x/(z + v). Since G(x) > z for all x € (0,¢/2), it follows from Proposi-
tion 2.1 that almost surely lim inf ui41(n) > ¢/2. We deduce the induction step, using
that by hypothesis, limsup7,/n < 1/c. (|

52 Tur sTocnastic ALGORITHM AND A SEQUENCE OF DECREASING COMPACT SUBSPACES.

Recall that we set ﬁ\/(n) = W(n)/(n+ 1), for all n > 0. Note also that, by defi-
nition of the model, for all n > 0,

W(n) € &

={we & wy, =1—wy, wy, <wp,_, <+ KWy, Wa, < Wq,_; <+ < Wy, },

p—1

with & as defined in (2.5). Moreover, for all n > 0, we have

_ _ 1 _

Wn+1)=W(n)+-—— (F(W(n)) + &),
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with &,4+1 some martingale difference and with F' as defined in (2.4). More specifically
the coordinates of F' can be computed explicitly here, and are given by, for all k£ and /¢
such that 1 <k <pand 1< ¥ <gq, forall we &,

S (w)

- ok S (w)
S (w) + Sh(w)

(5.2) Fa,(w) ~ Si(w) + Sg(w)

—w,, and Fp,(w) — Wp,,
where we have defined, for any w € [0,1]%, m € {a,b}, and s an integer such that

1<s<pifm=a,and 1 <s<qif m =1,

m 1
(5.3) ST (w) S 1o,
Note that, for all k such that 1 < k < p, S (w) = 0 if and only if w,, = 0 for some ¢
such that 1 < ¢ < k, and for all £ such that 1 < £ < g, Sé’(w) = 0 if and only if
wp;, = 0 for some ¢ such that 1 < i < £.

To prove Theorem 1.5, we use the ODE method and thus start by studying the
solutions of the equation ¥ = F(y). To do so, we define a sequence (K,)n,>o of
decreasing compact subsets of & such that (A) for all n > 0, L(W) C K,,, and (B)
the intersection of all these compacts is {w™}, where w;, = a® and wy, = B¢, with
(a, B) as in Theorem 1.5. We prove (A) in Section (5.3), and (B) in Section 5.4. In the
rest of this section, we define the sequence (K,,),>0 and show that it is decreasing,
i.e., that K, 11 C K, for all n > 0. For this we need some additional notation. For all
u,v € &', we let

Sa(u) Sp(u)
Hak (U,U) = Sg(u) T 573(’0) and Hbz(u,v) = Sg(u) T Sg(’l))’
for all k£ and ¢ such that 1 < k < p and 1 < ¢ < ¢q. Recall further that by Proposi-
tion 5.1, there exists a constant ¢, 4 > 0, such that almost surely

(5.4) LW) C{w: we > ¢pyq, forall e € E}.

We also define w* as the limiting vector appearing in the statement of Theorem 1.5.
More precisely, we have

(5.5) wi =a" and w; =g,

a

for all £ and ¢ such that 1 < k < p, 1 < ¢ < ¢, with («,8) the unique solution of
the system (1.1) in (0, 1)? (existence and uniqueness of the solution for this system of
equations will be proved later, at the end Section 5.4). We then define u(®) and v(©) by

ul) = uf, uy, = ug, and v = v =1,
for all k£ and ¢ such that 1 < k < p, 1 </ < ¢, with ug chosen arbitrarily so that
0 <wp <min(l —1/q,,B,¢cpq).

The fact that we choose ug < min(a, 8) entails in particular

0<ul <w), foralleeE.

e’

J.IE P — M., ooo, tome 1



(Hok?

29, D. Krous, C. MaLLer & B. Sciiarira

Next we define inductively two sequences (©™),>0 and (v™)),>0, by
u ) = Hu™, v™), and v = H(v™,u™).

Finally, we define the sequence (K,,)n>0 by

K, ={we&: ul” <w, <o, foralle e B} (Vn >0).
We prove now that this sequence is decreasing, that is, K, 11 C K, for all n > 0.
More precisely, we prove that, for all n > 0,
(5.6) u™ < H(u(n), v(n)) =y,
(5.7) v > H(v™, u™) =0,

We reason by induction on n: first note that, for all £ and ¢ such thatl 1 < &k < P
and 1 </ < g,

1—u
St(u) = k Z and Sg(v“”) ==
01— Ug
which implies, using that 1 —uy > 1/g,
k k
ug (1 — U,
ugk) = H,, (u®, ,U(o)) _ ol 0) 0/q _ ulg _ ut(zo;:’

>
ug(l—uo) + (1 —uf)/q = uf/qg+ (1 —uf)/q
and
véi) =H, (v, u®)<1= vé“lj.

Similarly, for all £ such that 1 < ¢ < g,

(1) (0)

(1) (0)
ub[ > 'I.Lbz

and v, < Uy, -

We now proceed to the induction step and assume that, for some n > 1 u{” > u{*=V
and v{" < v{*~ for all e € E. We then simply observe that, for all e € E,

u(en+1) — He(u(n)’,v(n)) > He(u(nfl)v,v(nfl)) — u(en)’

and

00 = Ho (o™, u™) < Ho (0™, u" ") = o™,
which proves the induction step, and thus concludes the proofs of (5.6) and (5.7).
In other words we just have proved that (K, ),>0 is indeed a sequence of decreas-
ing sets.

5.3. Proor tnar L(W) C K,,, ror aLL n > 0. — We use an induction argument.
Note first that by (5.4) and the definition of Ky, one has almost surely L(W') C K,
using also the hypothesis ug < ¢, 4. We now prove the induction step, i.e., that almost
surely, if L(W') C K,,, for some n > 0, then also L(W) C K, ;.

To do so, we first look at Fy, (w) for 1 < k < p and w such that v, < w, < v for
all e € E: we have

Stw) S

Si(w) + Spw) " 7 Si(w) + S(v)

Thus, if u, < we < v, for all e € E and

Fak (w) = — Wa, = Hak (u= ’U) — Waqy, -

We, < Hg, (u,v),
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then Fy, (w) > 0. Also, for all k such that 1 < k < p, if v < we < v, for all e € B
and
We, > Hgy, (v,u),
then Fy,, (w) < 0. The same argument leads to
wp, < Hp, (u,v) = F,(w) >0,
wp, > Hp, (v,u) = F,(w) <0,

for all £ such thatl < ¢ < ¢, and if u, < w, < v, for all e € E. These facts imply
that, for all n > 0, and for any w € K, the flow of the ODE y = F(y) started
at w converges to K,;1. Therefore if we already know that L(W) C K, then it
means that L(W) N K,,41 is an attractor of the flow restricted to L(W'). Thus by
Proposition 2.5, we deduce that L(W) C K, ;.

Altogether this proves that L(W) is almost surely included in the intersection of
all the K,,’s.

5.4. IDENTIFICATION OF THE INTERSECTION OF THE K,’s. — We show here that the in-
tersection of the K,’s is reduced to the single point w*, which appears as the limiting
vector in the statement of Theorem 1.5 (see also (5.5) above).

Since the sequences (u{™) and (v{") are all monotonic and bounded, they all con-
verge. We let u* = lim,, 4o u™ and v* = lim,,_, ; o, ™. Because H is continuous
on &', we have

u* = H(u*,v*), and v* = H(v*,u").
The equation u* = H(u*,v*) can be written as, for all k and ¢ such that 1 < k < p,
1< <yq,
v Sw) Spw)
S (ur) + Sh(v¥) Sh(u*) + Sg(v*)
Using that S{(u*) = uj, and S}(u*) = u; , this implies that

and  uy, =

(5.8) up =1- Sg(v*) =a and wy =1-S5(v")=:p4,
and, for all k£ and ¢ such that 2 <k <p, 2 < <q,
a * b *
oo S st

o Sp(ut) +1—ug Sp(u) +1—uj,

1
We first show by induction that this implies u;, = af and up, = B¢ for all k and ¢
such that 1 < k < p and 1 < £ < ¢. Indeed, if for some k such thatl? 1 < k& < p, and
all 7 such that 1 <i <k, u;‘; = ai, then

-1
1 1— k—1
* (uzk + akilozl_a)) 1
Har = 1 | 1—ak—1 -1 - 1 1 1 1—ak-1 ’
(uiik +m) +1l-a +(1-a) (u;k +ak—1(1—a)>
and a straightforward calculation yields that u;, = aF, as claimed. The proof of

uj = B¢ for all £ such that 1 < ¢ < ¢ is similar.
i
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Since (u*,v*) also satisfies the symmetric equation v* = H(v*,u*), we get that

a

(5.9) v, =1-— Sé’(u*) =@ and vy =1-S9(u*)=:p,

and v;, = a”, vy, = Be for all k and ¢ such that® 1 < k < pand 1 < ¢ < ¢ Using
this into (5.8), and using the definition of S, and S, (see (5.3)), we get

1 1
and f=1-

771 T
i-1 B =1

Similarly, using the fact that u; = a® and up, = B¢ for all k and ¢ such that(¥
1<k<pand1</{<q, together with Equation (5.9), we get

a=1-

1 1
a=1- d B=1
“ i B § & o
Note that
1 B'(1—
(5.10) azl—iiﬂ.@l—a:ﬂ( qﬁ),
i1 B 1-5
and, similarly,
_ 1 -~ aP(l—a)
5.11 =1—- ——— 1-g=——"—=
(5.11) B T am B=—T—073

For all integer p > 2 and z € [0, 1], we let

fp(x)zlf%zl M

L jat o 1—ar
With this notation, we have o = f,(3) and 8 = f,(«) (and similarly for @ and 3),
and thus
a=f,ofp(a) and @@= f;o fp(@).

We now show that f,, is a contraction for all p > 2, implying that f, o f; is also a
contraction, and thus admits a unique fixed point, which implies & = @ (and thus

B=5).

Levva 5.3, — For all p > 2, the function f,: [0,1] — R defined by

2P (1 —x)
2)i=1-
i) -
s a contraction.
Proof. — First note that f, can be extended to a continuous function on [0, 1] by

setting f,(1) =1 — 1/p. To prove that f, is a contraction, we show that there exists
¢ > 0 such that, for all x € [0,1], |f,(z)| < 1 — . First note that, for all z € [0, 1),

@b aPt — (p+ D +p)
(1 —ar)?

fol@) =
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For all € > 0, we have that

@) <1l-—¢ 2 — (p+DaP +pxP t <1—e—2(1—e)aP 4 (1 — g)z?
= 0<1—e—paP t 4 (p—1+2e)aP — ez’ =: ().

To understand ¢(z) on [0, 1], we look at its derivative: for all = € [0, 1],

¢'(@) = —p(p — D)2~ + p(p — 1 +2e)aP ! — 2pea® ™! = 2P "24(a),
where

Y(x) = —p(p—1) +p(p — 1+ 2e)z — 2pea®P™.
Note that ¢'(z) = p(p — 1 + 2¢) — 2p(p + 1)exP is non-negative if and only if
o < p(p—1+25).
2p(p +1)e

For all € small enough, the right-hand side of this inequality is larger than one (because
p > 2), implying that for such €, ¢’ (x) is non-negative and thus v is non-decreasing on
[0,1]. And thus, for all z € [0,1], ¥(z) < ¥(1) = 0. Therefore, since ¢’ (x) = 2P~ 2)(x),
we get that ¢'(z) < 0 for all z € [0,1], and thus ¢ is non-increasing on [0, 1]. This
implies that ¢(z) < ¢(0) =1 — ¢, and thus concludes the proof. O

We have thus proved that a = @ and 3 = 3, where we recall that (o, 3) is the
unique solution of a = f,(3) and B = f,(a) in (0,1)?, i.e.,

woq_ 808
(5.12) a,}(f_ﬁ‘;)
p=1-2— %

1—a?

It only remains to show that («, 8) is also a solution of (1.1), and that it is the unique
solution of (1.1) on (0,1)2. Since (o, B) is a solution of (5.12), we get that

(1-a)1-p1)=p1(1-p) = 1-a=p12-a-p),
and, similarly,

1-p)1l-a?)=a’(l—a) = 1-F=a’2—-a-p).
This implies

1-8 1-«
2—a—f3= or = Ga
and thus («, 8) satisfies the second equation of (1.1). Furthermore,
1-p 1—«a
p 4 — = 1
o"+f 2—a:B+2—a—5 ’

implying that («, 8) is solution of (1.1).

To prove that (1.1) has a unique solution on (0,1)2, we show that any solution
of (1.1) on (0,1)? is also a solution of (5.12) (since the latter has a unique solution
on (0,1)2, this concludes the proof). Indeed, if (a, 3) € (0,1)? is a solution of (1.1),
then

pr1—-p) _pi(1-p)

1— = =
@ aP 1—pa "’
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which implies the first equation of (5.12). The second equation of (5.12) can obtained
similarly. Therefore, if (o, 8) is a solution of (1.1), then it is also a solution of (5.12),
which concludes the proof of Theorem 1.5.

6. THE LOZENGE: PROOF OF ProrosiTiON 1.6

First recall that, by Proposition 2.7 and the specificities of the lozenge graph, if we
let W(n)=W(n)/(n+2) (¥n > 0), then, for all n > 0, W(n) € &', where

& = {w = (w1, wa, w3, wy, ws) € &

wy +ws =1, wy +wy =1, wy < wy + ws, ws < ws + wy

with & as defined in (2.5). The first condition (ws + w; = 1) is satisfied by W(n)
because, by definition of the model, each ant reinforces either edge 2 or edge 5 but
not both. The second condition (wy + w4 > 1) is redundant with the fact that w € &
(it is the same condition as m,(N) > 1). The third condition (wgy < wi + ws) holds
because each ant that reinforces edge 2 also reinforces either edge 1 or edge 3. The
fourth condition is the symmetric of the third one.

Remark. As in Section 4, it is convenient to define ﬁ\/(n) as W(n)/(n+2) rather
than as W (n)/(n + 1). This is because with the former definition, we have Wa(n) +
Ws (n) =1 for all n > 0, which is not true with the latter definition (although it holds
asymptotically as n — +00).

Moreover, for all n > 0,

—~ —~ 1 —~
with §,41 some martingale difference, and where F;(w) = p;(w) — w;, with p;(w) =
P(e; € Ynt1 | W(n) = w) (note that this probability does not depend on n).

The first step in the proof of Proposition 1.6 is to compute these probabilities p; (w),
for 1 < @ < 5. A straightforward calculation, which we carry out in the appendix,
shows that for all w € &”,

w1 Wy + w3
w1 Wy wztwatws \ witws w1 +wa+ws
Y4 (w) ~ + : w2 w2
w1 + Wy wyt+wyg 1 _— i 3

(witws)(wstwatws) (w1 twatws)(wz+wstws)
wa (w1 (w3 + wy + ws) + wawy)

(w1 + w4)(w3 + wows + %)

p2(w) =

w1 Waq
ws (w1+w2+w3 + w3+w4+ws)
p3(’w> = ) .

w2 w2
w1 + wy — ( 1 4

w1 twz+ws w3+wa+ws

By symmetry, we also have

pa(w) = p1(wyg, ws, w3, wi,w2) and ps(w) = pa(ws, ws, w3, w1, ws).
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Furthermore, since, by definition of the model, each ant reinforces either edge 2, or
edge 5, but not both, we have ps(w) = 1 — ps(w). Note also that, for all w € &7,

waws (—— — wy)
6.2 Fy(w) = po(w) — wy = w1 twa ,
(6.2) 2(w) = pa(w) — w2 ws T waws + 2
and
wz(a + B)

6.3 w) = {
(63) ps(w) a(ws +wz) + B(ws + ws)
with
(6.4) o= L, and b= L,

w1 + we + ws w3 + w4 + Ws

where by convention we set a = 0 when w; = 0, and similarly 8 = 0, when w4 = 0.
The second step is the following fact.

Lemma 6.1. We have almost surely iminf,,_, . Wi(n)/n > 0, and by symmetry
liminf, o Wy(n)/n > 0 almost surely.

Proof. — Note that for all w € &,

pl(w)> 1 w3 1
wy  wy+ws wyp+wy (wz+wg +ws)(wy +wy) —w?

When w; — 0, we have wy — 1 because 1 — w; < wy < 1 for all w € &’. Using in
addition the fact that ws + w5 < 2 for all w € &', we get that

3
lim inf M > -,
wi—=0  wq 2

and then the result follows from Corollary 2.2. |
We next prove the following result.

LEymvA 6.2. For all w € &', one has

(i) If wa < wi/(wyr +wys), then Fo(w) > 0, and if we > wi/(w1 + ws), then
FQ(U}) < 0.

(ii) If we > wi/(w1 +ws), and 0 < wy < wy, then Fyj(w)wy — Fy(w)w; > 0.
Likewise, if wa < wy /(w1 + wy), and wy < wy < 1, then Fy(w)wys — Fy(w)w; < 0.

Proof. — The first claim follows directly from (6.2). For the second claim, note that
if wy > wy /(w1 4+ wy), then with the notation of (6.4), one has

w1
A1 <
Wy + w11$w4 +wy’
and if in addition wy, < wy, we get
w1 Wy
)\1 < < < A4
Swp Y b ws  wg 2wy

w1y +wyg w1 twy
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since wg > w1 /(w1 + wy) is equivalent to ws < wy/(w1 + wy) (using that for w € &,
ws = 1 —wsy). Then, we get using (6.1), and again Ay > A1, and wy > wy,

Fi(w)wy — Fy(w)w; = p1(w)wy — pa(w)w;

W1W4
w1 + Wy
Wiy 4 W3 Wyq w11 + w3wy
) w1 +wy (witwatws)(watwatws)  witwy (w1 +wa+ws) (w3 +ws+ws) >0
wada wg o wid w§ ’
w1+wq (w1+w2+ws) (w3 +wa+ws) w1+wq (w1+w2+ws) (w3 +wa+ws)

proving the first statement of (ii). The second statement follows from similar argu-
ments. (|

As a corollary we get the following:

Lemma 6.3, — Let t — ®(t) be a solution of the equation §y = F(y), start-
ing from some point w € U = {w € & : wywy # 0}. Then limy, oo ®(t) =
(w*,1/2,1/2,w*,1/2), where w* is the unique solution in [0,1] of the equation
223 + 42% — 22 — 3/2 = 0.

Proof. — We first show that ®(t) converges to the set
H = g,ﬂ {’ZUQ = wl/(wl +w4) = 1/2}
Denote by (®;(t))i=1,... 5 the coordinates of the vector ®(¢), and let

u(t) = $o(t) — %, and o(t) = m _ %
By definition, taking the derivative along the flow, we get
O (1) = By (@(t)), and v'(t) = TLED) (-;4(5?; g&g» 01 (t).

Our aim is to show that h(t) := max(|u(t)|, |v(¢)]) is a Lyapunov function, i.e., that it is
decreasing, for all ¢ smaller than the (possibly infinite) time when it reaches 0, and that
it converges to 0. To see this, first note that if at some time ¢, one has 0 < v(t) < u(t),
then by Lemma 6.2(i), h'(t) = /(t) = Fo(®(¢)) < 0. By symmetry, if u(t) < v(t) <0,
then h/(t) = —u/(t) < 0. Second, note that, if v(t) < 0 < u(t), then by Lemma 6.2, we
have v/(t) < 0 and v'(t) > 0, which entails that & is decreasing in a neighbourhood of ¢
since both its right and left derivatives are negative at this time (it is differentiable
if Ju(t)| # |v(t)]). Symmetrically, the same holds if u(t) < 0 < v(¢). Finally when
u(t) = v(t) # 0, we see that «/(¢t) = 0 while v'(¢) # 0, so that in a neighbourhood
of t, u(t) # v(t), and thus by the previous argument h is again decreasing in a
neighbourhood of ¢. As a consequence, h is decreasing up to the (possibly infinite)
time when it reaches 0, and thus converges. Note also that the previous arguments
show that h has a negative right-derivative at any non-zero value, which implies that
its only possible limit is zero. This indeed implies that ®(¢) converges to the set
H =8 N{wy = wi /(w1 +wy) = 1/2}, as claimed.
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We now prove that ®(t) converges to the set ' := 5 N {ws = 1/2}. Indeed,

observe that for any w € 52,
w3
FBw)= —23
3(w) ws +1/2 w3,

thus F5(w) > 0, if wy < 1/2, and F3(w) < 0if ws > 1/2. Since F3 is continuous and &
is compact, F3 is also positive in a neighbourhood of ##N{w; < 1/2—¢}, and negative
in a neighbourhood of 4 N {ws > 1/2 + ¢}, for any fixed € > 0. Since we also know
that ®(t) converges to .77, it follows that it converges to #N{1/2—e < w3 < 1/2+¢},
for any € > 0. In other words it converges well to J#’, proving the claim.

Finally, note that for any w € 5, one has

w 1 1/2
1+1101 (§ + 1+w1) o — 1 I w1(2—|—w1)

1 w 2 ) 2 -
-2 1101 T (4wr)? 2 2’(1}1 + 6w +3

1
Fl(UJ): +§ 1 1-

N

1+
Then one can check that Fy(w) > 0 if and only if f(w;) > 0 where, for all € R,
fx) = =223 — 42% + 22 + g

Note that f is a polynomial of degree 3, it thus has at most three zeros in R. One
can check that f’ is positive on ((—2 —v/7)/3, (=2 ++/7)/3) and non-positive on the
complement of this set. Thus, on [0, 1], f is non-decreasing on [0, (=2 4 v/7)/3] and
non-increasing on [(—2 + v/7)/3,1]. Since f(0) = 3/2 > 0 and f(1) = —5/2, we get
that there exists a unique solution to f(x) =0 on [0, 1], which we call w*. Moreover,
f(z) > 0 for all z € [0,w*) and f(z) < 0 for all z € (w*,1]. The conclusion follows,
using again continuity of F; and compactness of 5, as above. |

The proof of Proposition 1.6 now follows from Corollary 2.6. Indeed, by Lemma 6.1,
the limiting set L(W) of the stochastic approximation (W (n)), ¢ is contained in the
set %, which was defined in Lemma 6.3. Then Lemma 6.3 and Corollary 2.6 imply

o~

that L(W) = {(w*,1/2,1/2,w*,1/2)}, as wanted.

AprPENDIX. CALCULATING F' IN THE LOZENGE CASE: PROOF OF (6.1)

We use the same notation as in Section 6. To prove (6.1), we use the electrical
networks method (see, e.g. [LL10]). We start by calculating ps(w): this is the prob-
ability that a random walker on the graph with weights w = (w;)1<igs, starting
from N, crosses edge 2 before crossing edge 5. This is equal to the probability that
a walker starting from N reaches Fy before F5 on the weighted graph of Figure 6.
We decompose pa(w) according to the first step of the walker:

w1

A.l = ——m e —
(A.1) p2(w) P—— p22(’w)+w1+w4

Wy
- pas(w),

where pos(w) (resp. pas(w)) denotes the probability to reach Fy before Fy starting
from P» (resp. Ps) on the graph of Figure 6. By classical formulas for random walks
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on weighted graphs (see, e.g. [LL10]),

o %Pz F> (’I.U)

B (gP2F2 (w) + (gP2F5 (w) ,

where €xy (w) is the effective conductance between vertices X and Y when the edge
weights are given by w. By definition of effective conductances, the effective conduc-
tance of a single edge is its weight. Thus, €p,r, = ws. Moreover, the conductance of
two edges in parallel is the sum of their effective conductances, the effective conduc-

P22 (w)

tance of two edges in series is the inverse of the sum of the inverses of their effective
conductances. Using these formulas, we get (see Figure 6 for details)

N
w1y Wy Wy Wy
w3 + wytw.
w9 Ws wo 1T Wy
IZI N R T B P B

Ficure 6. Notation for the proof of (6.1), and calculation of paa(w), the
probability of reaching F> before F5 starting from Ps.

(w3 4+ 2L )y

. 3 w1 +wy
%szFz (’LU) - w3 + ws + wiwg
3 5 w1 +wy
We thus get
. w1 wy
par(aw) = we = walus + s + )
wywy w1 Wy W1 Wy
Wa + (w3+W1+1:U4 2}“’5 w2 (ZU3 + Ws + 1111+w4) + (U)g + w1 +wq )U)5
w3+w5+w11+u‘}4
WiwWq

_ w2 (u}3 + Ws + w1+w4)
- wiwg

w3 + Wa2Ws + w1 +wa

because wy + ws = 1 for all w € &’. By symmetry,

w5(w2 + w3 + M) _ (1 —w5)(w3 4 Mt )

w1 +wyg w1 +wy
p25(w) = 1 - W1 W4 - Wi Wy
W3 W5 ¥y Wa WS gy
W1 W4q
w2 (w3 + w1+w4)
- wiwg
w3 + waws +
Thus, (A.1) becomes
W1 Wy wWiWq
» (’LU) Y w1 L) (w3 + Ws + w1+w4) + w4 w2 (w3 + w1+w4)
2 y ’ wiw : w1 W
wy +wy w3+ waws + wy +wy w3+ waws + AT

wa (w1 (w3 + wg + ws) + wzwy)

w1 W I
ws + waws +

as claimed.
We now calculate p3(w): we decompose on the first step of the random walker

to get
w1

A2 __wm L v
(A.2) p3(w) P p3z(w) P

Wy
: p35(’w)7
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where psa(w) (resp. pss(w)) is the probability to cross edge 3 before reaching F'
starting from Py (resp. Ps), when the edge weights are given by w. Decomposing over
the first weight of a random walker starting at P», we get

(w) = v (w) + w0
P32 _w1+w2+w3 p3 w1+ wa + w3’
and similarly for pss(w). Using this in (A.2), we get
w1 ( w1 w3 )

w) = . w)+ ——

p3(w) o s\ ws p3(w) —
w1 Wy w
( )+ =Y,
w1 + wye \wz + wyg + ws w3 + wy + ws
which implies
2 2

(w1 +wa)(wr +wo +ws3) (w1 + wa)(ws + wa + ws)
o w3 ( w1 n Wy )
Cwy Fwg \wy Fwy +wz wg +wy +ws /]

This indeed gives the formula for ps(w) announced in (6.1).
Finally, we show how to calculate p;(w): again, we decompose according to the
first step of the walker:
w1y Wy

A. = .
(A3) prw) = e (),

where p15(w) is the probability to cross edge 1 before reaching F' starting from Ps.
Decomposing according to the first step again, we get
Wy w3

w)= ————" w)+ —m - w
p1s(w) P p1(w) w0 wa T p12(w)
Wy wq Wy w3
g = (o )T )
(A4) o o T o ot wi p15(w) A pi2(w)

where p1a(w) is the probability to cross edge 1 before reaching F' starting from Ps.
We have used (A.3) in the second equality. Finally, we have

wq w3
A5 w) = + . w).
( ) p12( ) w1 + wo + ws w1y + wo + w3 p15( )

Using (A.5) in (A.4) we get

w1 . wyq wi . w3
witwyg  wztwatws witwetws  wztwitws
2 2
w3 w3

T (witwy)(wstwatws)  (witwatws)(wstwstws)

p15(w) =

)

and we can then use in (A.3) to get the formula for p; (w) announced in (6.1).
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