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Abstract We study the boundary of the range of simple random walk on Z
d in the

transient case d ≥ 3.We show that volumes of the range and its boundary differmainly
by a martingale. As a consequence, we obtain an upper bound on the variance of order
n log n in dimension three. We also establish a Central Limit Theorem in dimension
four and larger.

Mathematics Subject Classification 60F05 · 60G50

1 Introduction

Let (Sn, n ≥ 0) be a simple random walk on Z
d . Its range Rn = {S0, . . . , Sn} is

a familiar object of Probability Theory since Dvoretzky and Erdös’ influential paper
[6]. The object of interest in this paper is the boundary of the range

∂Rn = {x ∈ Rn : there exists y ∼ x with y /∈ Rn}, (1.1)

where x ∼ y means that x and y are at (graph) distance one. Our interest was triggered
by a recent paper of Berestycki and Yadin [3] which proposes a model of hydrophobic
polymer in an aqueous solvent, consisting of tilting the law of a simple random walk
by exp(−β|∂Rn|). One interprets the range as the space occupied by the polymer,
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and its complement as the space occupied by the solvent. Hydrophobic means that the
monomers dislike the solvent, and the polymer tries to minimize the boundary of the
range. The Gibbs’ weight tends to minimize contacts between the monomers and the
solvent, and the steric effect has been forgotten to make the model mathematically
tractable. Besides its physical appeal, the model gives a central role to the boundary
of the range, an object which remained mainly in the shadow until recently. To our
knowledge it first appeared in the study of the entropy of the range of a simple random
walk [2], with the conclusion that in dimension two or larger, the entropy of the range
scales like the size of the boundary of the range. Recently, Okada [13] has established
a law of large numbers for the boundary of the range for a transient random walk, and
has obtained bounds on its expectation in dimension two.

Theorem 1.1 (Okada) Consider a simple random walk in dimension d = 2. Then

π2

2
≤ lim

n→∞
E[|∂Rn|]
n/ log2(n)

≤ 2π2, (1.2)

where part of the result is that the limit exists. Moreover, when d ≥ 3, almost surely

lim
n→∞

|∂Rn|
n

= P({z : z ∼ 0} �⊂ R∞ ∪ ˜R∞, H0 = ∞), (1.3)

where R∞ is the range of a random walk in an infinite time horizon, and H0 is the
hitting time of 0, whereas quantities with tilde correspond to those of an independent
copy of the random walk.

The range of a random walk has nice properties: (i) it is an increasing function of
time, (ii) the event that Sk belongs to Rn for k ≤ n is σ(S0, . . . , Sk)-measurable, (iii)
the volume of the range Rn is the union of the collection of sub-ranges {Sk, k ∈ I }
as I runs over a partition of [0, n]. A little thought shows that the boundary of the
range shares none of these properties, making its study more difficult. The thrust of
our study is to show that for a transient random walk, range and boundary of the range
are nonetheless correlated objects. Indeed, we present two ways to appreciate their
similar nature. On one hand the sizes of the boundary of the range and some range-like
sets defined below (the Rn,V ) differ mainly by a martingale. On the other hand, we
show that the boundary of the range, as the range itself, can be analyzed through a
dyadic decomposition of the path. To make the first statement precise, we need more
notation. Let V0 = {z : z ∼ 0}, be the neighbors of the origin, and for any nonempty
subset V of V0, letRn,V be the set of sites of Z

d whose first visit occurs at some time
k ≤ n, and such that (Sk + V0) ∩ Rc

k−1 = Sk + V . In particular, Rn,V behaves like
the range in the sense that properties (i)–(ii) listed above do hold, and as we will see
below, their variance can be bounded using the same kind of techniques as for the
range.

Note also that Rn is the disjoint union of the Rn,V , with V subset of V0. We are
now ready for our first observation.
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Proposition 1.2 There is amartingale (Mn, n ∈ N), adapted to the standard filtration
such that for any positive integer n,

|∂Rn| =
∑

V⊂V0

ρV |Rn−1,V | + Mn + En, (1.4)

with ρ∅ = 0 and for any non-empty V in V0

ρV = P(V �⊂ R∞) and E

(

E2
n

)

=

⎧

⎪

⎨

⎪

⎩

O(n) if d = 3

O(log3(n)) if d = 4

O(1) if d ≥ 5.

(1.5)

Remark 1.3 The decomposition (1.4) is simply Doob’s decomposition of the adapted
process |∂Rn|−En , as we see more precisely in Sect. 3. The key observation however
is that the increasing process (in Doob’s decomposition) behaves like the range.

Jain and Pruitt [9] have established a Central Limit Theorem for the range in dimen-
sion three with a variance scaling like n log n. Proposition 1.2 makes us expect that
the boundary of the range has a similar behavior. Indeed, we establish the following
estimate on the mean square of the martingale. This estimate is delicate, uses precise
Green’s function asymptotics, and the symmetry of the walk. It is our main technical
contribution.

Proposition 1.4 There are positive constants {Cd , d ≥ 3}, such that

Var (Mn) ≤
{

C3 n log n if d = 3

Cd n if d ≥ 4.

Also, following the approach of Jain and Pruitt [9], we establish the following estimate
on the range-like object Rn,V .

Proposition 1.5 Assume that d = 3, and let V be a nonempty subset of V0. There is
a positive constant C, such that

Var (|Rn,V |) ≤ C n log n. (1.6)

Then, a useful corollary of Propositions 1.2, 1.4 and 1.5 is the corresponding bound
for the variance of the boundary of the range in dimension 3.

Theorem 1.6 Assume that d = 3. Then, there is a positive constant C, such that

Var (|∂Rn|) ≤ C n log n. (1.7)

Remark 1.7 Using the approach of Jain and Pruitt [9], it is not clear how to obtain a
Central Limit Theorem forRn,V (see Remark 5.5 of the Appendix).
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Now the boundary of the range has a decomposition similar to the classical LeGall’s
decomposition [11] in terms of intersection of independent ranges. This decomposi-
tion, though simple, requires more notation to be presented. For integers n,m let
R(n, n + m) = {Sk − Sn}n≤k≤n+m , with the shorthand notation Rn = R(0, n), and
note that

R(0, n + m) = R(0, n) ∪ (Sn + R(n, n + m)).

Observe that
←−R (0, n) := −Sn + R(0, n) and R(n, n + m) are independent and that

by the symmetry of the walk
←−R (0, n) (resp.R(n, n+m)) has the same law asR(0, n)

(resp. R(0,m)): it corresponds to the range of a walk seen backward from position
Sn . Finally, note the well known decomposition

|R(0, n + m)| = |R(0, n)| + |R(n, n + m)| − |←−R (0, n) ∩ R(n, n + m)|. (1.8)

Equality (1.8) is the basis of Le Gall’s celebrated paper [11] on the range of recurrent
random walk. It is also a key ingredient in most work on self-intersection of random
walks (see the book of Chen [4], for many references).

To write a relation as useful as (1.8) for the boundary of the range, we introduce
more notation. For � ⊂ Z

d , we denote �+ = � + V 0, with V 0 = V0 ∪ {0}, and we
define its boundary as

∂� = {z ∈ � : ∃y ∈ �c with y ∼ z}.

Now, our simple observation is as follows.

Proposition 1.8 For any integers n,m

0 ≥ |∂R(0, n + m)| − (|∂R(0, n)| + |∂R(n, n + m)|) ≥ −Z(n,m), (1.9)

with

Z(n,m) = |←−R (0, n) ∩ R+(n, n + m)| + |←−R+(0, n) ∩ R(n, n + m)|. (1.10)

We focus now on consequences of this simple decomposition. For d ≥ 3, we define
functions n �→ ψd(n), with the following dimension depending growth

ψ3(n) = √
n, ψ4(n) = log n, and for d > 4, ψd(n) = 1. (1.11)

An essential step for a Central Limit Theorem, is to establish a linear lower bound on
the variance. Our bounds hold in dimension three and larger.

Proposition 1.9 Assume that d ≥ 3. There are positive constants {cd , d ≥ 3}, such
that

Var (|∂Rn|) ≥ cd n. (1.12)
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The idea behind the linear lower bound (1.12) is to show that there is a clock process
whose fluctuations are normal (on a scale square root of the time elapsed), and which
is independent of the boundary of the range process. Thus, typical fluctuations of the
clock process, provoke a time change at constant boundary of the range. Note that in
dimension 3, this technique does not allow to obtain a lower bound of order n log n,
matching our upper bound (see also Remark 5.5 for some additional comment on this).

We now formulate our main Theorem.

Theorem 1.10 When dimension is larger than or equal to three, there are constants
{Cd , d ≥ 3}, such that for any positive integer n

Cdψd(n)

n
≥ E[|∂Rn|]

n
− lim

k→∞
E[|∂Rk |]

k
≥ 0. (1.13)

Assume now that the dimension is four or larger. Then, the limit of Var(|∂Rn|)/n
exists, is positive, and for all n ≥ 1,

∣

∣

∣

∣

Var(|∂Rn|)
n

− lim
k→∞

Var(|∂Rk |)
k

∣

∣

∣

∣

≤ Cd
√
nψd(n)

n
. (1.14)

Moreover, a standard Central Limit Theorem holds for |∂Rn|.
Remark 1.11 We have stated our results for the simple random walk, but they hold,
with similar proofs, for walks with symmetric and finitely supported increments.

Okada obtains also in [13] a large deviation principle for the upper tail (the probability
that the boundary be larger than its mean), and in [14] he studies the most frequently
visited sites of the boundary, and proves results analogous to what is known for the
range.

In a companion paper [1], we obtain large deviations for the lower tail, and provide
applications to phase transition for a properly normalized Berestycki-Yadin’s polymer
model.

The rest of the paper is organized as follows. In Sect. 2, we fix notation, recall
known results on the Green’s function, and prove a result about covering a finite
subset. In Sect. 3, we establish the Martingale decomposition of Proposition 1.2 and
prove Proposition 1.4. We prove Proposition 1.9 in Sect. 4. In Sect. 5, we present the
dyadic decomposition for the boundary of the range and deduce Theorem 1.10, using
Le Gall’s argument. Finally in the Appendix, we prove Proposition 1.5.

2 Notation and prerequisites

For any y, z ∈ Z
d , we denote by ‖z − y‖ the Euclidean norm between y and z, and

by 〈y, z〉 the corresponding scalar product. Then for any r > 0 we denote by B(z, r)
the ball of radius r centered at z:

B(z, r) := {y ∈ Z
d : ‖z − y‖ ≤ r}.
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For x ∈ Z
d , we let Px be the law of the random walk starting from x , and denote its

standard filtration by (Fk, k ≥ 0). For � a subset of Z
d we define the hitting time of

� as

H� := inf{n ≥ 1 : Sn ∈ �},

that we abbreviate in Hx when � is reduced to a single point x . Note that in this
definition we use the convention to consider only times larger than or equal to one. At
some point it will also be convenient to consider a shifted version, so we also define
for k ≥ 0,

H (k)
� := inf{n ≥ k : Sn ∈ �}. (2.1)

We will need bounds on the heat kernel, so let us recall a standard result:

P(Sn = z) ≤ C
1

nd/2 exp(−c‖z‖2/n) for all z and n ≥ 1, (2.2)

for some positive constants c and C (see for instance [7]). Now we recall also the
definition and some basic properties of Green’s function. For u, v ∈ Z

d , the Green’s
function is

G(u, v) = Eu

⎡

⎣

∑

n≥0

1{Sn = v}
⎤

⎦ = Pu[Hv < ∞] · G(0, 0),

and we use extensively the well-known bound (see [10, Theorem 4.3.1]):

G(0, z) = O
(

1

1 + ‖z‖d−2

)

. (2.3)

We also consider Green’s function restricted to a set A ⊂ Z
d , which for u, v ∈ A is

defined by

GA(u, v) = Eu

⎡

⎣

HAc−1
∑

n=0

1{Sn = v}
⎤

⎦ .

We recall that GA is symmetric (see [10, Lemma 4.6.1]):

GA(u, v) = GA(v, u) for all u, v ∈ A,

and that G is also invariant by translation of the coordinates: G(u, v) = G(0, v − u).
Also, for n ≥ 0,

Gn(u, v) = Eu

[

n
∑

k=0

1{Sn = v}
]

. (2.4)
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It is well known (use (2.3) and Theorem 3.6 of [11]) that for ψd defined in (1.11), we
have, for some positive constants {Cd , d ≥ 3}

∑

z∈Zd

G2
n(0, z) ≤ Cd ψd(n). (2.5)

We can now state the main result of this section.

Lemma 2.1 Let � be a fixed finite subset of Z
d , and fix z ∈ �. Then, there is a

constant c(�), such that for any two neighboring sites y ∼ y′,

Py(� ⊂ R∞) − Py′(� ⊂ R∞) = c(�)
〈y′ − y, y − z〉

‖y − z‖d + O
(

1

‖y − z‖d
)

. (2.6)

Moreover,

c(�) = 1

dvd

∑

x∈�

∑

v /∈�

1{v∼x}Pv(H� = ∞) Px (� ⊂ R∞),

where vd denote the volume of the unit ball in R
d .

Proof First, since � is finite, and (2.6) is an asymptotic result, we can always assume
that y and y′ do not belong to �. Now by a first entry decomposition

Py(� ⊂ R∞) =
∑

x∈�

Py(SH� = x, H� < ∞)Px (� ⊂ R∞). (2.7)

Next, fix x ∈ � and transform the harmonic measure into the restricted Green’s
function (see for instance [10, Lemma 6.3.6]):

Py(SH� = x, H� < ∞) = 1

2d

∑

v∈�c, v∼x

G�c (y, v) = 1

2d

∑

v∈�c, v∼x

G�c (v, y).

Note also (see [10, Proposition 4.6.2]) that

G�c (v, y) = G(v, y) − Ev[1{H� < ∞}G(SH�, y)].

Therefore,

Py(SH� = x, H� < ∞) − Py′(SH� = x, H� < ∞)

= 1

2d

∑

v∈�c, v∼x

(G(v, y) − G(v, y′))

− 1

2d

∑

v∈�c, v∼x

Ev[1{H� < ∞}(G(SH�, y) − G(SH�, y′))]. (2.8)
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Now, since � is finite, we have [10, Corollary 4.3.3] the expansion for any z′ ∈ �+
(recall that z is a given site in �),

G(z′, y) − G(z′, y′) = 2

vd

〈y′ − y, y − z〉
‖y − z‖d + O

(

1

‖y − z‖d
)

. (2.9)

Combining (2.7), (2.8) and (2.9) we obtain the result (2.6). ��

3 Martingale decomposition

In this section, we establish Proposition 1.2, as well as Proposition 1.4 dealing with
the variance of the martingale.

3.1 Definition of the martingale and proof of Proposition 1.2

For V nonempty subset of V0 and k ≥ 0, let

Ik,V = 1{Sk /∈ Rk−1 and (Sk + V0) ∩ Rc
k = Sk + V },

and

Jk,V = 1{(Sk + V ) � {S j , j ≥ k}}.

Then for n ≥ 1, define

Jk,n,V = 1{(Sk + V ) � {Sk, . . . , Sn}},

and

∂Rn,V = {Sk : Ik,V Jk,n,V = 1, k ≤ n}. (3.1)

Note that ∂Rn is the disjoint union of the ∂Rn,V , for V non empty subset of V0. Now
instead of looking at

∑

k≤n Ik,V Jk,n,V (which is equal to |∂Rn,V |), we look at

Yn,V =
n−1
∑

k=0

Ik,V Jk,V .

However, since Yn,V is not adapted to Fn , we consider

Xn,V = E[Yn,V | Fn],

and think of Xn,V as a good approximation for |∂Rn,V |. So we define an error term
as

En,V := |∂Rn,V | − Xn,V .

123

Author's personal copy



Boundary of the range of transient random walk

Now the Doob decomposition of the adapted process Xn,V reads as Xn,V = Mn,V +
An,V , with Mn,V a martingale and An,V a predictable process. Since

Xn,V =
n−1
∑

k=0

Ik,VE[Jk,V | Fn],

we have

An,V =
n−1
∑

k=0

Ik,VE[Jk,V | Fk].

Moreover, the Markov property also gives

E[Jk,V | Fk] = E[Jk,V ] = P(V � R∞) = ρV ,

for any k ≥ 0. Therefore,

|∂Rn,V | = Mn,V + ρV |Rn−1,V | + En,V for all V ⊂ V0,

where we defined for m ≥ 0,

Rm,V = {Sk : Ik,V = 1, k ≤ m}.
Summing up Mn,V over nonempty subsets of V0 we obtain another martingale Mn =
∑

V⊂V0 Mn,V , and the error term En =∑V⊂V0 En,V , and since |∂Rn| is also the sum
over nonempty subsets of the |∂Rn,V |, we obtain the first part of Proposition 1.2,
namely Eq. (1.4).

Now we prove (1.5). First note that for any k ≤ n − 1,

∣

∣Jk,n,V − E[Jk,V | Fn]
∣

∣ ≤ PSn (HSk+V0 < ∞) = O
(

1

1 + ‖Sn − Sk‖d−2

)

,

using (2.3) for the last equality. Then by using invariance of thewalk by time inversion,
we get

E[E2
n,V ] = O

⎛

⎝

∑

k,k′≤n

E

[

1

(1 + ‖Sk‖d−2)(1 + ‖Sk′ ‖d−2)

]

⎞

⎠ . (3.2)

Moreover, by using the heat kernel bound (2.2), we arrive at

E

[

1

(1 + ‖Sk‖d−2)2

]

=

⎧

⎪

⎨

⎪

⎩

O(1/k) if d = 3

O((log k)/k2) if d = 4

O(k−d/2) if d ≥ 5.

(3.3)

The desired result follows by using Cauchy–Schwarz.
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3.2 Variance of the martingale

We establish here Proposition 1.4. Let us notice that our proof works for Mn only, and
not for all the Mn,V ’s. If we set for n ≥ 0,

	Mn = Mn+1 − Mn,

then, Proposition 1.4 is a direct consequence of the following result.

E[(	Mn)
2] =
{

O(log n) if d = 3

O(1) if d ≥ 4.
(3.4)

The proof of (3.4) is divided in three steps. The first step brings us to a decomposition
of 	Mn as a finite combination of simpler terms (3.6), plus a rest whose L2-norm we
show is negligible. In the second step, we observe that when we gather together some
terms (3.10), their L2-norm takes a particularly nice form (3.11). Finally in the third
step we use these formula and work on it to get the right bound.

Step 1 In this step, we just use the Markov property to write 	Mn in a nicer way,
up to some error term, which is bounded by a deterministic constant. Before that, we
introduce some more notation. For k ≤ n, set

Ik,n,V = 1{(Sk + V0) ∩ {Sk, . . . , Sn}c = Sk + V }.

TheMarkov property and the translation invariance of the walk show that for all k ≤ n

E[Jk,V | Fn] =
∑

V ′⊂V0

1{V∩V ′ �=∅} Ik,n,V ′ PSn−Sk (V ∩ V ′
� R∞).

Note that Ik,n,V ′ �= Ik,n+1,V ′ implies that Sn+1 and Sk are neighbors. However, the
number of indices k such that Sn+1 and Sk are neighbors and Ik,V = 1 is at most 2d,
since by definition of Ik,V we only count the first visits to neighbors of Sn+1. Therefore
the number of indices k satisfying Ik,V �= 0 and Ik,n,V ′ �= Ik,n+1,V ′ , for some V ′, is
bounded by 2d. As a consequence, by using also that terms in the sum defining Mn,V

are bounded in absolute value by 1, we get

	Mn,V =
n−1
∑

k=0

Ik,V (E[Jk,V | Fn+1] − E[Jk,V | Fn]) + In,VE[Jn,V | Fn+1]

=
n−1
∑

k=0

∑

V ′⊂V0

1{V∩V ′ �=∅} Ik,V {Ik,n+1,V ′PSn+1−Sk (V ∩ V ′
� R∞)

−Ik,n,V ′PSn−Sk (V ∩ V ′
� R∞)} + In,VE[Jn,V | Fn+1]

=
n−1
∑

k=0

∑

V∩V ′ �=∅
Ik,V Ik,n,V ′ {PSn+1−Sk (V ∩ V ′

� R∞)

−PSn−Sk (V ∩ V ′
� R∞)} + rn,V ,
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with |rn,V | ≤ 2d + 1. Summing up over V , we get

	Mn =
n−1
∑

k=0

∑

V∩V ′ �=∅
Ik,V Ik,n,V ′ {PSn+1−Sk (V∩V ′

�R∞)−PSn−Sk (V∩V ′
�R∞)}+rn,

(3.5)
with |rn| ≤ 2d(2d + 1). Lemma 2.1 is designed to deal with the right hand side of
(3.5), with the result that

	Mn =
n−1
∑

k=0

∑

V∩V ′ �=∅
c(V ∩ V ′)Ik,V Ik,n,V ′

〈Sn+1 − Sn, Sn − Sk〉
1 + ‖Sn − Sk‖d + O (Bn) ,

(3.6)

with

Bn =
∑

z∈∂Rn

1

1 + ‖Sn − z‖d . (3.7)

Step 2 The term Bn of (3.7) can be bounded as follows. By using first the invariance
of the law of the walk by time inversion, we can replace the term Sn − z by z. Then
we write

E[B2
n ] = E

⎡

⎢

⎣

⎛

⎝

∑

z∈∂Rn

1

1 + ‖z‖d

⎞

⎠

2
⎤

⎥

⎦

=
∑

z,z′∈Zd

1

(1 + ‖z‖d)(1 + ‖z′‖d) P(z ∈ ∂Rn, z
′ ∈ ∂Rn). (3.8)

Then by assuming for instance that ‖z‖ ≤ ‖z′‖ (and z �= z′), and by using (2.3) we
obtain

P(z ∈ ∂Rn, z
′ ∈ ∂Rn) ≤ P(Hz < ∞, Hz′ < ∞)

≤ 2G(0, z)G(z, z′) = O
(

1

1 + ‖z‖d−2‖z′ − z‖d−2

)

.

(3.9)

Therefore

E[B2
n ] = O

⎛

⎝

∑

1≤‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

⎞

⎠ .
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Next, we divide the last sum into two parts:

∑

1≤‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

=
∑

1≤‖z‖<‖z′‖≤2‖z‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2 +
∑

1≤2‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖d‖z′ − z‖d−2

= O
⎛

⎝

∑

1≤‖z‖<‖z′‖≤2‖z‖

1

‖z‖3d−2‖z′ − z‖d−2 +
∑

1≤2‖z‖<‖z′‖

1

‖z‖2d−2‖z′‖2d−2

⎞

⎠ = O(1).

Now it remains to bound the main term in (3.6). For two nonempty subsets U and U ′
of V0, write U ∼ U ′, if there exists an isometry of Z

d sending U onto U ′. This of
course defines an equivalence relation on the subsets of V0, and for any representative
U of an equivalence class, we define

˜Ik,n,U =
∑

V∩V ′∼U

Ik,V Ik,n,V ′ = 1{V0 ∩ (Rc
n − Sk) ∼ U }

and

Hn,U =
n−1
∑

k=0

˜Ik,n,U
〈Sn+1 − Sn, Sn − Sk〉

1 + ‖Sn − Sk‖d .

Note that since the function c(·) is invariant under isometry, we can rewrite the main
term in (3.6) as

∑

U

c(U ) Hn,U . (3.10)

Then observe that for any U ,

E[H2
n,U | Fn] =

∥

∥

∥

∥

∥

n−1
∑

k=0

˜Ik,n,U
Sn − Sk

1 + ‖Sn − Sk‖d
∥

∥

∥

∥

∥

2

.

Moreover, since the law of the walk is invariant under time inversion, and since for
any path S0, . . . , Sn , and any k, the indicator˜Ik,n,U is equal to 1 if and only if it is also
equal to 1 for the reversed path Sn, . . . , S0, we get

E[H2
n,U ] = E[‖Hn,U‖2], (3.11)

where

Hn,U :=
∑

z∈∂ ˜Rn,U

z

1 + ‖z‖d , with ∂˜Rn,U := {Sk : ˜Ik,n,U = 1, k ≤ n − 1}.

(3.12)
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Therefore, we only need to prove that for any U ,

E[‖Hn,U‖2] =
{O(log n) if d = 3

O(1) if d ≥ 4.
(3.13)

Step 3 First note that

E[‖Hn,U‖2] =
∑

z,z′∈Zd

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d) P(z ∈ ∂˜Rn,U , z′ ∈ ∂˜Rn,U ).

(3.14)

In dimension 4 or larger, (3.13) can be established as follows. First Cauchy–Schwarz
inequality gives for all z, z′

|〈z, z′〉| ≤ ‖z‖ ‖z′‖,

Then, by using again the standard bound on Green’s functions, that is (3.9), we get
the desired bound

E[‖Hn,U‖2] = O
⎛

⎝

∑

1≤‖z‖<‖z′‖
‖z‖3−2d ‖z′‖1−d ‖z − z′‖2−d

⎞

⎠ = O(1).

We consider now the case d = 3. Since it might be interesting to see what changes
in dimension 3, we keep the notation d in all formula as long as possible. Note that
if z ∈ ∂˜Rn,U , then ‖z‖ ≤ n and Hz is finite. Therefore the restriction of the sum in
(3.14) to the set of z, z′ satisfying ‖z‖ ≤ ‖z′‖ ≤ 2‖z‖ is bounded in absolute value
by

∑

z

∑

z′
1{‖z‖≤‖z′‖≤2‖z‖≤2n}

2‖z‖2
(1 + ‖z‖d)2 P(Hz < ∞, Hz′ < ∞). (3.15)

Moreover, as we have already recalled, for any z �= z′, with ‖z‖ ≤ ‖z′‖,

P(Hz < ∞, Hz′ < ∞) ≤ 2G(0, z)G(z, z′) = O
(

1

‖z‖d−2‖z − z′‖d−2

)

.

Therefore, the sum in (3.15) is bounded above (up to some constant) by

∑

z

∑

z′
1{1≤‖z‖<‖z′‖≤2‖z‖≤2n} ‖z‖4−3d‖z − z′‖2−d = O

⎛

⎝

∑

1≤‖z‖≤n

‖z‖6−3d

⎞

⎠

= O(log n).
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It remains to bound the sum in (3.14) restricted to the z and z′ satisfying ‖z′‖ ≥ 2‖z‖.
To this end observe that the price of visiting z′ first is too high. Indeed,

∑

z

∑

z′
1{1≤2‖z‖≤‖z′‖≤n}

∣

∣〈z, z′〉∣∣
(1 + ‖z‖d)(1 + ‖z′‖d) P(Hz′ < Hz < ∞)

= O
⎛

⎝

∑

z

∑

z′
1{1≤2‖z‖≤‖z′‖≤n}‖z‖1−d‖z′‖3−2d‖z − z′‖2−d

⎞

⎠

= O
⎛

⎝

∑

z

∑

z′
1{1≤2‖z‖≤‖z′‖≤n}‖z‖1−d‖z′‖5−3d

⎞

⎠

= O(log n),

where for the first equality we used in particular Cauchy–Schwarz inequality and
again the standard bound on Green’s function, and for the second one, we used that
when ‖z′‖ ≥ 2‖z‖, we have ‖z′‖ � ‖z − z′‖. Thus in (3.14) we consider the events
{Hz < Hz′ }. We now refine this argument in saying that after Hz+V0 , and after having
left the ball B(z, ‖z‖/2), it cost too much to return to z + V0 (and the same fact holds
for z′). Formally, for any z, define

τz := inf{k ≥ Hz+V0 : Sk /∈ B(z, ‖z‖/2)},

and

σz := inf{k ≥ τz : Sk ∈ z + V0}.

Then define the event

Ez,n,U := {z ∈ ∂˜Rn,U } ∩ {σz = ∞}.

Observe next that if 1 ≤ ‖z‖ ≤ ‖z′‖/2,

P(z ∈ ∂˜Rn,U , z′ ∈ ∂˜Rn,U , (Ez,n,U ∩ Ez′,n,U )c) = O
(

1

‖z‖2d−4‖z′‖d−2

)

.

Therefore, similar computations as above, show that in (3.14), we can replace the
event {z and z′ ∈ ∂˜Rn,U } by Ez,n,U ∩ Ez′,n,U . So at this point it remains to bound the
(absolute value of the) sum

∑

‖z′‖≥2‖z‖

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d) P(Hz < Hz′ , Ez,n,U , Ez′,n,U ). (3.16)

We now eliminate the time n-dependence in Ez,n,U and Ez′,n,U by replacing these
events respectively by Ez,U and Ez′,U defined as
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Ez,U := {Hz < ∞} ∩ {V0 ∩ {S0 − z, . . . , Sτz − z}c ∼ U } ∩ {σz = ∞}.

Note that when τz ≤ n we have Ez,U = Ez,n,U . This latter relation holds in particular
when z is visited before z′, and z′ is visited before time n. Therefore one has

Ez,n,U ∩ Ez′,n,U ∩ {Hz < Hz′ } = Ez,U ∩ Ez′,n,U ∩ {Hz < Hz′ }.

In other words in (3.16) one can replace the event Ez,n,U by Ez,U . We want now to
do the same for z′, but the argument is a bit more delicate. First define the symmetric
difference of two sets A and B as A	 B = (A ∩ Bc) ∪ (Ac ∩ B). Recall that we
assume 1 ≤ ‖z‖ ≤ ‖z′‖/2. Let now k ≤ n. By using (2.2) and (2.3), we get for some
positive constants c and C (recall also the definition (2.1)),

Pz(Ez′,k,U 	 Ez′,U ) ≤ Pz

(

Hz′ ≤ k ≤ H (k+1)
z′+V0

< ∞
)

≤ C Ez

[

1{Hz′≤k}
1

1 + ‖Sk − z′‖d−2

]

≤ C
k
∑

i=1

Pz(Si = z′) E

(

1

1 + ‖Sk−i‖d−2

)

≤ C
k
∑

i=1

e−c‖z′‖2/ i

i
√
i

1

1 + √
k − i

,

where for the second and third lines we used the StrongMarkov Property, andCauchy–
Schwarz and (3.3) for the fourth one. The last sum above can be bounded by first
separating it into two sums, one with indices i smaller than k/2, and the other sum
over indices i ≥ k/2. Then using a comparison with an integral for the first sum, one
can see that

Pz(Ez′,k,U 	 Ez′,U ) ≤ C
1

‖z′‖√k
e−c‖z′‖2/(2k).

In particular

sup
k≥1

Pz(Ez′,k,U 	 Ez′,U ) = O
(

1

‖z′‖2
)

.

Then it follows by using again the Markov property and (2.3), that

P(Ez,U , Ez′,n,U 	 Ez′,U , Hz < Hz′) ≤ P(Ez′,n,U 	 Ez′,U , Hz < Hz′)

=
∑

k≤n

P(Hz = n − k) Pz(Ez′,k,U 	 Ez′,U )

≤ P(Hz ≤ n) sup
k≥1

Pz(Ez′,k,U 	 Ez′,U )

= O
(

1

‖z‖d−2 × 1

‖z′‖2
)

.
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In conclusion, one can indeed replace the event Ez′,n,U by Ez′,U in (3.16). Now in
the remaining sum, we gather together the pairs (z, z′) and (z,−z′), and we get, using
Cauchy–Schwarz again,

∣

∣

∣

∣

∣

∣

∑

1≤2‖z‖≤‖z′‖≤n

〈z, z′〉
(1 + ‖z‖d)(1 + ‖z′‖d) P(Ez,U , Ez′,U , Hz < Hz′)

∣

∣

∣

∣

∣

∣

≤
∑

1≤2‖z‖≤‖z′‖≤n

2

‖z‖d−1‖z′‖d−1

∣

∣

∣

∣

P(Ez,U , Ez′,U , Hz < Hz′)

−P(Ez,U , E−z′,U , Hz < H−z′)

∣

∣

∣

∣

. (3.17)

Then for any 1 ≤ ‖z‖ ≤ ‖z′‖/2, we have

P(Ez,U , Ez′,U , Hz < Hz′)

=
∑

y∈∂B(z,‖z‖/2)
P(E∗

z,U , Hz < Hz′ , Sτz = y) Py(Hz+V0 = ∞, Ez′,U ),

(3.18)

where by ∂B(z, ‖z‖/2) we denote the external boundary of B(z, ‖z‖/2), and where

E∗
z,U := {V0 ∩ {S0 − z, . . . , Sτz − z}c ∼ U }.

Now for any y ∈ ∂B(z, ‖z‖/2), and ‖z′‖ ≥ 2‖z‖, by using again (2.3) we get

Py(Hz+V0 = ∞, Ez′,U ) = Py(Ez′,U ) − O
(

1

‖z‖d−2‖z′‖d−2

)

. (3.19)

Moreover, the same argument as in the proof of Lemma 2.1, shows that if y and y′ are
neighbors,

Py(Ez′,U ) = Py′(Ez′,U ) + O
(

1

‖z′ − y‖d−1

)

.

Therefore if 1 ≤ ‖z‖ ≤ ‖z′‖/2 and y ∈ ∂B(z, ‖z‖/2) we get

Py(Ez′,U ) = P0(Ez′,U ) + O
( ‖y‖

‖z′ − y‖d−1

)

= P0(Ez′,U ) + O
( ‖z‖

‖z′‖d−1

)

.

(3.20)

On the other hand, by symmetry, for any U ,

P0(Ez′,U ) = P0(E−z′,U ).
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By combining this with (3.17), (3.18), (3.19) and (3.20), we obtain (3.13) and conclude
the proof of (3.4).

4 Lower bound on the variance

In this section, we prove Proposition 1.9. The proof is inspired by the proof of Theorem
4.11 in [12], where the authors use lazyness of the walk. Here, since the walk we
consider is not lazy, we use instead the notion of double backtracks. We say that the
simple random walk makes a double backtrack at time n, when Sn+1 = Sn−1 and
Sn+2 = Sn . When this happens the range (and its boundary) remain constant during
steps {n + 1, n + 2}. With this observation in mind, a lower bound on the variance is
obtained as we decompose the simple random walk into two independent processes:
a clock process counting the number of double-backtracks (at even times), and a
trajectory without double-backtrack (at even times).

4.1 Clock process

We construct by induction a no-double backtrack walk (˜Sn, n ∈ N). First, ˜S0 = 0,
and ˜S1 and ˜S2 − ˜S1 are chosen uniformly at random among the elements of V0 (the
set of neighbors of the origin). Next, assume that ˜Sk has been defined for all k ≤ 2n,
for some n ≥ 1. Let N2 = {(x, y) : x ∼ 0 and y ∼ x} and choose (X,Y ) uniformly
at random in N2\{(˜S2n−1 −˜S2n, 0)}. Then set

˜S2n+1 = ˜S2n + X and ˜S2n+2 = ˜S2n + Y. (4.1)

Thus, the walk ˜S makes no double-backtrack at even times. Note that by sampling
uniformly in the whole ofN2 we would have generated a simple randomwalk (SRW).
Now, to build a SRWout of˜S, it is enough to add at each even time a geometric number
of double-backtracks. The geometric law is given by

P(ξ = k) = (1 − p)pk for all k ≥ 0, (4.2)

with p = 1/(2d)2. Note that the mean of ξ is equal to p/(1 − p). Now, consider a
sequence (ξn, n ≥ 1) of i.i.d. random variables distributed like ξ and independent of
˜S. Then define

˜N0 = ˜N1 = 0 and ˜Nk :=
[k/2]
∑

i=1

ξi for k ≥ 2. (4.3)

A SRW can be built out from˜S and ˜N as follows. First, Si = ˜Si for i = 0, 1, 2. Then,
for any integer k ≥ 1

S2i−1 = ˜S2k−1 and S2i = ˜S2k for all i ∈ [k + ˜N2(k−1), k + ˜N2k].
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This implies that if ˜R is the range of ˜S and ∂˜R its boundary, then for any integer k

Rk+2˜Nk
= ˜Rk and ∂Rk+2˜Nk

= ∂˜Rk . (4.4)

4.2 A law of large numbers and some consequences

Recall that Okada [13] proved a law of large numbers for |∂Rn|, see (1.3), and call νd
the limit of |∂Rn|/n. Since ˜Nn/n also converges almost surely toward p/[2(1− p)],
we deduce from (4.4) that

|∂˜Rn|
n

−→ νd

1 − p
almost surely. (4.5)

Let us show now another useful property. We claim that for any α > 0,

lim
r→∞ P(|(R′∞)+ ∩ ˜R+

r | ≥ αr) = 0, (4.6)

whereR′∞ is the total range of another simple random walk independent of ˜R. To see
this recall that the process (Rn) is increasing, and therefore using (4.4) one deduce

P(|(R′∞)+ ∩ ˜R+
r | ≥ αr) ≤ P

(

˜Nr ≥ p

1 − p
r

)

+ P(|(R′∞)+ ∩ R+
Cr | ≥ αr),

with C = 2p/(1− p) + 1. The first term on the right-hand side goes to 0, in virtue of
the law of large numbers satisfied by ˜N , and the second one also as can be seen using
Markov’s inequality and the estimate:

E[|(R′∞)+ ∩ R+
Cr |] ≤

∑

x,y∈V 0

∑

z∈Zd

G(0, z + x)GCr (0, z + y) = O(
√
r log r),

which follows from (2.3) and [11, Theorem 3.6].
A consequence of (4.6) is the following. Define c = νd/[2(1 − p)]. We have that

for k large enough, any t ≥ 1, and r ≥ √
k

P(|∂˜Rk | ≥ t) ≥ 1

2
�⇒ P(|∂˜Rk+r | ≥ t + cr) ≥ 1

4
, (4.7)

and also

P(|∂˜Rk | ≤ t) ≥ 1

2
�⇒ P(|∂˜Rk−r | ≤ t − cr) ≥ 1

4
. (4.8)

To see this first note that the set-inequality (1.9) holds as well for ˜R. Hence, with
evident notation

|∂˜Rk+r | ≥ |∂˜Rr | + |∂˜R(r, k + r)| − 2|˜R+(r, r + k) ∩ ˜R+
r |. (4.9)
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Now observe that the last intersection term is stochastically dominated by |(R′∞)+ ∩
˜R+
r |, with R′∞ a copy of R∞, independent of ˜R+

r . Therefore, (4.5), (4.6) and (4.9)
immediately give (4.7) and (4.8).

4.3 Lower bound

First, by using (1.13), there is a positive constant C0 > 2d, such that

|E[|∂Rn|] − νdn| ≤ C0
√
n for all n ≥ 1. (4.10)

Take kn to be the integer part of (1 − p)n. We have either of the two possibilities

(i) P(|∂˜Rkn | ≤ νdn) ≥ 1

2
or (ii) P(|∂˜Rkn | ≥ νdn) ≥ 1

2
. (4.11)

Assume for instance that (i) holds, and note that (ii) would be treated symmetrically.
Define, in = [(1 − p)(n − A

√
n)], with A = 3C0/(c(1 − p)), and note that using

(4.8)

P(|∂˜Rin | ≤ νdn − 3C0
√
n)) ≥ 1

4
, (4.12)

for n large enough. Now set

Bn =
{

2˜Nin − 2E[˜Nin ]√
n

∈ [A + 1, A + 2]
}

.

Note that there is a constant cA > 0, such that for all n large enough

P(Bn) ≥ cA. (4.13)

Moreover, by construction,

Bn ⊂ {in + 2˜Nin ∈ [n, n + 3
√
n]}. (4.14)

Now using the independence of ˜N and ∂˜R, (4.4), (4.12), (4.13) and (4.14), we deduce
that

P(∃m ∈ {0, . . . , 3√n} : |∂Rn+m | ≤ νdn − 3C0
√
n) ≥ cA

4
.

Then one can use the deterministic bound:

|∂Rn| ≤ |∂Rn+m | + 2dm,

which holds for all n ≥ 1 and m ≥ 0. This gives

P(|∂Rn| ≤ νdn − 2C0
√
n) ≥ cA

4
,

which implies that Var(|∂Rn|)/n ≥ C2
0cA/4 > 0, using (4.10).
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5 On Le Gall’s decomposition

In this section, we establish Proposition 1.8 and Theorem 1.10.

5.1 Mean and variance

Inequality (1.9) holds since

z ∈ ∂R(0, n)\(Sn + R(n, n + m))+ ∪ ∂(Sn + R(n, n + m))\R+(0, n)

�⇒ z ∈ ∂R(0, n + m).

Define

X (i, j) = |∂R(i, j)| and X(i, j) = X (i, j) − E[X (i, j)].

Observe that in (1.9) the deviation from linearity is written in terms of an intersection
of two independent range-like sets. This emphasizes the similarity between range and
boundary of the range. Now (1.9) implies the same inequalities for the expectation.

0 ≥ E[X (0, n + m)] − (E[X (0, n)] + E[X (n, n + m)]) ≥ −E[Z(n,m)]. (5.1)

Combining (1.9) and (5.1), we obtain our key (and simple) estimates

|X(0, n + m) − (X(0, n) + X(n, n + m))| ≤ max(Z(n,m), E[Z(n,m)]). (5.2)

If ‖X‖p = (E[X p])1/p, then using the triangle inequality, we obtain for any p > 0,

|‖X(0, n+m)‖p −‖X(0, n)+ X(n, n+m)‖p| ≤ ‖Z(n,m)‖p +‖Z(n,m)‖1. (5.3)

The deviation from linearity of the centered p-th moment will then depend on the p-th
moment of Z(n,m). We invoke now Hammersley’s Lemma [8], which extends the
classical subadditivity argument in a useful manner.

Lemma 5.1 (Hammersley) Let (an), (bn), and (b′
n) be sequences such that

an + am − b′
n+m ≤ am+n ≤ an + am + bn+m for all m and n. (5.4)

Assume also that the sequences (bn) and (b′
n) are positive and non-decreasing, and

satisfy
∑

n>0

bn + b′
n

n(n + 1)
< ∞. (5.5)
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Then, the limit of an/n exists, and

− b′
n

n
+ 4
∑

k>2n

b′
k

k(k + 1)
≥ an

n
− lim

k→∞
ak
k

≥ +bn
n

− 4
∑

k>2n

bk
k(k + 1)

. (5.6)

We obtain now the following moment estimate.

Lemma 5.2 For any integer k, there is a constant Ck such that for any n,m integers,

E[Zk(n,m)] ≤ Ck(ψ
k
d (n)ψk

d (m))1/2. (5.7)

Recall that ψd is defined in (1.11).

Proof Observe that Z(n,m) is bounded as follows.

Z(n,m) ≤ 2
∑

z∈Zd

1{z ∈ R+(0, n) ∩ (Sn + R+(n, n + m))}

≤ 2
∑

z∈Zd

1{z ∈ ←−R+(0, n) ∩ R+(n, n + m)}

≤ 2
∑

x∈V 0

∑

y∈V 0

∑

z∈Zd

1{z + x ∈ ←−R (0, n), z + y ∈ R(n, n + m)}.

We now take the expectation of the k-th power, and use the independence of
←−R (0, n)

and R(n, n + m). Then (recalling the definition (2.4) of Gn and using (2.5) for the
last inequality)

E[Zk(n,m)] ≤ 2k
∑

x1,y1∈V 0

· · ·
∑

xk ,yk∈V 0

∑

z1,...,zk

E

[

k
∏

i=1

1{zi + xi ∈ ←−R (0, n)}

×1{zi + yi ∈ R(n, n + m)}]
≤ 2k

∑

x1,y1∈V 0

. . .
∑

xk ,yk∈V 0

∑

z1,...,zk

P(Hzi+xi < n, ∀i = 1, . . . , k)

×P(Hzi+yi < m, ∀i = 1, . . . , k)

≤ 2k |V 0|2k
(

∑

z1,...,zk

P(Hzi < n, ∀i = 1, . . . , k)2
)1/2

×
(

∑

z1,...,zk

P(Hzi < m, ∀i = 1, . . . , k)2
)1/2

≤ 2k |V 0|2kk!
(

∑

z1,...,zk

G2
n(0, z1) . . .G2

n(zk−1, zk)

)1/2
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×
(

∑

z1,...,zk

G2
m(0, z1) . . .G2

m(zk−1, zk)

)1/2

≤ Ck(ψ
k
d (n)ψk

d (m))1/2,

which concludes the proof. ��
Henceforth, and for simplicity, we think of ψd of (1.11) rather as ψ3(n) = O(

√
n),

ψ4(n) = O(log(n)) and for d ≥ 5, ψd(n) = O(1) (in other words, we aggregate in
ψd innocuous constants). As an immediate consequence of (5.1) and Lemma 5.2, we
obtain for any n,m ∈ N,

E[|∂Rn|]+E[|∂Rm |]−max(ψd(n), ψd(m)) ≤ E[|∂Rn+m |] ≤ E[|∂Rn|]+E[|∂Rm |].
(5.8)

The inequalities of (5.8) andHammersley’s Lemma imply that the limit ofE[|∂Rn|]/n
exists and it yields (1.13) of Theorem 1.10.

Variance of X (0, n). Let us write (5.3) for p = 2

|‖X(0, n + m)‖2 − ‖X(0, n) + X(n, n + m)‖2| ≤ 2‖Z(n,m)‖2. (5.9)

Now, the independence of X(0, n) and X(n, n + m) gives

‖X(0, n) + X(n, n + m)‖22 = ‖X(0, n)‖22 + ‖X(0,m)‖22. (5.10)

By taking squares on both sides of (5.9) and using (5.10), we obtain

‖X(0, n + m)‖22 ≤ ‖X(0, n)‖22 + ‖X(0,m)‖22
+ 4‖X(0, n) + X(n, n + m)‖2‖Z(n,m)‖2
+ 4‖Z(n,m)‖22,

(5.11)

and

‖X(0, n)‖22 + ‖X(0,m)‖22 ≤ ‖X(0, n + m)‖22 + 4‖X(0, n + m)‖2‖Z(n,m)‖2
+ 4‖Z(n,m)‖22.

(5.12)
Now define for � ≥ 1,

A� := sup
2�<i≤2�+1

‖X(0, i)‖22.

Next, using (5.10), (5.11) and Lemma 5.2 with k = 2, we deduce that for any � ≥ 1
and ε > 0 (using also the inequality 2ab ≤ εa2 + b2/ε),

A�+1 ≤ (1 + ε)2A� +
(

1 + 1

ε

)

ψ2
d (2�). (5.13)
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We iterate this inequality L times to obtain for some constant C independent of L

AL ≤ C(1 + ε)L2L + C

(

1 + 1

ε

) L
∑

�=1

(1 + ε)�−12�−1ψ2
d (2L−�)

≤ C L2 2L when we choose ε = 1

L
. (5.14)

Then we use the rough bound of (5.14) as an a priori bound for the upper and lower
bounds respectively (5.11) and (5.12) for the sequence an = Var(X (0, n)), in order to
apply Hammersley’s Lemma with bn = b′

n = √
n log n×ψd(n). In dimension four or

morewe do fulfill the hypotheses of Hammersley’s Lemma, which in turn produces the
improved bound Var(|∂Rn|) ≤ Cn, and then again we can use Hammersley’s Lemma
with a smaller bn = b′

n = √
nψd(n) which eventually yields (1.14) of Theorem 1.10.

The fact that the limit of the normalized variance is positive follows from Proposition
1.9.

5.2 Central limit theorem

The principle of Le Gall’s decomposition is to repeat dividing each strand into smaller
and smaller pieces producing independent boundaries of shifted ranges. For two reals
s, t let [s], [t] be their integer parts and define X (s, t) = X ([s], [t]). For � and k
integer, let X (�)

k,n = X ((k − 1)n/2�, kn/2�). Let also Z (�)
k,n be the functional of the two

strands obtained by dividing the k-th strand after � − 1 divisions. In other words, as
in (1.10) (but without translating here) let

Z (�)
k,n = |U ∩ ˜U+| + |U+ ∩ ˜U |,

with

U :=
{

S[
(k−1) n

2�

], . . . , S[
(2k−1) n

2�+1

]

}

, and ˜U :=
{

S[
(2k−1) n

2�+1

], . . . , S[
k n
2�

]

}

.

Thus, after L divisions, with 2L ≤ n, we get

2L
∑

i=1

X (L)
i,n −

L
∑

�=1

2�−1
∑

i=1

Z (�)
i,n ≤ X (0, n) ≤

2L
∑

i=1

X (L)
i,n .

The key point is that {X (L)
i,n , i = 1, . . . , 2L} are independent, and have the same law

as X (0, n/2L) or X (0, n/2L + 1). Now, we define the (nonnegative) error term E(n)

as

X (0, n) =
2L
∑

i=1

X (L)
i,n − E(n),
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and (1.9) and (1.13) imply that

E[E(n)] ≤
L
∑

�=1

2�ψd

( n

2�

)

.

Note that, in dimension d ≥ 4, we can choose L growing to infinity with n, and
such that E[E(n)]/√n goes to 0: for instance 2L = √

n/ log2(n). Therefore, for such

choice of L , it suffices to prove the Central Limit Theorem for the sum
∑2L

i=1 X
(L)
i,n .

Our strategy is to apply the Lindeberg–Feller triangular array Theorem, that we recall
for convenience (see for instance [5, Theorem 3.4.5] for a proof).

Theorem 5.3 (Lindeberg–Feller) For each integer N let (XN ,i : 1 ≤ i ≤ N ) be a
collection of independent randomvariableswith zeromean. Suppose that the following
two conditions are satisfied

(i)
∑N

i=1 E[X2
N ,i ] → σ 2 > 0 as N → ∞ and

(ii)
∑N

i=1 E[(XN ,i )
21{|XN ,i | > ε}] → 0 as N → ∞ for all ε > 0.

Then, SN = XN ,1 + . . . + XN ,N �⇒ σN (0, 1) as N → ∞.

We apply Lindeberg-Feller’s Theorem with N = 2L and XN ,i = X
L
i,n/

√
n. The

condition (i) was proved in the previous subsection. The condition (ii) is usually called
Lindeberg’s condition. To check (ii), we estimate the fourth moment of X(0, n), and
as was noticed by Le Gall [11, Remark (iii) p. 503], this is achieved using the previous
decomposition and a sub-additivity argument. More precisely, using (5.3) with p = 4,
we have

‖X(0, n + m)‖4 ≤ ((E[X4
(0, n)] + 6E[X2

(0, n)]E[X2
(0,m)] + E[X4

(0,m)]))1/4
+√ψd(n)ψd(m).

Thus, if we define for � ≥ 1,

A′
� := sup

2�<i≤2�+1
‖X(0, i)‖4,

we obtain (using also that (a + b)1/4 ≤ a1/4 + b1/4 for any a, b),

A′
�+1 ≤ (2(A′

�)
4 + 6A2

�)
1/4 + ψd(2

�)

≤ 21/4A′
� + 61/4A1/2

� + ψd(2
�).

Define then A′′
� = sup2�<i≤2�+1 ‖X(0, i)‖4/2�/2, and recall that A� ≤ Cd2�, for some

constant Cd > 0, in dimension four and larger. Therefore if d ≥ 4,

A′′
�+1 ≤ 21/4

21/2
A′′

� + 61/4Cd + ψd(2�)

2(�+1)/2
.
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This recursive inequality implies that (A′′
�) is bounded, as well as n �→ ‖X(0, n)‖24/n.

We then deduce that Lindeberg’s condition is satisfied, and the Central Limit Theorem
holds for X (0, n).
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Appendix: Estimates on ranges

In this section, we prove Proposition 1.5. We first introduce some other range-like sets
allowing us to use the approach of Jain and Pruitt [9]. Recall that the sets Rn,V are
disjoint, and for U ⊂ V0, define

Rn,U :=
⋃

V⊃U

Rn,V ={Sk : Sk /∈ Rk−1 and Si /∈ (Sk +U ), i ≤k − 1, 1≤k ≤ n}.

(5.15)

Next for U ⊂ V0, define

α(U ) = |Rn,U | − E(|Rn,U |) and β(U ) = |Rn,U | − E(|Rn,U |).

The definition (5.15) yields

α(U ) =
∑

V⊃U

β(V ),

and this relation is inverted as follows:

β(V ) =
∑

U⊃V

(−1)|U\V | α(U ).

As a consequence, for V ⊂ V0,

Var(|Rn,V |) = E(β2(V )) ≤ 2|V0\V | ∑

U⊃V

E(α2(U )).

We will see below that each Rn,V has the same law as a range-like functional that
Jain and Pruitt analyze by using a last passage decomposition, after introducing some
new variables. But let us give more details now. So first, we fix some V ⊂ V0, and for
n ∈ N, set Zn

n = 1, and
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Zi = 1({Si+k /∈ (Si + V ) ∀k ≥ 1}) ∀i ∈ N,

Zn
i = 1({Si+k /∈ (Si + V ) ∀k = 1, . . . , n − i}) ∀i < n

Wn
i = Zn

i − Zi ∀i ≤ n,

where

V = V ∪ {0}.

A key point in this decomposition is that Zn and Zn
i are independent. Now, define

Rn,V = {Sk : Si /∈ Sk + V , n ≥ i > k, 0 ≤ k < n}, and |Rn,V | =
n−1
∑

i=0

Zn
i .

(5.16)

Since the increments are symmetric and independent, |Rn,V | and |Rn,V | are equal in
law. Now, equality (5.16) reads as

|Rn,V | =
n−1
∑

i=0

Zi +
n−1
∑

i=0

Wn
i .

Now using that Var(|Rn,V |) ≤ E[(|Rn,V | −∑i≤n−1 E[Zi ])2], and that (a + b)2 ≤
2(a2 + b2) we obtain

Var(|Rn,V |) ≤ 2
n−1
∑

i=1

Var(Zi ) + 4
n−1
∑

j=1

j−1
∑

i=0

Cov(Zi , Z j ) + 4
n−1
∑

j=1

j
∑

i=0

E(Wn
i W

n
j ).

(5.17)

Next for i < j < n, we have (recall the definition (2.1))

E

(

Wn
i Wn

j

)

= P

(

n < H (i+1)
Si+V

< ∞, n < H ( j+1)
S j+V

< ∞
)

=
∑

x /∈V
P(S j−i = x, HV > j − i) Px (n − j < HV

< ∞, n − j < Hx+V < ∞)

≤
∑

x /∈V
P(S j−i = x, HV > j − i) Px (n − j < HV

< ∞, n − j < Hx+V < ∞),

where for the second equality we just used theMarkov property and translation invari-
ance of the walk. The last inequality is written to cover as well the case i = j .
Therefore,
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j
∑

i=0

E

(

Wn
i W

n
j

)

≤
∑

x /∈V
G j (0, x) Px (HV < ∞, n − j < Hx+V < ∞)

≤
∑

y,z∈V

∑

x /∈V
G j (0, x) Px (Hy < ∞, n − j < Hx+z < ∞).

Then Lemma 4 of [9] shows that

j
∑

i=0

E

(

Wn
i W

n
j

)

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

O
(√

j
n− j

)

if d = 3

O
(

log j
n− j

)

if d = 4

O ((n − j)1−d/2
)

if d ≥ 5,

and thus

n−1
∑

j=1

j
∑

i=0

E

(

Wn
i W

n
j

)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

O(n) if d = 3

O((log n)2) if d = 4

O(1) if d ≥ 5.

(5.18)

Now, for i < j < n, by using that Z j
i and Z j are independent, we get

Cov(Zi , Z j ) = −Cov(W j
i , Z j ).

On the other hand, assuming i < j ≤ n,

E(W j
i Z j ) = P

(

j < H (i+1)
Si+V

< ∞, H ( j+1)
S j+V

= ∞
)

=
∑

x /∈V
P(S j−i = x, HV > j − i) Px (HV < ∞, Hx+V = ∞).

Since in addition,

E(Z j ) = Px (Hx+V = ∞) for all x,

and

E(W j
i ) =
∑

x /∈V
P(S j−i = x, HV > j − i) Px (HV < ∞),

we deduce that

Cov(Zi , Z j ) =
∑

x /∈V
P(S j−i = x, HV > j − i) bV (x),
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with

bV (x) := Px (HV < ∞) Px (Hx+V = ∞) − Px (HV < ∞, Hx+V = ∞).

(5.19)

Now we need the following equivalent of Lemma 5 of [9].

Lemma 5.4 For any V ⊂ V0, and x /∈ V ,

bV (x) = Px (HV < Hx+V < ∞)Px (HV = ∞) + E(x, V ),

with

E(x, V ) :=
∑

z∈x+V

Px (SHx+V
= z, Hx+V < HV )(Pz(HV < ∞) − Px (HV < ∞)).

Moreover,

|E(x, V )| = O
(

1

‖x‖d−1

)

.

Assuming this lemma for a moment, we get

a j =
j−1
∑

i=0

Cov(Zi , Z j ) =
j−1
∑

i=0

∑

x /∈V
P(S j−i = x, HV > j − i) bV (x)

= O
⎛

⎝

∑

x /∈V

G j (0, x)

‖x‖d−1

⎞

⎠ = O
⎛

⎝

∑

1≤‖x‖≤ j

1

‖x‖2d−3

⎞

⎠

=
{O(log j) if d = 3
O(1) if d ≥ 4,

from which we deduce that

n−1
∑

j=0

a j =
{O(n log n) if d = 3

O(n) if d ≥ 4.
(5.20)

Then Proposition 1.5 follows from (5.17), (5.18) and (5.20).

Proof of Lemma 5.4. Note first that

bV (x) = Px (HV < ∞, Hx+V < ∞) − Px (HV < ∞)Px (Hx+V < ∞)

= Px (HV < Hx+V < ∞) + Px (Hx+V < HV < ∞)

− Px (HV < ∞)Px (Hx+V < ∞).
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Moreover,

Px (Hx+V < HV < ∞) =
∑

z∈x+V

Px (SHx+V
= z, Hx+V < HV )Pz(HV < ∞)

= Px (Hx+V < HV )Px (HV < ∞) + E(x, V ).

The first assertion of the lemma follows. The last assertion is then a direct consequence
of standard asymptotics on the gradient of the Green’s function (see for instance [10,
Corollary 4.3.3]). ��
Remark 5.5 By adapting the argument in [9] we could also prove that in dimension
3, Var(|Rn,V |) ∼ σ 2n log n, for some constant σ > 0, and then obtain a central limit
theorem for this modified range. However it is not clear how to deduce from it an
analogous result for |Rn,V |, which would be useful in view of a potential application
to the boundary of the range.
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