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CAPACITY OF THE RANGE OF RANDOM WALK ON Z¢

AMINE ASSELAH, BRUNO SCHAPIRA, AND PERLA SOUSI

ABSTRACT. We study the capacity of the range of a transient simple random
walk on Z%. Our main result is a central limit theorem for the capacity of the
range for d > 6. We present a few open questions in lower dimensions.

1. INTRODUCTION

This paper is devoted to the study of the capacity of the range of a transient
random walk on Z?. Let {Sk}r>0 be a simple random walk in dimension d > 3.
For any integers m and n, we define the range R[m, n| to be the set of visited sites
during the interval [m,n], i.e.,

R[m,n] = {Sm,..., S}

We write simply R,, = R[0,n]. We recall that the capacity of a finite set A C Z%
is defined to be
Cap (4) = Y Po(Tf =),
z€A
where TX =inf{t > 1:S; € A} is the first return time to A.

The capacity of the range of a walk has a long history. Jain and Orey [5] proved,
some fifty years ago, that Cap (R,,) satisfies a law of large numbers for all d > 3,
i.e., almost surely

lim —Cap (Rn) =

n— 00 n
Moreover, they showed that ay > 0 if and only if d > 5. In the eighties, Lawler
established estimates on intersection probabilities for random walks, which are rel-
evant tools for estimating the expected capacity of the range (see [7]). Recently,
the study of random interlacements by Sznitman [I2] has given some momentum to
the study of the capacity of the union of the ranges of a collection of independent
walks. In order to obtain bounds on the capacity of such union of ranges, Rath and
Sapozhnikov in [IT] have obtained bounds on the capacity of the range of a simple
transient walk. The capacity of the range is a natural object to probe the geometry
of the walk under localisation constraints. For instance, the first two authors have
used the capacity of the range in [2] to characterise the walk conditioned on having
a small range.

In the present paper, we establish a central limit theorem for Cap (R,) when
d > 6.
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Theorem 1.1. For all d > 6, there is a positive constant o4 such that
Cap (Rn) — E[Cap (Rn)]
NG
where = denotes convergence in distribution, and N(0,1) denotes a standard
normal random variable.

= 04N (0,1), asn — oo,

A key tool in the proof of Theorem [[1lis the following inequality.
Proposition 1.2. Let A and B be finite subsets of 7. Then,

(1.1) Cap (AU B) > Cap (A) + Cap (B) =2 ) _ > G(z,y),

rz€AyEB

where G is Green’s kernel for a simple random walk in Z4:

G(a,y) = E, [Z 1(X, = y)] .
t=0
Note in comparison the well-known upper bound (see for instance |7, Proposition
2.2.1))

(1.2) Cap(AUB) < Cap(A) + Cap(B) — Cap(ANB).

In dimension 4, asymptotics of E[Cap (R,)] can be obtained from Lawler’s es-
timates on non-intersection probabilities for three random walks, which we recall
here for convenience.

Theorem 1.3 ([7, Corollary 4.2.5]). Let R',R?, and R? be the ranges of three
independent random walks in Z* starting at 0. Then,

(1.3)  lim logn x P(R'[L,n] N (R?[0,n] UR?[0,n]) = @, 0¢ R3[1,n]) = %2

n—oo

and

7.‘_2

(1.4) nh_)ngo logn x P(R'[1,00) N (R?*[0,n] UR?[0,n]) = @, 0 & R*[1,n]) = 3

Actually (4] is not stated exactly in this form in [7], but it can be proved using
exactly the same proof as for equation (4.11) in [7]. As mentioned, we deduce from
this result the following estimate for the mean of the capacity.

Corollary 1.4. Assume that d = 4. Then,
logn 2
1.5 li —— E[Cap (R,)] = —.
(1.5) Jim - —>= E[Cap (Rs)] = —
In dimension three, we use the following representation of capacity (see [0

Lemma 2.3]):

1
(1.6) Cap (4) = inf, > ea Doyea Gla,y)v(x)v(y)’

where the infimum is taken over all probability measures v supported on A. We
obtain the following bounds.

Proposition 1.5. Assume that d = 3. There are positive constants ¢ and C such
that

(1.7) cv/n < E[Cap(R,)] < Cyn.
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The rest of the paper is organised as follows. In Section 2] we present the de-
composition of the range, which is at the heart of our central limit theorem. The
capacity of the range is cut into a self-similar part and an error term that we
bound in Section Bl In Section d] we check Lindeberg-Feller’s conditions. We deal
with dimensions 3 and 4 in Section Bl Finally, we present some open questions in
Section [6

Notation. When 0 < a < b are real numbers, we write R[a, b] to denote R[[a], [b]],
where [z] stands for the integer part of z. We also write R, for R[0, [a]] and S,, /5
for S[n/2]

For positive functions f, g we write f(n) < g(n) if there exists a constant ¢ > 0
such that f(n) < cg(n) for all n. We write f(n) 2 g(n) if g(n) < f(n). Finally, we

write f(n) =< g(n) if both f(rn) < g(n) and f(n) 2 g(n).
2. DECOMPOSITION FOR CAPACITIES
Proof of Proposition [L2 Note first that by definition,
Cap (AUB) = Cap(A) + Cap (B) — Z P, (T4 = o0, T < o0)

z€A\B
— Y Po(Tf =00, Tf <o0) = > Pu(Ty < 00,T =)
z€ANB r€B\A
— Y Po(Tf <00, Tf =00) = Y Pu(Tf = 00,7 = o0)
r€ANB r€ANB
> Cap (A) + Cap (B Z P, (T} < o0) — Z P, (T} < o)
z€A\B zEB\A

—|ANB].
For any finite set K and all 2 ¢ K by considering the last visit to K we get
PT+<oo Zny T['("— )

yeK
This way we obtain
Z P, (Th < o0) < Z ZG(x,y)
2€A\B c€A\ByEB
and
Z P, (T} < o0) < Z ZG(at,y).
£€B\A ©EB\AyeA

Hence we get

Cap (AU B) > Cap(A) + Cap (B —QZZG;vy Z ZG(:U,y)

reAyeB reANB yeA
£ Y Y G- lans)
T€ANB yeB
Since G(z,z) > 1 for all  we get
> Y Gz a0,
T€ANB yeA

and this concludes the proof of the lower bound and also the proof of the lemma. [
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The decomposition of Cap (R,,) stated in the following corollary is crucial in the
rest of the paper.

Corollary 2.1. For all L and n, with 2 < n, we have

2[ 1
3 o (R, ) 230 36 < Con ) <o (RS, ).
(=1 i=1
where (R(z), i=1,...,2L) are ranges of independent random walks and (8;,1.) 1, are

deterministic numbers with 6; 1, € {0,1} for alli, L. For each { the random variables

Zygﬁ ~ G(‘Ta y):

(4) ;
(&,7)i are independent and have the same law as ) n e

with R independent of R and 6, Se {0,1}.

Proof. Since we work on Z9, the capacity is translation invariant, i.e., Cap (A4) =
Cap (A + z) for all z, and hence it follows that

Cap (Ry) = Cap ((Rn/2 — Sns2) U (R[n/2,n] = Sp/2)) -
The advantage of doing this is that now by the Markov property the random vari-
ables Rfll/)Q = Rp/2 — Spj2 and Rn 945 = R[n/2,n] — S, /5 are independent and &
is such that n — [n/2] = [n/2] + 0. Moreover7 by reversibility, each of them has the
same law as the range of a simple random walk started from 0 and run up to time
[n/2] and n — [n/2] respectively. Applying Proposition we get

(2.1) Cap(Rn)ZCap( )—l—Cap( )—2 Z Z G(z,y).

(1) (2)
T€R, 1, YER, ays

n/2¢+468

Applying the same subdivision to each of the terms R(Y) and R and iterating L
times, we obtain

L 2t
()
Cap (Ra) 2 ZCap (Risrsa) 222 D&
=1 i=1
where (R5132L+5 ,) and (f,’é ) are as in the statement of the corollary. Using (L.2)
for the upper bound on Cap (R,,) concludes the proof. |

3. VARIANCE OF Cap (R,,) AND ERROR TERM

As outlined in the Introduction, we want to apply the Lindeberg-Feller theorem
to obtain the central limit theorem. In order to do so, we need to control the
error term appearing in the decomposition of Cap (R,,) in Corollary 21l Moreover,
we need to show that the variance of Cap (R,,) /n converges to a strictly positive
constant as n tends to infinity. This is the goal of this section.

1. On the error term. We write G, (x,y) for the Green kernel up to time n, i.e.,

Gn(7,y) = E, lz_: 1(Sy = y)‘| .

k=0
We now recall a well-known bound (see for instance [8, Theorem 4.3.1])
C
(3.1) G(0,7) < ——s,
L[|

where C is a positive constant. We start with a preliminary result.
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Lemma 3.1. For all a € Z% we have
DY Gu0,2)G(0,9)GO0,x—y—a) < Y Y Gu(0,2)Gn(0,y)G(0, 2 —y).
T€Z yeZd TE€ZY yeZd
Moreover,
€L yeZd

where
(32)  fs)=vA  fe)=logn, and fan)=1 Vd=T.
Proof. Let Sq =3, Gn(0,2)pax(z,y + a)G,(0,y). Since

por(@,y —a) =Y pi(e, 2)pi(z,y — a) = Y pi(z 2)pi(z,y — a),
letting [ (2) = >_, Gr(0,y)px(z,y + a) we have
(3.3) F.(z) = Z G,(0,y)pr(z —a,y) and S, = ZFO(Z)Fa(Z)-

By Cauchy-Schwartz, we obtain
Sa <D F5(2)- ) Fi(2)
Notice however that a change of variable and using ([B:3) yield
YR =) Fiw—a)=) Fw)

and hence we deduce that
52 <52 Va.

‘We now note that if X is a lazy simple random walk, then the sums in the statement
of the lemma will only be affected by a multiplicative constant. So it suffices
to prove the result for a lazy walk. It is a standard fact (see for instance [0
Proposition 10.18]) that the transition matrix of a lazy chain can be written as
the square of another transition matrix. This now concludes the proof of the first
inequality.

To simplify notation we write G,,(z) = G, (0,z) and G(z) = G(0, ).

For the second inequality we first note that if S and S are independent simple
random walks, then

DD Gul@)Gnly)Gla -

and E [G(Sk - §g)] = E[G(Sk+¢)]- We now claim that for some constant C' we have
for all £ > 0,

C
(3.4) E[G(Sk)] < m

Indeed, this follows immediately from (B and the standard bound

—clle?/i |
pi(z) S ed—/z (lzl| < 83/%) + 1(||z|| > ¥/3)ecl=l*/i,
{2
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which in turn follows from the local CLT and Azuma-Hoeffding inequality. g

Lemma 3.2. For all n, let R,, and ﬁn be the ranges up to time n of two indepen-
dent simple random walks in Z% started from 0. For all k,n € N we have

k
Ell S > Gy | | <Ch)(fan))t,

TER, yeﬁn

where fq(n) is the function defined in the statement of Lemma Bl and C(k) =
Ck (k"2 with C a universal constant.

Proof. Let Ly(x) denote the local time at x up to time ¢ for the random walk S,
ie.,
Ly(z) = 1(S; = ).
i=0
Let S be an independent walk and let L denote its local times. Then, we get
2 2 Gay< ) L )G(a,y).
TERn yeR,, r€eZd yeZd

So, for k = 1 by independence, we get using Lemma 3]

SN Gy <D D Ga(0,2)Ga(0,9)G0,z — y) S fa(n).

TERn yeR, z€Z yez?

As in Lemma B1] to simplify notation we write G, (z) = G, (0, ).
For the k-th moment we have

(3.5) Eff > Y Gy

TER, yeﬁ"

k

k k k
S an] &[] 2w [T G - )
L1y Tk Y15--45Yk =1 =1 =1
For any k-tuples z1,...,z; and yq,..., Y%, we have
k k
E lH Ln(fi)] < Z Gn(Zo(1)) H Gn(To() — Zo@i—1)) and
=1 o: permutation of {1,...,k} =2
k k
E[H Ln(yl)] < Z G’ﬂ(yﬂ'(l))HG’n(yﬂ'(’L) - yﬂ(ifl))'
i=1 7: permutation of {1,...,k} =2

Without loss of generality, we consider the term corresponding to the identity per-
mutation for z and a permutation 7 for y. Then, the right hand side of (81 is a
sum of terms of the form

Gn($1)Gn($2 —$1)---G (fEk: — Tk— 1)G (yﬂ'(l))G (%(2) yfr(l))

k
.Gy, (yﬂ' — Yr(k—1) HG
i=1
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Suppose now that the term ¥, appears in two terms in the above product, i.e.,
Gn(yk - y‘n’(z))Gn(yk - yﬂ'(]))

By the triangle inequality we have that one of the following two inequalities has to

be true:

1 1
Yk = Yr(a)ll > §Hyﬂ(i) Yzl ot yk = Yxi)ll = S 1Yx(iy — Y= i) ll-

Since Green’s kernel is radially decreasing and satisfies G(z) < |z|?>~¢ for ||z| > 1
we get
G Yk = Yn(0)) G Wk — Yn () S GuWn(j) = Yr(i) (G Wk — Yr()) + G (U — Yr(i))) -

Plugging this upper bound into the product and summing only over =, and y; while
fixing the other terms, we obtain

Z Gu(zr — Tk—1)Gn(Yk — Yr(i))G(Tk — Yk)

Tk Yk

= > Gl — 26-1)Gn(Uk — Yn(i)) G2k — 26-1) — Wk — Yn(i))

Tk Yk

= Gn(@)Gn()G((z —y) = (Th-1 — Yn(i)) S fa(n),

where the last inequality follows from Lemma Bl Continuing by induction com-
pletes the proof. O

3.2. On the variance of Cap (R,).

Lemma 3.3. For d > 6 there exists a strictly positive constant 4 so that

lim Var (Cap (R,))

n—00 n

=4 > 0.

We split the proof of the lemma above into two parts. First we establish the
existence of the limit, and then we show it is strictly positive. For the existence,
we need to use Hammersley’s lemma [4], which we recall here.

Lemma 3.4 (Hammersley). Let (ay), (bn), (cn) be three sequences of real numbers
satisfying for all n,m,

Qp + Qm — Cn+m S Gp4m S ap + am + bn+m~

If the sequences (by), (c,) are positive and non-decreasing and additionally satisfy

L by +cn
7; n(n+1) <o
then the limit as n — oo of a,/n exists.
For a random variable X we will write X = X — E[X].
Lemma 3.5. Ford > 6, the limit as n tends to infinity of Var (Cap (Ry,)) /n exists.

Proof. We follow closely the proof of Lemma 6.2 of Le Gall [9]. To simplify notation
we write X,, = Cap (R,), and we set for all &k > 1,

ay :sup{ E{Yi] . 2k §n<2k+1}.
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For k > 2, take n such that 2% < n < 28*! and write ¢ = [n/2] and m = n — £.
Then, from Corollary 21l for L = 1 we get
XM+ x® 28, < x, < x4+ x2),

where XM and X are independent and & has the same law as

> > Gly)

TERe yeR,,

with R an independent copy of R.
Taking expectations and subtracting we obtain

X, — (X + X)) < 2max (&, E[E)) .
Since x and x? are independent, we get
<) | =) <02, @2\
[+ 3, = (=), « =l,)
2 2 2
By the triangle inequality we now obtain

- —=(1)  =(2
X alls < X0 + X2y + |2 max(Er, BLE) 2

<02, o2\
< (IO IE2L) - +2 e, +Bied

SO o2\
< ( Xe ||+ || Xm 2) + c1fa(n)

02 (@2
< ( X, + || X, 2> + ¢1 logn,

where ¢ is a positive constant. The penultimate inequality follows from Lemma[3.2]
and for the last inequality we used that fy(n) < logn for all d > 6. From the
definition of aj, we deduce that

ar < 2Y2%a,_1 + ok,
for another positive constant cp. Setting by = apk ™! gives for all k that
bp < 2Y2bp_1 + ca,

and hence b, < 25/2, which implies that aj, < k - 2¥/2 for all k. This gives that for
all n,

(3.6) Var (X,,) < n(logn)?.
Proposition and ([L2) give that for all n,m,
XY+ X® _2e(n,m) < Xy < X 4+ X2
where again X(*) and X are independent and
(3.7) Emm)= Y > Gly< >, > Gy
TERn yeR,, TERn+m y€Rptm
with R and R independent. As above we get

‘prm - (77(11) +7$))‘ < 2max(E(n, m), E[E(n, m)])
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and by the triangle inequality again
- ~1) | (2
1%l = [F + X0 | < 4 l€ G mll-
Taking the square of the above inequality and using that 7;1) and 75?
pendent we obtain

are inde-

[RKtm |2 < [Fll2 + K2 4+ 8 Fll2 + Ko 12 1€yl
16 €, m) 2|l [} + [ X o2 < (Ko
+ 8| Xl 1€, m)lly + 16 | E(n, m)|[3 -

We set v, = d, = c1y/n(logn)?, and d], = coy/n(logn)?, where ¢; and cy
are two positive constants. Using the bound from (3.0) together with [B.7) and
Lemma in the inequalities above yields

Yn + Ym — d;prm < Yntm < Yo+ Vm + dn+m~

We can now apply Hammersley’s result, Lemma [3.4] to deduce that the limit -, /n
exists, i.e.,

. Var (yn)
lim ————= =4 >0,
n—roo n
and this finishes the proof of the existence of the limit. O

3.3. Non-degeneracy: 7, > 0. To complete the proof of Lemma we need to
show that the limit  is strictly positive. We will achieve this by using the same trick
of not allowing double-backtracks at even times (defined below) as in [I} Section 4].

As in [I] we consider a walk with no double backtracks at even times. A walk
makes a double backtrack at time n if S,,_1 = S,,_3 and S,, = S,,_2. Let S be a
walk with no double backtracks at even times constructed as follows: we set §0 =0
and let S1 be a random neighbour of 0 and Sg a random nelghbour of Sl Suppose
we have constructed S for all times k < 2n; then we let (52n+1, Sgn+2) be uniform
in the set

{(ry): Nz -yl =[S0 —all=1 and (2,y) # (S2n-1,50)}-

Having constructed S we can construct a simple random walk in Z¢ by adding
a geometric number of double backtracks to S at even times. More formally, let
(&i)i=2,4,... be 1.i.d. geometric random variables with mean p/(1 — p) and

P(E=k)=(1-p)p* Vk>0,
where p = 1/(2d)?. Setting
k
Ne= > &,
we construct S from S as follows. First we set S; = §z for all ¢ < 2 and for all
k> 1 we set I = [2k + 2Ny(—1) + 1,2k + 2N |. If I}, # &, then if i € I is odd,

we set S; = ggk,l, while if 7 is even, we set S; = §2k. Afterwards, for the next two
time steps, we follow the path of S, i.e.,

Sok+2Nae+1 = Sok+1 and  Sopyon, 42 = S2kt2-
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From this construction, it is immediate that Sisa simple random walk on 74, Let
R be the range of S. From the construction of S from S we immediately get that
(3.8) Rn = Ruyan, = Rnton, 1>

where the second equality follows, since adding the double backtracks does not

change the range.

Lemma 3.6. Let S be a random walk on 74 starting from 0 with no double back-
tracks at even times. If R stands for its range, then for any positive constants c
and ¢ we have

P Z Z G(z,y) >cy/n| — 0 asn — .

$E€R2n yER[2n,(2+¢")n]

Proof. Let M be the number of double backtracks added during the interval [2n,
(24 )n], ie.,
(2+c)n

(3.9) M= > ¢

1=2n
1 even

Then, we have that

R[2n, (24 ¢')n] € R[2n+ 2Na(,_1), (2 + ¢ )n + 2No(,_1y + 2M].

Note that the inclusion above could be strict, since S does not allow double back-
tracks, while S does so. We now can write

Pl > > G(z,y) > cvn

$E€R2n yER[2n,(24¢")n]

<P > > G(z,y) > evn

2ER[0,2n+2N2(—1)] YER[2N+2N3(n—1),(24¢)n+2N3 (1) +2M]

<P > > G(r,y) > cvn

2ER[0,2n+2N3(—1)] YER[2N+2N3(—1),(24+2C+c")n+2Ny(5,—1)]

+P(M >Chn).

By (33) and Chebyshev’s inequality we obtain that for some positive C, P(M > Cn)
vanishes as n tends to infinity. Since G(z — a,y — a) = G(z,y) for all z,y,a, it
follows that

P Z Z G(x,y) > cv/n

z€R[0,2n+2N5(y, —1)] YER[2n+No(p—1),(24+2C+c")n+2Ny(n_1)]

=P[ Y > Gy >c/n|,

TER1 YER2

where R1 = R[O,Q’ﬂ + 2N2(n—1)] — 52n+2N2(n71) and Ry = R[Qn + 2N2(n—1)7
(2+2C+)n+2Ny—1)] — S21+2Ny(, 1)+ Lhe importance of considering R up to

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CAPACITY OF THE RANGE OF RANDOM WALK ON 2z¢ 7637

time 2n + 2N3(,,_1) and not up to time 2n + 2Nz, is in order to make R; and Ro
independent. Indeed, this follows since after time 2n+2N;(,,_1) the walk S behaves
as a simple random walk in Z? independent of the past. Hence we can replace Ro
by R’(2 204 )n where R’ is the range of a simple random walk independent of R ;.
Therefore we obtain

P Z Z G(z,y) > c/n

’
TERy YER 1204/ )n

<P Z Z G(z,y) > evn | +P(Ny—1) > C'n).

ZER (207 42)n y€R22+20+6/>n

As before, by Chebyshev’s inequality for C’ large enough ]P’(NQ(n_l) > C”n) — 0
as n — oo, and by Markov’s inequality and Lemma [B.1]

E {Z"L’GRC'" ZyeR’ G(z, y)}

(2+2C+c')n

P > Y Glay) zevn|< o

TER 20/ 12)n YER (5 50y erym

< logn’
~J \/ﬁ

and this concludes the proof. O
Claim 3.7. Let R be the range of S. Then, almost surely

Cap(R[Qk,Qk—i—n])_)a '<1p ) as  m — 0o.
—-p

n

Proof. As mentioned already in the Introduction, Jain and Orey [5] proved that

(3.10) i SR Re) _ g ELCR (R

n—o0 n m m

)

with the limit aq being strictly positive for d > 5.
Clearly the range of S in [2k, 2k + n] satisfies

RI[2k + 2Nop 1,2k + 2Nop—1 4+ 2N, ]\ {Sort 2Ny, 1415 S2kt2Ny, 12}
C R[2k, 2k + n]R[2k, 2k + n] C R[2k + 2Naj,_1, 2k + 2Noj_1 + 2N],

where N/ is the number of double backtracks added between times 2k and 2k + n.
We now note that after time 2k + 2Ny, 1 the walk S behaves as a simple random
walk in Z?. Hence using ([3I0) and the fact that N/ /n — p/(2(1 —p)) as n — oo
almost surely it follows that almost surely

. Cap (R[2k 4+ 2Nax—1,2k + 2Na,_1 + 2N]]) D

lim =aQq - (m) )

n—00 n

and this concludes the proof. O

Proof of Lemma B3] Let S be a random walk with no double backtracks at even
times and let S be a simple random walk constructed from S as described at the
beginning of Section 3.3l We thus have ﬁn = Ry+on, forall n. Let k, = [(1—p)n],
let i, = [(1 —p)(n+ Ay/n)], and let £, = [(1 —p)(n— A\/n)] for a constant A to be
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determined later. Then, by Claim B.7 for all n sufficiently large so that k, and ¢,
are even numbers we have

~ ) 3 [A-ag-p 7
. nolnl | 2 = | —/——— > =
(3.11) }P’(Cap (R[k‘ i ]) 1 ( ) 5 and
1 (A -aq- p 7
. < — > —
312) P > > Gloy) < 5 (1_ > 3
:L’ER[O kn] yGR[kn,zn]
and
3 (A 7
. s Z. > —
(3.13) <Cap( (4, k ]) 1 ( — n) 3 and
iy Pl Y Y Gl<s ( \/_ > 7
-8 -p -8
2ER[0,6,] YER[€n kn]
We now define the events
2Ny, — 2E[Ny, |
B,=———" ¢ [A+1,A+2
T Artdre
and
D, = Vi, = 21N, ] 2E[N, ] e 1-A2-A4];.
vn
Then, for all n sufficiently large we have for a constant ¢4 > 0 that depends on A,
(3.15) P(B,) >ca and P(D,) > ca.

Since we have already showed the existence of the limit Var (Cap (R,)) /n as
n tends to infinity, it suffices to prove that the limit is strictly positive along a
subsequence. So we are only going to take n such that k,, is even. Take n sufficiently
large so that (3II) holds and %, is even. We then consider two cases:

(i) (Cap ( [0,k ]) > E[Cap (Rn)}) >
(i) P(Cap (R0, ku] ) < E[Cap (R.)]) >
We start with case (i). Using Proposition [[.2] we have

Cap( 0, zn]) > Cap (ﬁ[o,kn]) + Cap (ﬁ[kn,in]) 2 Y G(z,y).

2ER[0,kn] yER [kn yin]

or

N = N =

From this, we deduce that
(3.16)

P((Cap (R0.]) > BlCop (R)] + 3 - (41242 ) Vi)

(Cap( 0.5a]) > E[Cap (R[0,n])], Cap Rk, in]) > 5 - (%) .\/5>

S I G(x,y)>é-<%‘;p)-\/ﬁ

zeﬁ{akn] yGﬁ[kn 7'L.n]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



CAPACITY OF THE RANGE OF RANDOM WALK ON 2z¢ 7639

The assumption of case (i) and [B.I1]) give that

P (Cap (RI0, kul) > E[Cap(R[0, n])], Cap (Rlkn, in] )
3 A- ad - p 3
> 2. (L4 Py > 2.
=3 () ) =3
Plugging this lower bound together with [B12) into [BI0) yields

P((Cop (RI0.4]) = BlCop (R)] + 5 - (41242 ) - vi) >

Since N is independent of S, using ([@I5) it follows that

P(Cap (RD0.]) > ElCap (R,)] + % - (%dp'p) 7, Dn> >

It is not hard to see that on the event D,, we have i, + 2N, € [n,n + 34/n].
Therefore, since R[0, k] = R[0, k + 2Nj] we deduce that

IP’(H m < 3y : Cap(R[0,n+m]) > E[Cap (Rn)] + % . (%‘gp) . \/ﬁ) >

Since Cap (R]0, ¢]) is increasing in ¢, we obtain

P(Cap (RI0.n + 3v7]) > E[Cap (R,)] + © - (%ﬁ) - ﬁ) Ny

Using now the deterministic bound Cap (R[0,n + 3y/n]) < Cap (R[0,n]) + 3v/n
gives
1 A-ag-p CcA
P( Cap (R[0,n]) > E[Cap (R,)] + 2\ 1o =3)-vn)> R
and hence choosing A sufficiently large so that

1 A-ag-p
[ ——=)=-3>0
2 ( L—p ) g

and using Chebyshev’s inequality shows in case (i) for a strictly positive constant
¢ that we have

Var (Cap (R,)) > ¢-n.

We now treat case (ii). We are only going to consider n so that ¢, is even. Using
Proposition again we have

Cap (RI0,6,]) < Cap (R[0,ku]) = Cap (Rltw, ka]) +2 > Y Glay).
2ER[0,6n] YER [ kn]

Then, similarly as before using [BI3), (3.14), and [B.I5) we obtain
~ 1 (Ao
P(Oap (R[0,¢.]) < ElCap (R,)] - 5 - <%‘pp> -V, Bn) >
Since on B, we have £, + 2N, € [n,n + 3+/n], it follows that

1[»(3 m < 3v/n : Cap (R[0,n + m]) < E[Cap (R,)] — % : (%dp'p) : \/ﬁ) > CZA
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Using the monotonicity property of Cap (R;) in ¢ we finally conclude that

P(Cap (R[0,n]) < E[Cap (R,)] — % - (%dp'p) : \/ﬁ) >,

and hence Chebyshev’s inequality again finishes the proof in case (ii). O
4. CENTRAL LIMIT THEOREM

We start this section by recalling the Lindeberg-Feller theorem. Then, we give
the proof of Theorem [[.11

Theorem 4.1 (Lindeberg-Feller). For each n let (X, ;: 1 <i<mn) be a collection
of independent random variables with zero mean. Suppose that the following two
conditions are satisfied:

(i) Y E[X2,] = 0%>0asn— oo and
(i) i E[(Xn,)?1(|Xni| > €)] = 0 as n — oo for alle > 0.
Then, Sy, = Xp1+ -+ Xpn = oN(0,1) as n = .

For a proof we refer the reader to [3, Theorem 3.4.5].
Before proving Theorem [Tl we upper bound the fourth moment of Cap (R,,).
Recall that for a random variable X we write X = X — E[X].

Lemma 4.2. For all d > 6 and for all n we have
E[(Cap (Ra))] < n*.

Proof. This proof is similar to the proof of Lemma We only emphasise the
points where they differ. Again we write X,, = Cap (R,) and we set for all k£ > 1,

ak —sup{(]E{Yi])l/4i 2* Sn<2k+1}-

For k > 2 take n such that 28 < n < 28! and write n; = [n/2] and ny = n — £.
Then, Corollary 2] and the triangle inequality give

X nlla < 11 Xn, + X lla + 4] (1, n2) 14

< (e[x5] +E[xL] + 62X, | E[X2])) " + e o,

where the last inequality follows from Lemma and the fact that X,,, and X,
are independent. Using Lemma [B.3] we get that

E[X,,|E[X,] = n?
Also using the obvious inequality for a,b > 0 that (a+ b)1/4 < a'/* 4+ b'/* we obtain

Xl < (B[XL] +E[XL]) +eava
We deduce that
ar < 21/4ak_1 + C32k/2.
Setting by = 27%/2a;, we get

1
by < —

< 517 bi—1 + ¢s.
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This implies that (b, k € N) is a bounded sequence, and hence a < C2%/2 for a
positive constant C or, in other words,

41\ 1/4
(E[x.]) " s v
and this concludes the proof. |

Proof of Theorem [Tl With the notation of Corollary 1] we set

X, =Cap(R,) and X, =Cap (RS)2L+5 L) .
Corollary 2.1 reads
21{ 1
(4.1) ZXlL—2ZZ€(’)<X <ZX1L
(=1 i=1

‘We now let

2L
= Zyi,L - 7n
i=1
Using inequality (@) we get

2[
E[|E(n)|]] < 4E E(Z) <Z2élogn<2Llogn

1
(=1 i=1

where the penultimate inequality follows from Lemma for k = 1 and the fact
that fq(n) <logn for all d > 6.

Choosing L so that 2F = n'/* gives E[|€(n)|] /v/n — 0 as n — oo. We can thus
reduce the problem of showing that X, /\/n converges in distribution to showing

L
that Zle X;.1/+/n converges to a normal random variable.
We now focus on proving that

2L J—
" X,
(4.2) % = oN(0,1) asn — oc.

We do so by invoking Lindeberg-Feller’s Theorem [£1]1 From Lemma B3] we imme-
diately get that as n tends to infinity,

oL L
1 — 2 n
;E-Var(xm)~7-w-2—L:vd>o,

which means that the first condition of Lindeberg-Feller is satisfied. It remains to
check the second one, i.e.,

2L

n1ggozl IE[ zL1(|X1L|>a\/_)}

i=1

By Cauchy-Schwartz, we have

E[X0 1%zl > evi)] < E[(Kin)] P(Kin] > v/n).
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By Chebyshev’s inequality and using that Var (71 L) ~ 4 -n/2F from Lemma [3.3]
we get

_ 1
IP)(|Xi,L| > 6\/ﬁ) < 29L°

Using Lemma we now get

L L
2 1 n 1 1

1 —2 -
> - IE[XZ7L1(|X1,L|>5\/H)}N§1n 57 577 = 75— 0

i=1 =

since L = logn/4. Therefore, the second condition of Lindeberg-Feller Theorem [T
is satisfied, and this finishes the proof. O

5. ROUGH ESTIMATES IN d =4 AND d = 3

Proof of Corollary L4l In order to use Lawler’s Theorem [[.3] we introduce a ran-
dom walk S starting at the origin and independent from S, with distribution de-
noted by P. Then, as noticed already by Jain and Orey [B Section 2], the capacity
of the range reads (with the convention R_; = @)

1(Sk ¢ Ri—1) % Ps, ((Sk + Roo) "Ry, = D),

M=

(5.1) Cap (Rn) =

E
I

0

where Ro = R[1, 00).

Thus, for k fixed we can consider three independent walks. The first is S! :
[0,k] — Z? with S} = S — Sj_;, the second is S? : [0,n — k] — Z% with S? :=
Si1i — Sk, and the third is S* = S. With these symbols, equality (E.I]) reads

Cap (Rn) = Y _ 1(0 & R'1, k]) x P(R?[L, 00) N (R0, k] UR?[0,n — k) = 2).

k=0
Then, taking expectation with respect to S', S2, and S3, we get
(5.2)

E[Cap (R,)] = ZH:P(O ¢ R'1,k], R3[1,00) N (R'[0,k] UR?[0,n — k]) = @) .

Now, € € (0,1/2) being fixed, we define ¢, := en/logn and divide the above sum
into two subsets: when k is smaller than €, or larger than n — ¢,,, and when k is in
between. The terms in the first subset can be bounded just by one, and we obtain
this way the following upper bound:

E[Cap (R,)] < 2g, +nP(0 & R'[1,e,], R*[L,e,] N (RY0,e,] UR?[0,e,]) = @) .
Since this holds for any € > 0, and loge,, ~ logn, we conclude using (3] that

1 2
(5.3) lim sup oen x E[Cap (R,)] < T

n—00 n 8

For the lower bound, we first observe that ([B.2]) gives
E[Cap (Ra)] > nP(0 ¢ RM[1,n], RY[L,00] N (RH[0,n] UR[0, ]) = 2)

and we conclude the proof using (L3)). O
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Proof of Proposition [[L3 We recall L, (x) is the local time at z, i.e.,
1

n—

The lower bound is obtained using the representation (L6l), as we choose v(z) =
L,(x)/n. This gives

(5.4) Cap (Rn) > % Zx,yeZd G(l‘, y)Ln (:L‘)Ln(y) ’

and using Jensen’s inequality, we deduce that

(5.5) E[Cap (Rn)] > IS ot G, )ELn (@) La(y)]
Note that
(5.6) > GlayE = > > ElG(k5).

z,y€Z4 0<k<n 0<k’<n
We now obtain, using (3.4,

Y D EGSkSW= Y Y E[GO,Sp-)]

0<k<n 0<k’<n 0<k<n 0<k'<n
Z Z —| Snvn
O<k<n0<k’<n {1 + HSW kIH}

and this gives the desired lower bound. For the upper bound one can use that in
dimension 3,
Cap(A) < rad(A),

where rad(A) = sup,c, ||z (see [7, Proposition 2.2.1(a) and (2.16)]). Therefore
Doob’s inequality gives
ElCop (Ra)] 5 E|sw Iel| S v

and this completes the proof. O

6. OPEN QUESTIONS

We focus on open questions concerning the typical behaviour of the capacity of
the range.
Our main inequality (L)) is reminiscent of the equality for the range

(6.1) IR[0,2n]] = [R[0, n]| + [Rn, 2n]| — [R[0,n] N R[n, 2n]|.

However, the intersection term |R[0,n] NR[n,2n]| has a different asymptotics for
d> 3:

(6.2) E[|R[0,n] N R[n,2n]|] < fiara(n).

This leads us to add two dimensions when comparing the volume of the range with
respect to the capacity of the range. It is striking that the volume of the range in
d =1 is typically of order y/n as the capacity of the range in d = 3. The fact that
the volume of the range in d = 2 is typically of order n/logn like the capacity of
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the range in d = 4 is as striking. Thus, based on these analogies, we conjecture
that the variance in dimension 5 behaves as follows:

(6.3) Var (Cap (R,)) < nlogn.

Note that an upper bound with a similar nature as (LLI)) is lacking and that (L2)
is of a different order of magnitude. Indeed,

E[Cap (R[0,n] N Rn, 2n])] < E[[R[0,n] N R[n,2n][] S far2(n).
Another question would be to show a concentration result in dimension 4, i.e.,

Cap(Rn) (@)

(64 E[Cap (R,)]

We do not expect ([6.4) to hold in dimension 3, but rather that the limit would be
random.
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