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We describe the set of bounded harmonic functions for the Heckman–Opdam Laplacian

when the multiplicity function is larger than 1/2. We prove that this set is a vector space

of dimension the cardinality of the Weyl group. We give some consequences in terms of

the associated hypergeometric functions.

1 Introduction

In this paper, we will consider the operator L (called the Heckman–Opdam Laplacian) on

Rn defined, for f a C 2 function, by

L f (x) = � f (x) +
∑

α∈R+
kα coth

〈α, x〉
2

∂α f (x)

−
∑

α∈R+
kα

|α|2
4 sinh2 〈α,x〉

2

{ f (x) − f (rαx)}. (1)

Here, � is the usual Euclidean Laplacian, R is a root system, R+ is its positive part, the

rα’s are the orthogonal reflections associated with the roots, and k is a positive function

invariant under the action of the rα’s (see Section 2). We denote by W the Weyl group, i.e.

the finite group generated by the rα’s. We denote by L the restriction of L to the set of
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W-invariant functions. A simpler formula for L is given by

L f (x) = � f (x) +
∑

α∈R+
kα coth

〈α, x〉
2

∂α f (x). (2)

Our main results are the following two theorems.

Theorem 1.1. Assume that k ≥ 1/2. Then the set of bounded W-invariant harmonic

functions for the Heckman–Opdam Laplacian is exactly the set of constant functions. In

other words, the Poisson boundary of L is trivial. �

Theorem 1.2. Assume that k ≥ 1/2. Then the set of bounded harmonic functions for

the Heckman–Opdam Laplacian is a vector space of dimension |W|. In other words, the

Poisson boundary of L is W. �

In the next section, we will give a precise definition for the terminology “har-

monic function.” We shall also discuss some consequences of our results in terms of the

Heckman–Opdam hypergeometric functions, which are particular eigenfunctions of the

operator L.

The first result (Theorem 1.1) was already known for values of k, correspond-

ing to the case of symmetric spaces of the noncompact type G/K (see [8]). The second

result (Theorem 1.2) is new even for these particular values of k, but should also be com-

pared to the situation on symmetric spaces. There, according to the fundamental work

of Furstenberg [6] (see also [7]), the Poisson boundary of the Laplace–Beltrami operator

is K/M. But as it has already been observed so far (see in particular the introduction of

[10]), in the Heckman–Opdam (also called trigonometric Dunkl) theory, the group W often

plays the same role as K or K/M. First geometrically, since there is a kind of Cartan

decomposition: any x ∈ Rd can be uniquely decomposed as w · xW, with xW the radial

part of x (lying in the positive Weyl chamber) and w ∈ W. In representation theory also

[10]: briefly, if H is the graded Hecke algebra generated by W and the Dunkl–Cherednik

operators (see Section 2), then (H, W) shares some properties of the Gelfand pair (G, K),

just as in any irreducible finite-dimensional H-module the subspace of W-invariant vec-

tors is at most one-dimensional. So in some sense Theorem 1.2 is another manifestation

(say, at an analytical or probabilistic level) of the strong analogy between W and K.

We should add that the hypothesis k > 0 is probably sufficient to get the results

of Theorems 1.1 and 1.2. Here, we restrict ourselves to the case k ≥ 1/2, because, in

this case, the stochastic process associated with L (or L) a.s. never hits the walls (the

hyperplanes orthogonal to the roots, which correspond to the singularities of L), and we

need it to be sure that the coupling we use is well defined.
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The paper is organized as follows. In Section 2, we recall all necessary defini-

tions. In Section 3, we prove Theorem 1.1 by using the probabilistic technique of mirror

coupling. In Section 4, we prove Theorem 1.2 by extending the coupling to the non-radial

process. Our main tool for this is the skew-product representation from Chybiryakov [3],

which we have to adapt to our setting.

2 Preliminaries

Let a be a Euclidean vector space of dimension n, equipped with an inner product 〈·, ·〉,
and denote by h := a + ia its complexification. We consider R ⊂ a an integral root system

(see [1]). We choose a subset of positive roots R+. Let α∨ = 2α/|α|2 be the coroot associated

with a root α and let

rα(x) = x − 〈α∨, x〉α

be the corresponding orthogonal reflection. Remember that W denotes the Weyl group

associated with R, i.e. the group generated by the rα’s. Let k : R → [1/2, +∞) be a

multiplicity function, which by definition is W-invariant. We set

ρ = 1

2

∑
α∈R+

kαα.

Let

a+ = {x | ∀α ∈ R+, 〈α, x〉 > 0},

be the positive Weyl chamber. Let also a+ be its closure, ∂a+ be its boundary, and areg be

the subset of regular elements in a, i.e. those elements which belong to no hyperplane

{α = 0}. As recalled in the introduction, any x ∈ a can be uniquely decomposed as x =
wxW, with xW ∈ a+ and w ∈ W. We call xW the radial part of x and w its angular part.

For ξ ∈ a, let Tξ be the Dunkl–Cherednik operator [2]. It is defined, for f ∈ C 1(a),

and x ∈ areg, by

Tξ f (x) = ∂ξ f (x) +
∑

α∈R+
kα

〈α, ξ 〉
1 − e−〈α,x〉 { f (x) − f (rαx)} − 〈ρ, ξ 〉 f (x).

The Dunkl–Cherednik operators form a commutative family of differential-difference

operators (see [2] or [10]). The Heckman–Opdam Laplacian L is also given by the formula

L + |ρ|2 =
n∑

i=1

T2
ξi

,

where {ξ1, . . . , ξn} is any orthonormal basis of a.
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Let λ ∈ h. We denote by Fλ the unique (see [9], [10]) analytic W-invariant function

on a, which satisfies the differential equations

p(Tξ )Fλ = p(λ)Fλ for all W-invariant polynomials p

and which is normalized by Fλ(0) = 1 (in particular, LFλ = (〈λ, λ〉 − |ρ|2)Fλ). We denote by

Gλ the unique analytic function on a, which satisfies the differential-difference equations

(see [10])

Tξ Gλ = 〈λ, ξ 〉Gλ for all ξ ∈ a, (3)

and which is normalized by Gλ(0) = 1. These functions are related by the formula

Fλ(x) = 1

|W|
∑
w∈W

Gλ(wx), (4)

for all x ∈ a and all λ ∈ h.

It was shown in [13] that 1
2L and 1

2 L are generators of Feller semigroups that

we shall denote, respectively, by (Pt , t ≥ 0) and (P W
t , t ≥ 0). We will use the following

definition for harmonic functions.

Definition 2.1. A bounded or nonnegative function h : a → R is called harmonic if it is

measurable and satisfies Pt h = h for all t > 0. �

Remark 2.1. It is well known that if h is a C 2 function such that Lh = 0, then h is

harmonic in the sense of Definition 2.1. Inversely, Corollary 2.1 shows, when k ≥ 1/2,

that any bounded harmonic function is regular; thus, it satisfies Lh = 0. On the other

hand, it is a general fact (which applies for any k > 0) that bounded W-invariant harmonic

functions are regular in a+, but we will not use this fact here. �

Observe that by definition Fρ is a W-invariant harmonic function. Moreover, it

is known (see [13], Remark 3.1) that it is bounded. So Theorem 1.1 shows that in fact Fρ

is constant equal to 1. Similarly, the functions Gwρ ’s, for w ∈ W, are harmonic and also

bounded. This last property follows from Formula (4), since the Gwρ ’s are real positive

(see [13] Lemma 3.1). In fact, one has the following corollary.

Corollary 2.1. If k ≥ 1/2, then any bounded harmonic function is a linear combination

of the Gwρ ’s, w ∈ W. �

Proof. The only thing to prove is that the Gwρ ’s are linearly independent. This results

from the fact that they are all eigenfunctions of the Dunkl–Cherednik operators but for
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different eigenvalues. More precisely, assume that for some real numbers (cw)w∈W, we

have

∑
w∈W

cwGwρ = 0.

By applying the operators p(Tξ ), with p polynomial, we get

∑
w∈W

cw p(wρ)Gwρ = 0 for all p.

From this, and the fact that Gwρ (0) = 1 for all w, it is easily seen that we must have cw = 0

for all w. �

3 The W-invariant Case: Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. For this, we will use the stochastic process

(XW
t , t ≥ 0) associated with L, called radial HO-process, and the so-called mirror coupling

technique.

First, it is known [12] that XW is a strong solution of the stochastic differential

equation (SDE) :

XW
t = x + Bt + V1

t ,

where (Bt , t ≥ 0) is a Brownian motion on a and

V1
t :=

∑
α∈R+

kαα

∫ t

0
coth

〈
α, XW

s

〉
ds.

Moreover, when k ≥ 1/2, XW a.s. takes values in a+, or in other words, it never reaches

∂a+ (see [12]). Now, if x, y ∈ a+, we define the couple ((XW
t , YW

t ), t ≥ 0) as follows. Set

T = inf{s | XW
s = YW

s }. Then by definition XW as above, and (XW, YW) is the unique solution

of the SDE:

(
XW

t , YW
t

) = (x, y) + (Bt , B ′
t ) + (

V1
t , V2

t

)
, for t < T , (5)

where d B ′
t = rtd Bt , with rt the orthogonal reflection with respect to the hyperplane or-

thogonal to the vector YW
t − XW

t (in particular, Levy criterion shows that B ′ is a Brownian

motion), and

V2
t :=

∑
α∈R+

kαα

∫ t

0
coth

〈
α, YW

s

〉
ds.
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For t ≥ T , we set YW
t = XW

t . The existence of this coupling is guaranteed by the fact that

equation (5) has locally regular coefficients. We also define Z W by

Z W
t := YW

t − XW
t ,

and set zW
t = |Z W

t |. It is known [12] that a.s. XW
t /t → ρ, and thus that 〈α, XW

t 〉 ∼ 〈ρ, α〉t ,

for all α ∈ R+. From this, we see that a.s. supt≥0 |V2
t − V1

t | < +∞. Then Tanaka formula

([11], p. 222) shows that

zW
t = γt + vt , for t < T ,

with γ a one-dimensional Brownian motion and a.s. supt≥0 |vt | < +∞. In particular, T is

a.s. finite.

The end of the proof is routine now. Assume that h is a bounded W-invariant

harmonic function. Then it is well known, and not difficult to show, that (h(XW
t ), t ≥ 0)

and (h(YW
t ), t ≥ 0) are bounded martingales. Thus, they are a.s. converging toward some

limiting (random) values, respectively l and l ′. Since a.s. XW
t = YW

t for t large enough, we

have a.s. l = l ′. Then usual properties of bounded martingales show that

h(x) = E[l] = E[l ′] = h(y).

Since this holds for any x, y ∈ a+, this proves well that h is constant. �

4 The Non-W-invariant Case: Proof of Theorem 1.2

In order to prove Theorem 1.2, the first idea is to extend the previous coupling to the full

process (Xt , t ≥ 0) with semigroup (Pt , t ≥ 0). For this, our tool will be the skew-product

representation founded by Chybiryakov [3] (see [7] and [4] for the one-dimensional case).

Actually, Chybiryakov dealt with Dunkl processes, so we shall first mention the changes

needed to adapt his proof to the present setting, and then explain how to combine this

representation with the coupling from the previous section.

4.1 Skew-product representation and extension of the coupling

The skew-product representation gives a constructive way to define X starting from XW,

by adding successive jumps in the direction of the roots. Let us sketch the main steps

of the construction (for more details see [3]). First, one fixes arbitrarily an order for the
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positive roots: α1, . . . , α|R+|. Then for each j ∈ [1, |R+|], set

L j f (x) := L f (x) −
∑
i≤ j

cαi (x)
{

f (x) − f
(
rαi x

)}
,

where for any root α,

cα(x) := kα

|α|2
4 sinh2 〈α,x〉

2

.

Decide also that L0 = L. Set

L̃ j f (x) := c−1
α j

(x)L j f (x),

and

L j, j+1 f (x) := c−1
α j+1

(x)L j f (x).

The goal is to define inductively a sequence of processes (X j(t ), t ≥ 0), j = 0, . . . , |R+|,
associated with the operators L j’s. First, X0 is just the radial HO-process considered

in the previous section. Next, assume that L j is the generator of a Markov process

(X j(t ), t ≥ 0). Then set

Aj
t =

∫ t

0
cα j+1

(
X j

s

)
ds,

and

τ
j

t = inf
{
s ≥ 0 | Aj

s > t
}
.

Using the martingale problem characterization, one can see that the radial part of X j

is a radial HO-process. Thus, for all α ∈ R+, |〈α, X j
t 〉| ≥ ct , for t large enough and c > 0

some constant. In particular, the increasing process Aj is bounded. Set T j = limt→+∞ Aj
t .

Then observe that τ
j

t = +∞, when t ≥ T j. This is essentially the only difference with the

Dunkl case considered in [3] (where Aj was not bounded and τ
j

t finite for all t ). But one

can still see that if

X j, j+1(t ) := X j(τ j
t

)
t < T j,

then X j, j+1, killed at time T j, is a solution of the martingale problem associated with

L j, j+1 (see for instance [5] Exercise 15, p. 263 and Section 6, p. 306). The next step is to

add jumps to X j, j+1 in the direction of the root α j+1. Namely, one define a new process X̃ j,

also denoted by X j, j+1 ∗α j+1 N in ([3] Section 2.5), which is the solution of the martingale

problem associated with L̃ j+1. Roughly, X̃ j is constructed by gluing several paths, all

with law X j, j+1 or rα j+1 X j, j+1, such that for any two consecutive paths the starting point
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of the second is the image of the end point of the first path by the reflection rα j+1 . The

lengths of the paths are determined by independent exponentially distributed random

variables. Here, the only minor change is that X̃ j explodes at some time, say T̃ j. A change

of variables shows that

lim
t→T̃ j

∫ t

0
c−1
α j+1

(X̃ j(s)) ds = +∞.

So for any t ≥ 0, one can define Ãj(t ) as the solution of the equation

t =
∫ Ãj (t )

0
c−1
α j+1

(X̃ j(s)) ds.

Differentiating this equation one get

d

dt
Ãj(t ) = cα j+1 (X̃

j(Ãj(t ))).

Then set X j+1(t ) = X̃ j(Ãj(t )), for all t ≥ 0. The preceding equation gives

Ãj(t ) =
∫ t

0
cα j+1 (X

j+1(s)) ds,

which in turn shows that X j+1 is the solution of the martingale problem associated with

L j+1, as required.

The point now is to combine this construction of X = X|R+| with the coupling of

the radial process from Section 3. We first take (X0, Y0) with law given by this coupling.

Then we define the sequence ((X j(t ), Y j(t )), t ≥ 0), j = 1, . . . , |R+|, simply by following the

previous construction for the two coordinates. Actually, this coupling is interesting only

when X = X|R+| and Y = Y|R+| never jump, but this is precisely what we need. Indeed, in

this case, we have Xt = X0(t ) and Yt = Y0(t ), for all t ≥ 0, so they coincide a.s. after some

finite time.

4.2 End of the proof

For any x ∈ a, we denote by Px the law of (Xt , t ≥ 0) starting from x. For ε ∈ (0, 1), set

Aε := {z ∈ a | Pz[X never jumps] ≥ 1 − ε}.

We know that the process (Xt , t ≥ 0) can jump, so a priori Aε � a. But we also know [12]

that a.s. X eventually stops to jump after some finite random time. This implies that

lim
t→+∞ Px[X never jumps after time t ] = 1, (6)
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for all x ∈ a. But by using the Markov property, we have for all t > 0,

Px[X never jumps after time t ] = Ex
[
PXt [X never jumps]

]
=

∫
a

Pz[X never jumps] dμx
t (z), (7)

where μx
t is the law of Xt under Px. So (6) and (7) imply that for all x ∈ a, μx

t (Aε ) → 1,

when t → +∞. In particular, Aε is nonempty. Moreover, by invariance of L under W, we

know that for any w ∈ W, the law of (wXt , t ≥ 0) under Px is Pwx. In particular, for any

w ∈ W and any ε ∈ (0, 1), we have w(Aε ∩ a+) = Aε ∩ wa+. Thus, all these subsets of Aε are

nonempty as well.

Now, let h be some harmonic function. Fix w ∈ W, and take x, y ∈ Aε ∩ wa+. Con-

sider the coupling ((Xt , Yt ), t ≥ 0) as defined above. Since (h(Xt ), t ≥ 0) and (h(Yt ), t ≥ 0) are

bounded martingales, they converge a.s. toward some limits, respectively l and l ′. We

already saw that XW and YW a.s. coincide after some time. So if both processes X and

Y never jump, they must also coincide after some time, and in this case we have l = l ′.

Since x, y ∈ Aε , this shows that

|h(x) − h(y)| = |E[l] − E[l ′]| ≤ 2C ε,

where C = sup h. In particular, by completeness of R, for any sequence (xε )ε∈(0,1), such

that xε ∈ Aε ∩ wa+ for all ε ∈ (0, 1), the limit of h(xε ) when ε tends to 0 exists, and is

independent of the chosen sequence. Call lw this limit.

For all t ≥ 0, we denote by wt the angular part of Xt . Since X eventually stops to

jump, (wt , t ≥ 0) a.s. converges, i.e. becomes stationary. Then for any w ∈ W, define the

function hw on a by

hw(x) = Px

[
lim

t→+∞ wt = w
]
.

By standard properties of Markov processes, we know that these functions are measur-

able, and Markov property implies that they are harmonic. Moreover, the above conver-

gence result for harmonic functions shows that these functions hw, w ∈ W are linearly

independent. Then set

h̃(x) :=
∑
w∈W

lwhw(x),

for all x ∈ a. All that remains to do now is to prove that h̃ = h. Indeed, if this was true,

this would prove that the vector space of bounded harmonic function has dimension |W|
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as required. By using the martingale property, we have for any t > 0

|h(x) − h̃(x)| = |Ex[h(Xt ) − h̃(Xt )]| ≤
∫

a

|h(z) − h̃(z)| dμx
t (z). (8)

We have seen that for all ε ∈ (0, 1),

μx
t (Aε ) → 1, (9)

when t → +∞. But it is not difficult to see (by using the definition of the lw’s), that for

any ε′ > 0, there exists ε > 0 such that

|h(z) − h̃(z)| ≤ ε′ ∀z ∈ Aε .

Since this holds for any ε′ > 0, (8) and (9) show that h = h̃ as required. �

Remark 4.1. We have seen in the previous proof that the family (hw)w∈W is a basis of

the space of bounded harmonic functions. Since the family (Gwρ )w∈W is another basis, it

would be interesting to know the coefficients relating these two bases.

We notice also that the hw’s are minimal. This means that if h is a nonnegative

harmonic function such that h ≤ hw for some w, then there exists a constant c ≥ 0 such

that h = chw.
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riam Paul-André Meyer: Séminaire de Probabilités 39, 337–56. Lecture Notes in Mathematics

1874. Berlin: Springer, 2006.

[8] Guivarc’h, Y., L. Ji, and J. C. Taylor. Compactifications of Symmetric Spaces. Progress in

Mathematics 156. Boston, MA: Birkhauser, 1998.

[9] Heckman, G. J., and E. M. Opdam. “Root systems and hypergeometric functions 1.” Compo-

sitio Mathematica 64 (1987): 329–52.

[10] Opdam, E. M. “Harmonic analysis for certain representations of graded Hecke algebras.”

Acta Mathematica 175 (1995): 75–121.

[11] Revuz, D., and M. Yor. Continuous Martingales and Brownian Motion, 3rd ed. Berlin:

Springer, 1999.

[12] Schapira, B. “The Heckman–Opdam Markov processes.” Probability Theory and Related

Fields 138 (2007): 495–519.

[13] Schapira, B. “Contributions to the hypergeometric function theory of Heckman and Opdam:

Sharp estimates, Schwartz space, heat kernel.” Geometric and Functional Analysis 18 (2008):

222–50.


	Introduction
	Preliminaries
	The W-invariant Case: Proof of Theorem 1.1
	The Non-W-invariant Case: Proof of Theorem 1.2 

