
POISSON BOUNDARY OF GLd(Q)

SARA BROFFERIO AND BRUNO SCHAPIRA

Abstract. We construct the Poisson boundary for a random walk supported
by the general linear group on the rational numbers as the product of �ag man-
ifolds over the p-adic �elds. To this purpose, we prove a law of large numbers
using the Oseledets' multiplicative ergodic theorem. The only assumption we
need is some moment condition on the measure governing the jumps of the
random walk, but no irreducibility hypothesis is made.

1. Introduction

The Poisson boundary of a group endowed with some measure µ, describes the
asymptotic behavior of the random walk with step law µ. In the same time it gives
a representation of bounded harmonic functions (see for instance [7] for a survey on
this topic). There are now many results on Poisson boundary of groups of matrices
(see for instance [1, 8, 10, 15, 16, 20, 23] for some of the main results in this �eld,
and [3, 9] for some surveys).

Here we consider more speci�cally groups of matrices with rational coe�cients,
which were already considered in our previous works [4, 24] for subgroups of tri-
angular matrices. The novelty in the rational case, in comparison with standard
results on real matrices, is that to describe the Poisson boundary, one has now to
consider all possible embeddings of the rational �eld in the p-adic �elds, and the
Poisson boundary is then a product of "local parts", one for each prime number p
(see Theorem 1.1 below for a precise statement of our result). This phenomenon
was already observed in [14] for the group of a�ne transformations with dyadic
coe�cients, and is very similar to some result proved in [2] in an adelic setting. It
should be noticed also that we do not need any hypothesis on the support of the
measure µ.

Denote by P∗ the set of prime numbers and let P = P∗ ∪ {∞}. For p ∈ P∗,
denote by Qp the �eld of p-adic numbers, and set by convention Q∞ = R.

If µ is a probability measure on GLd(Qp) with �nite logarithmic moment, i.e.∫ (
ln+ ||g||p + ln+ ||g−1||p

)
dµ(g) < +∞,

the associated Lyapunov exponents are the real numbers λ1(p) ≥ · · · ≥ λd(p) such
that

k∑
i=1

λi(p) = lim
n→+∞

1
n

∫
ln ||

k∧
g||p dµ∗n(g),
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where µ∗n denotes the n-fold convolution of µ and ∧ the exterior product. Denote
by Pp the parabolic subgroup of GLd(Qp) consisting of matrices (pi,j) with pi,j = 0,
when λi(p) < λj(p), and let Bp := GLd(Qp)/Pp be the associated �ag manifold.
The main result of this paper is the following:

Theorem 1.1. Let µ be a probability measure on GLd(Q) such that∑
p∈P

∫ (
ln+ ||g||p + ln+ ||g−1||p

)
dµ(g) < +∞.

Then there exists a unique probability measure ν on the space

B :=
∏
p∈P

Bp,

such that (B, ν) is the Poisson boundary of (GLd(Q), µ).

This theorem uni�es and generalizes several results on Poisson boundary of ratio-
nal matrices groups, known up to now. In particular, it has been proved separately
by F. Ledrappier [20] and V. Kaimanovich [12] that the Poisson boundary of a ran-
dom walk supported by SLd(Z) is the real �ag manifold B∞. This results is con-
tained in Theorem 1.1 because, in this case, for all p 6=∞, the associated Lyapunov
exponents are all equal to zero, thus Bp is trivial. Furthermore since Theorem 1.1
does not require any irreducibility condition, it also applies to the case of rational
a�ne group and to rational triangular matrices previously threaded by the authors
[4, 24].

We would like to remark that for general number �elds (i.e. �nite extensions
of Q) a similar result can be proved by adapting our methods (see in [24] hints to
possible generalization).

Due to its generality, our result does not say much about ν and its support. In
particular it is not true that the restriction of ν to each Bp has always full support.
For instance if µ is supported on the subgroup of upper triangular matrices, we
know [4, 24] that ν charges only one Bruhat cell of each Bp. But even this is not
optimal since µ could be supported on diagonal matrices and with all Lyapunov
exponents distinct, but in this case the Poisson boundary would be trivial (one
point). However irreducibility hypothesis can give information on the support of µ.
We have for instance the following triviality criterion:

Corollary 1.1. Let p ∈ P. If λ1(p) = λd(p), then the projection of ν on Bp is

trivial.

Conversely, if the projection of ν on Bp is trivial and no proper subspace of Qd
p

is �xed by the support of µ, then λ1(p) = λd(p).

There exists serval results in the literature to decide whether the real Lyapunov
exponents are all equal λ1(∞) = λd(∞). For instance, under irreducibility hypoth-
esis this is equivalent to ask that the closed subgroup generated by µ in GLd(R) is
amenable [11]. For other references and results on product of real random matrices,
see also [3]. It seem very likely that similar results hold on p-adic setting.

A di�erent question that is still open is to understand the behavior of the measure
ν on the product of the p-�ag manifolds, and not only of its projection on each Bp.
For instance: does ν charge the whole product or is it supported by some "diagonal"
sub-set? Is there some sort of correlation among the di�erent p-adic components?
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The main tool of the proof of Theorem 1.1 is to produce, using the multiplicative
ergodic theorem of Oseledets, a law of large numbers for random walks on GLd(Qp)
(not necessarily with rational coe�cients, see Proposition 3.1). Notice that such
result on GLd(R) or on the a�ne group over Qp was already known (see [13] and
[5] respectively). The Lyapunov exponents give the speeds of convergence and the
boundary limit of the random walk on Bp the directions. This is done in Section
3, where we also use this result to prove that Bp and B are µ-boundaries.

In Section 4, we use entropy criterion due to Kaimanovich to establish the max-
imality of (B, ν) and prove the main theorem and its corollary.

We notice that our strategy is very similar in spirit to that used by Karlsson and
Margulis in [18] in a slightly di�erent setting. But here the proof is more direct,
since we can use Oseledets theorem, and we do not need to identify the Poisson
boundary with the geometric boundary of some non-positively curved metric space.

The authors would like to thank Uri Bader for suggesting them the problem.
They are also grateful to François Ledrappier and Anders Karlsson for useful advices
and references.

2. Preliminaries

2.1. General linear group over Qp. If K is a �eld, we denote by GLd(K) the
group of invertible matrices of size d with coe�cients in K. We denote by e the
identity matrix.

For p ∈ P and v = (v1, . . . , vd) ∈ Qd
p, we set

|v|p = max
i
|vi|p, if p 6=∞ and |v|∞ =

√∑
i

|vi|2∞,

and if g ∈ GLd(Qp) we set

||g||p = sup
|v|p=1

|gv|p.

For any p ∈ P and g, h ∈ GLd(Qp) set

dp(g, h) = ln+ ||g−1h||p + ln+ ||h−1g||p,

where ln+ denotes the positive part of the function ln. It is easily checked that dp is
symmetric and satis�es the triangular inequality. It is not a distance since the set
of g ∈ GLd(Qp) such that dp(e, g) = 0 is the compact subgroup of linear isometries
of Qd

p. Furthermore dp is left-invariant:

dp(γg, γh) = dp(g, h),

for all g, h, γ ∈ GLd(Qp).
For all g, h ∈ GLd(Q), let

d(g, h) =
∑
p∈P

dp(g, h).

This de�ne a left-invariant pseudometric on GLd(Q).
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2.2. The �ag manifold. For each p ∈ P �x the sequence of Lyapunov exponents
λ1(p) ≥ · · · ≥ λd(p). The associated parabolic sub-group is

Pp = {(pi,j) ∈ GLd(Qp) | pi,j = 0 if λi(p) < λj(p)} .
The �ag manifold Bp := GLd(Qp)/Pp is then a compact separable GLd(Qp)-space.

We mention that there is a one to one map between Bp and the space of �ags,
viewed as the set of imbedded sequences of sub-spaces of Qd

p of �xed dimensions.
In fact

Bp =
{

(V1, . . . , Vr) | V1 ≤ · · · ≤ Vr = Qdp, dim(Vi) = ji ∀i ≤ r
}
,

where r is the number of distinct values taken by λ1(p), . . . , λd(p), and j1, . . . , jr
are de�ned inductively by jr = d and ji−1 = max{j < ji | λj(p) > λji(p)}, for
2 ≤ i ≤ r. To see the correspondence between Bp and this space of �ags, observe
that GLd(Qp) acts transitively on the �ags and that the parabolic subgroup Pp is
the stabilizer of the element (E1, . . . , Er), where for all i, Ei is the vector space
generated by the �rst ji vectors of the canonical basis.

Let

B :=
∏
p∈P

Bp,

equipped with the product topology. With the natural diagonal action, B is a
compact separable GLd(Q)-space.

2.3. Random walk and µ-boundaries. Let µ be a probability measure on a
locally compact separable group G. Let

(Ω,P) := (G,µ)⊗N,

be the product of N independent copies of (G,µ) (here N is the set of strictly
positive integers). If w = (wi, i ≥ 1) ∈ Ω, the random walk is the process de�ned
by

xn := w1 . . . wn ∀n ≥ 1 and x0 := e.

Observe that under P, for any �xed n, the law of xn is µ∗n, the n-th convolution
power of µ.

Assume that B is a compact separable space, endowed with a probability measure
ν and a continuous action of G. We say that ν is µ-stationary (also known as µ-
invariant or µ-harmonic), if

µ ∗ ν :=
∫
G

(gν) dµ(g) = ν,

where for all g ∈ G, gν is de�ned by

gν(f) =
∫
B

f(gz) dν(z),

for all continuous functions f . In this case, according to Furstenberg [8, 9], we say
that (B, ν) is a µ-boundary if, P-almost surely xnν converges weakly to a Dirac
measure.

A µ-boundary (B, ν) is naturally associated to a measurable function b = bB :
Ω→ B de�ned by

(1) lim
n→+∞

xnν = δb(w).

Then ν is the image of P under b.
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Denote by θ the shift transformation on Ω: if w = (wi, i ≥ 1) ∈ Ω, then

(θw)i = wi+1 i ≥ 1.

The measure P is θ-invariant and it is easy to see that the function de�ned in (1)
satis�es

w1b(θw) = b(w).
This property characterizes functions that arise from µ-boundaries, as follows from
this known result (see for instance [15, 20]):

Proposition 2.1. Let B be a compact separable G-space and let b : Ω → B be a

measurable map, such that P-a.s. we have w1b(θw) = b(w). Let ν be the law of b.
Then (B, ν) is a µ-boundary.

Proof. We give here a proof for sake of completeness. By using the invariance of P
by θ and the hypothesis on the map b we get for every continuous functions f on B

ν(f) =
∫

Ω

f(b(w)) dP(w)

=
∫

Ω

f(w1b(θw)) dP(w)

=
∫
G

(∫
Ω

f(w1b(w′)) dP(w′)
)
dµ(w1) = µ ∗ ν(f),

proving the invariance that ν is µ-stationary. The hypothesis on b also shows that
for any continuous function f , the sequence

Mn(w) := xn · ν(f) n ≥ 1,

is a bounded martingale. Thus this sequence converges a.s and in L1 toward some
limit, say νw∞(f). Since B is separable, this de�nes actually a random measure νw∞
on B, which is the weak limit of xn · ν, n ≥ 1. Observe now that for all k ≥ 1,

νw∞ = xkν
θkw
∞ P− a.s.

Moreover E[νw∞] = ν. Observe also that the Dirac measure δb(w) has the same
properties. As a consequence for any k ≥ 1, any Borel subsets O1, . . . , Ok ⊂ G and
U ⊂ B,

Pνw∞[O1 × · · · ×Ok × U ] =
∫

Ω

νw∞(U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=
∫

Ω

w1 . . . wkν
θkw
∞ (U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w)

=
∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).

For the same reason

Pδb(w)[O1 × · · · ×Ok × U ] =
∫

Ω

ν((w1 . . . wk)−1U)1(w1 ∈ O1, . . . , wk ∈ Ok) dP(w).

Thus the two measures Pνw∞ and Pδb(w) de�ned on Ω × B coincide on Fk :=
σ(w1, . . . , wk) ∨ B, for all k ≥ 1, where B denotes the Borel sets of B. Since the
�ltration (Fk)k≥0 generates the σ-algebra of Ω × B on which are de�ned these
measures, they are equal, proving that νw∞ is well a Dirac measure. This concludes
the proof of the proposition. �
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2.4. Poisson boundary and asymptotic entropy. The Poisson boundary (B, ν)
is de�ned as the maximal µ-boundary, i.e. it is the µ-boundary such that any other
µ-boundary is one of its measurable G-equinvariant quotients. A classical problem
is to decide weather a space, that is known to be a µ-boundary, is in fact the
maximal one.

For countable groups, there exists powerful techniques based on the estimation
of the entropy introduced by Kaimanovich and Vershik [16] and Derrienic [6] and
further developed by Kaimanovich (see [15] for details). Suppose that the measure
µ has �nite entropy:

H(µ) := −
∑
g∈G

µ(g) lnµ(g) <∞.

If (B, ν) is a µ-boundary and z ∈ B, it is possible to de�ne the law Pz of w ∈ Ω
conditioned by b(w) = z. Then for n ≥ 0, Pzn denotes the law of xn under Pz, i.e.

Pzn(g) = Pz(xn = g) = P(xn = g | b(w) = z).

The conditional asymptotic entropy hz is de�ned by

hz := − lim
n→+∞

ln Pzn(xn)
n

Pz − a.s.

Then (B, ν) is the Poisson boundary if, and only if, hz is equal to zero for ν-almost
every z.

3. Law of large numbers and µ-boundaries for GLd(Qp)

In this section we can assume µ to be a probability measure on GLd(Qp), not
necessarily supported on matrices with rational coe�cients. We are going to show
that, under �rst moment hypothesis, the random walk on GLd(Qp) satis�es a strong
law of large numbers, in which the "speeds" of the drift are given by the Lyapunov
exponents and the "directions" are given by an element of the associated �ag man-
ifold Bp. This approach was introduced by V. Kaimanovich in [13] for semisimple
Lie groups, as a group-geometrical version of the classical multiplicative ergodic
theorem of Oseledets (see also [18] and [17]).

Related to this result, we will see that Bp, endowed with the law of the "direc-
tion", is a µ-boundary for the random walk.

3.1. Oseledets' theorem and law of large numbers. If p =∞, let Λn = Λn(∞)
be the diagonal matrix of GLd(R) with coe�cients

(2) (Λn)i,i := enλi(∞) ∀i ≤ d.
If p ∈ P∗, let Λn = Λn(p) be the diagonal matrix with coe�cients

(3) (Λn)i,i := p
−

[
nλi(p)

ln p

]
∀i ≤ d;

where [·] is the integer part. In such a way, Λn has rational entries whose p-norms
are close to the enλi(p)'s.

Proposition 3.1. Assume that
∫
dp(e, g) dµ(g) < +∞. Then there exists a mea-

surable map

b = bp : Ω→ Bp,

such that P-almost surely b(w) is the unique element of Bp such that

(4) lim
n→+∞

1
n
dp (xn, bΛn) = 0,
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for any b in the class of b(w).

To prove this proposition we use the following lemma that translates Oseledets'
Theorem in our setting:

Lemma 3.1. Assume that
∫
dp(e, g) dµ(g) < +∞. Then there exists a measurable

map

b = bp : Ω→ Bp,

such that P-almost surely

(5) lim
n→+∞

1
n

ln ||x−1
n bΛn||p = 0,

for any b in the class of b(w).

Proof. Let us �rst recall the multiplicative ergodic theorem, �rst proved by V.I.
Oseledets [21] for real matrices and generalized by M.S. Raghunathan [22] to ma-
trices on local �elds. It says that P-a.s. there exists a �ltration of subspaces of Qd

p,

{0} = V 0(w) ⊂ V 1(w) ⊂ · · · ⊂ V r(w) = Qd
p, such that

(i) The map w → V i(w) is measurable for all i ≤ r.
(ii) For all 1 ≤ i ≤ r, we have v ∈ V i(w) \ V i−1(w) if, and only if,

lim
n→+∞

1
n

ln ||w−1
n . . . w−1

1 v||p = −λji(p),

where r and j1, . . . , jr are de�ned as in section 2.2.
Suppose that p 6=∞ (the real case is treated analogously). Denote by (e1, . . . , ed)

the canonical basis of Qd
p. Consider a matrix b ∈ GLd(Qp) such that for all i ≤ r,

b sends the family (e1, . . . , eji) into a basis of V i(w). Then b = [v1| · · · |vd], where
for all i ≤ r, (v1, . . . , vji) is a basis of V i(w). Observe that

x−1
n bΛn =

[
x−1
n v1p

−
[
nλ1(p)

ln p

]∣∣∣∣ · · ·
∣∣∣∣x−1
n vdp

−
[
nλd(p)

ln p

]]
.

Then

max
k=1,...,d

(
p

[
nλk(p)

ln p

]
|x−1
n vk|p

)
≤
∥∥x−1

n bΛn
∥∥
p
≤ d max

k=1,...,d

(
p

[
nλk(p)

ln p

]
|x−1
n vk|p

)
.

Then, since w−1
n . . . w−1

1 = x−1
n , by (ii)

lim
n→+∞

1
n

ln ||x−1
n bΛn||p = 0.

To conclude the proof, just observe that two matrices b1 and b2 give two bases of
the same �ltration {Vi(w)}i if, and only if, b−1

1 b2 is in the group Pp, thus such
matrix b can be identi�ed with an element of Bp. �

Proof of Proposition 3.1. Let x̃n = (wt1)−1 · · · (wtn)−1 = (xtn)−1 be the random
walk of law µ̃, image of µ under the map g 7→ (gt)−1. Then the Lyapunov exponents
associated to µ̃ are

λ̃i = −λd−i.
Let Λ̃n be the diagonal matrix constructed with the exponents λ̃i as in (3). For

P-almost all w there exists a b̃ ∈ GLd(Qp) such that:

lim
n→+∞

1
n

ln ||xtnb̃Λ̃n||p = 0.
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Consider the matrix s =

 0 · · · 1
... · · ·

...
1 · · · 0

 that transforms the basis (e1, . . . , ed) in

the basis (ed, . . . , e1). Then

||xtnb̃Λ̃n||p = ||xtnb̃ss−1Λ̃ns||p since ‖s‖p = ‖s−1‖p = 1

= ||xtnb̃sΛ−1
n ||p since s−1Λ̃ns = Λ−1

n

= ||Λ−1
n (̃bs)txn||p since ‖gt‖p = ‖g‖p.

Set b = ((̃bs)t)−1, then

lim
n→+∞

1
n

ln ||Λ−1
n b
−1
xn||p = 0.

We want to show now that if b is as in (5) then b and b are in the same class in
Bp. To do this observe that

(6) u ∈ Pp ⇐⇒ lim
n→+∞

1
n

ln ||Λ−1
n uΛn||p = 0⇐⇒ lim

n→+∞

1
n

ln ||Λ−1
n uΛn||p ≤ 0.

This can be proved by direct calculations using the fact that maxi,j |gi,j |p ≤ ||g||p ≤
d2 maxi,j |gi,j |p for all p ∈ P.

Then since

ln ‖Λ−1
n b
−1
bΛn‖p = ln ‖Λ−1

n b
−1
xnx

−1
n bΛn‖p ≤ ln ‖Λ−1

n b
−1
xn‖p + ln ‖x−1

n bΛn‖p,

it follows immediately that b
−1
b ∈ Pp.

On the other hand

||Λ−1
n b
−1
xn||p||Λ−1

n uΛn||−1
p ≤ ||Λ−1

n u−1b
−1
xn||p ≤ ||Λ−1

n u−1Λn||p||Λ−1
n b
−1
xn||p.

Then for every b1 = bu with u in the group Pp,

lim
n→+∞

1
n

ln ||Λ−1
n b−1

1 xn||p = 0.

Thus for all b ∈ b(w),

lim
n→+∞

1
n
dp (xn, bΛn) = lim

n→+∞

1
n

(ln+ ‖x−1
n bΛn‖p + ln+ ||Λ−1

n b−1xn||p) = 0.

It just remains to see that the class b(w) is the unique such that (4) holds. But
if b1 and b2 are two matrices such that (4) holds, then

0 = lim
n→+∞

1
n
dp (b1Λn, b2Λn) = lim

n→+∞

1
n
dp
(
e,Λ−1

n b−1
1 b2Λn

)
,

and using once more (6) we conclude. �

3.2. The spaces Bp and B are µ-boundaries. It is easily checked, using left-
invariance of dp, that the function bp de�ned in Proposition 3.1 satis�es the hy-
pothesis of Proposition 2.1. Then we immediately get

Corollary 3.1. Let µ be a probability measure on GLd(Qp). Assume that
∫
dp(e, g) dµ(g) <

+∞, and let νp be the law of bp. Then (Bp, νp) is a µ-boundary.
Let µ be a probability measure on GLd(Q). Suppose that E(d(e, w1)) < ∞. Let

b be the map from Ω to B =
∏
p∈P Bp de�ned by:

b : w 7→ b(w) = (bp(w))p∈P .
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Let ν be the law of b. Then (B, ν) is a µ-boundary.

4. Poisson boundary of GLd(Q)

To prove that B is the maximal µ-boundary, we use the following lemma, which
is a generalization of the ray criterion of V. Kaimanovich [15], already implicitly
used in our previous works [4, 24].

Lemma 4.1. Let µ be a probability measure on a countable group G with �nite

entropy. Let (B, ν) be a µ-boundary and b the associated boundary map. Suppose

that for each n there exits a measurable map Cn from B to subsets of G such that:

lim
n→+∞

P(xn ∈ Cn(b(w))) = 1 and lim
n→+∞

1
n

ln |Cn(z)| ≤ δ ν(dz)-almost surely.

Then hz ≤ δ for ν-almost all z.

Proof. Observe that

P (xn ∈ Cn(b(w))) =
∫
B

Pzn [Cn(z)] ν(dz)→ 1.

Thus, along a sub-sequence, Pzn [Cn(z)] converges to 1 for ν-almost all z.
Recall that hz is the Pz-almost sure limit of − ln Pzn(xn)/n. Now for any ε > 0

consider the set

An(z) = {g ∈ G | −hz − ε < ln Pzn(g)/n < −hz + ε} .

Then Pzn(An(z) ∩ Cn(z)) converges to 1 on a sub-sequence, while, for large n

Pzn(An(z) ∩ Cn(z)) ≤ en(ε−hz)|Cn(z)| ≤ en(ε−hz)en(δ+ε).

Thus δ − hz + 2ε ≥ 0. Since ε was arbitrarily chosen, we get hz ≤ δ. �

In order to apply this lemma in our setting we need to show that the gauge on
GLd(Q) associated to the distance d grows at most exponentially:

Lemma 4.2. For g ∈ GLd(Q) and R ≥ 0, let

B(g,R) = {h ∈ GLd(Q) | d(g, h) ≤ R}.

Then there exits a constant C > 0 such that for all g and R

|B(g,R)| ≤ CeCR.

Proof. First observe that since d(e, g−1h) = d(g, h), we have g−1B(g,R) = B(e,R).
Thus two balls with the same radius have the same cardinality, and we can restrict
us without loss of generality to the case g = e.

Observe now that if h = (hi,j) ∈ B(e,R) then for all couples of indices (i, j)∑
p∈P

ln+ |hi,j |p ≤
∑
p∈P

max
i,j

ln+ |hi,j |p ≤ d(e, h) ≤ R.

It can be shown (see for instance [4]) that there exists C ′ such that for all R∣∣∣∣∣∣
q ∈ Q |

∑
p∈P

ln+ |q|p < R


∣∣∣∣∣∣ ≤ C ′eC′R.

The desired result follows. �
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Proof of Theorem 1.1. First observe that, since µ has �nite �rst moment with re-
spect of to an exponentially growing gauge, it has �nite entropy.

For any p, consider the moment of the random walk with respect to dp:

mp =
∫
dp(e, g) dµ(g).

Observe that
∑
p∈P mp = E(d(e, w1)) < +∞. Fix F a �nite subset of P and set

mF c =
∑
p∈F c mp. By the law of large numbers, P-almost surely∑

p∈F c dp(xn, e)
n

≤
∑n
k=1

∑
p∈F c dp(xk, xk−1)

n
=

∑n
k=1

∑
p∈F c dp(wk, e)
n

→ mF c .

Fix ε > 0 and b = (bp)p∈P ∈ B, and set

CF,εn (b) =

g ∈ GLd(Q) | dp(g, bpΛn(p)) ≤ n ε ∀p ∈ F,
∑
p∈F c

dp(g, e) ≤ n (mF c + ε)

 .

Then by Proposition 3.1

P
[
xn ∈ CF,εn (b(w))

]
→ 1.

To apply Lemma 4.1, we need to control the cardinality of CF,εn . Suppose that
CF,εn (b) is nonempty and let g0 ∈ CF,εn (b). Then for all g ∈ CF,εn (b),

d(g0, g) =
∑
p∈P

dp(g0, g)

≤
∑
p∈F

(dp(g0, bpΛn) + dp(bpΛn, g)) +
∑

p∈P−F
(dp(g0, e) + dp(e, g))

≤ 2n (|F |ε+mF c + ε)

Thus

1
n

ln |CF,εn (b)| ≤ 1
n

ln |B(g0, 2n (|F |ε+mF c + ε))| ≤ 2nC (|F |ε+mF c + ε) +
lnC
n

.

Thus for all �nite F and all ε > 0,

hz ≤ 2C(|F |ε+mF c + ε).

Letting ε go to zero and F grow to P (in such a way mF c goes to zero), it follows
that hz = 0 and thus that (B, ν) is the Poisson boundary. �

To conclude we prove our triviality criterion:

Proof of Corollary 1.1. It is immediate that if λ1(p) = λd(p) then Pp = GLd(Qp),
thus Bp is trivial.

Suppose now that the projection of ν on Bp is trivial , but that λ1(p) > λd(p).
In this case Bp is nontrivial and the projection of ν on Bp is a dirac measure whose
mass is concentrated in a point b ∈ Bp that is �xed by the support of µ. Then the
support of µ �xes all sub-spaces that compose the nontrivial �ag associated to b.
This contradicts the fact that no proper subspace of Qd

p is �xed by the support of
µ. �
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