POISSON BOUNDARY OF GL4(Q)

SARA BROFFERIO AND BRUNO SCHAPIRA

ABsTrRACT. We construct the Poisson boundary for a random walk supported
by the general linear group on the rational numbers as the product of flag man-
ifolds over the p-adic fields. To this purpose, we prove a law of large numbers
using the Oseledets’ multiplicative ergodic theorem. The only assumption we
need is some moment condition on the measure governing the jumps of the
random walk, but no irreducibility hypothesis is made.

1. INTRODUCTION

The Poisson boundary of a group endowed with some measure pu, describes the
asymptotic behavior of the random walk with step law p. In the same time it gives
a representation of bounded harmonic functions (see for instance [7] for a survey on
this topic). There are now many results on Poisson boundary of groups of matrices
(see for instance [1, 8, 10, 15, 16, 20, 23] for some of the main results in this field,
and [3, 9] for some surveys).

Here we consider more specifically groups of matrices with rational coefficients,
which were already considered in our previous works [4, 24] for subgroups of tri-
angular matrices. The novelty in the rational case, in comparison with standard
results on real matrices, is that to describe the Poisson boundary, one has now to
consider all possible embeddings of the rational field in the p-adic fields, and the
Poisson boundary is then a product of "local parts", one for each prime number p
(see Theorem 1.1 below for a precise statement of our result). This phenomenon
was already observed in [14] for the group of affine transformations with dyadic
coefficients, and is very similar to some result proved in [2] in an adelic setting. It
should be noticed also that we do not need any hypothesis on the support of the
measure .

Denote by P* the set of prime numbers and let P = P* U {oc}. For p € P*,
denote by Q, the field of p-adic numbers, and set by convention Q,, = R.

If i is a probability measure on GL4(Q,) with finite logarithmic moment, i.e.

/ (In* [lglly + 0+ llg™11,) dia(g) < +o0,

the associated Lyapunov exponents are the real numbers A;(p) > -+ > A\y(p) such

that
1 k
Son = tim [l Al a7 o),
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where p*" denotes the n-fold convolution of p and A the exterior product. Denote
by P, the parabolic subgroup of GL4(Q,,) consisting of matrices (p; ;) with p; ; =0,
when A;(p) < Aj(p), and let B, := GL4(Qp)/ P, be the associated flag manifold.
The main result of this paper is the following:

Theorem 1.1. Let p be a probability measure on GL4(Q) such that

> [ Wt llglly + 0% 1lg ™) due) < +ox.

peP

Then there exists a unique probability measure v on the space

B:= [] By,

pEP

such that (B, v) is the Poisson boundary of (GL4(Q), ).

This theorem unifies and generalizes several results on Poisson boundary of ratio-
nal matrices groups, known up to now. In particular, it has been proved separately
by F. Ledrappier [20] and V. Kaimanovich [12] that the Poisson boundary of a ran-
dom walk supported by SL4(Z) is the real flag manifold B.,. This results is con-
tained in Theorem 1.1 because, in this case, for all p # oo, the associated Lyapunov
exponents are all equal to zero, thus B,, is trivial. Furthermore since Theorem 1.1
does not require any irreducibility condition, it also applies to the case of rational
affine group and to rational triangular matrices previously threaded by the authors
[4, 24].

We would like to remark that for general number fields (i.e. finite extensions
of Q) a similar result can be proved by adapting our methods (see in [24] hints to
possible generalization).

Due to its generality, our result does not say much about v and its support. In
particular it is not true that the restriction of v to each B, has always full support.
For instance if p is supported on the subgroup of upper triangular matrices, we
know [4, 24] that v charges only one Bruhat cell of each B,. But even this is not
optimal since p could be supported on diagonal matrices and with all Lyapunov
exponents distinct, but in this case the Poisson boundary would be trivial (one
point). However irreducibility hypothesis can give information on the support of p.
We have for instance the following triviality criterion:

Corollary 1.1. Let p € P. If Mi(p) = Aa(p), then the projection of v on B, is
trivial.

Conversely, if the projection of v on B, is trivial and no proper subspace of Qg
is fized by the support of u, then A1 (p) = Aa(p).

There exists serval results in the literature to decide whether the real Lyapunov
exponents are all equal A1 (00) = Ag(00). For instance, under irreducibility hypoth-
esis this is equivalent to ask that the closed subgroup generated by p in GLg(R) is
amenable [11]. For other references and results on product of real random matrices,
see also [3]. It seem very likely that similar results hold on p-adic setting.

A different question that is still open is to understand the behavior of the measure
v on the product of the p-flag manifolds, and not only of its projection on each B,,.
For instance: does v charge the whole product or is it supported by some "diagonal"
sub-set? Is there some sort of correlation among the different p-adic components?
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The main tool of the proof of Theorem 1.1 is to produce, using the multiplicative
ergodic theorem of Oseledets, a law of large numbers for random walks on GL4(Q))
(not necessarily with rational coefficients, see Proposition 3.1). Notice that such
result on GL4(R) or on the affine group over Q, was already known (see |13] and
[5] respectively). The Lyapunov exponents give the speeds of convergence and the
boundary limit of the random walk on B, the directions. This is done in Section
3, where we also use this result to prove that B, and B are p-boundaries.

In Section 4, we use entropy criterion due to Kaimanovich to establish the max-
imality of (B, v) and prove the main theorem and its corollary.

We notice that our strategy is very similar in spirit to that used by Karlsson and
Margulis in [18] in a slightly different setting. But here the proof is more direct,
since we can use Oseledets theorem, and we do not need to identify the Poisson
boundary with the geometric boundary of some non-positively curved metric space.

The authors would like to thank Uri Bader for suggesting them the problem.
They are also grateful to Francois Ledrappier and Anders Karlsson for useful advices
and references.

2. PRELIMINARIES

2.1. General linear group over Q,. If K is a field, we denote by GL4(K) the
group of invertible matrices of size d with coefficients in K. We denote by e the
identity matrix.

For p € P and v = (v1,...,va) € QF, we set

lv], = miaux|vi|p7 ifp£oco and |v|e = Z|vl|go,
\

and if g € GLy(Q,) we set

lgll, = sup [gvlp.

v|p=1
For any p € P and g,h € GLq(Q,) set
dy(g,h) = 10" |lg™ hll, +In™ [[h ™ g,

where In™ denotes the positive part of the function In. It is easily checked that dp is
symmetric and satisfies the triangular inequality. It is not a distance since the set
of g € GL4(Qp) such that dp(e, g) = 0 is the compact subgroup of linear isometries
of Qg. Furthermore d), is left-invariant:

dp(v9,7h) = dyp(g, h),

for all g, h,y € GLq(Qy).
For all g,h € GL4(Q), let

d(g,h) = dy(g,h).

peEP

This define a left-invariant pseudometric on GL4(Q).
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2.2. The flag manifold. For each p € P fix the sequence of Lyapunov exponents
A1(p) > -+ > Aia(p). The associated parabolic sub-group is

By = {(pij) € GLa(Qyp) | piy = 0 if Ai(p) < Aj(p)} -

The flag manifold B, := GL4(Q,)/P, is then a compact separable GL4(Q,)-space.

We mention that there is a one to one map between B, and the space of flags,
viewed as the set of imbedded sequences of sub-spaces of Qg of fixed dimensions.
In fact

Bp:{(V17--.7Vr)|V1§~~~§W:Qg, dim(V;) = j; Vi<r},

where r is the number of distinct values taken by A1(p),...,Aa(p), and j1,...,J-
are defined inductively by j, = d and j;—1 = max{j < j; | A\;j(p) > Aj,(p)}, for
2 < i < r. To see the correspondence between B, and this space of flags, observe
that GLq(Q,) acts transitively on the flags and that the parabolic subgroup P, is
the stabilizer of the element (F1,...,E,), where for all i, F; is the vector space
generated by the first j; vectors of the canonical basis.

Let
B:= [] B,
pEP
equipped with the product topology. With the natural diagonal action, B is a
compact separable G'L;(Q)-space.

2.3. Random walk and p-boundaries. Let p be a probability measure on a
locally compact separable group G. Let

(Q7 P) = (G’ M)®N7

be the product of N independent copies of (G, u) (here N is the set of strictly
positive integers). If w = (w;,4 > 1) € Q, the random walk is the process defined
by
Ty i=wWi...w, Vn>1 and z¢:=e.

Observe that under P, for any fixed n, the law of z,, is ©*™, the n-th convolution
power of p.

Assume that B is a compact separable space, endowed with a probability measure
v and a continuous action of G. We say that v is p-stationary (also known as p-
invariant or p-harmonic), if

pok v = /G(gl/) du(g) = v,
where for all g € G, gv is defined by

o(f) = /B f(g2) dv(2),

for all continuous functions f. In this case, according to Furstenberg [8, 9], we say
that (B,v) is a p-boundary if, P-almost surely x,v converges weakly to a Dirac
measure.

A p-boundary (B, v) is naturally associated to a measurable function b = bg :
Q — B defined by

(1) LM TV = Ob(w)-

Then v is the image of P under b.
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Denote by 6 the shift transformation on Q: if w = (w;,i > 1) € Q, then
(9’(1))z = Wi41 ) > 1.
The measure P is f-invariant and it is easy to see that the function defined in (1)
satisfies
w1b(fw) = b(w).
This property characterizes functions that arise from p-boundaries, as follows from

this known result (see for instance [15, 20]):

Proposition 2.1. Let B be a compact separable G-space and let b: Q) — B be a
measurable map, such that P-a.s. we have wib(6w) = b(w). Let v be the law of b.
Then (B,v) is a p-boundary.

Proof. We give here a proof for sake of completeness. By using the invariance of P
by 6 and the hypothesis on the map b we get for every continuous functions f on B

u(f) = /Q f(b(w)) dP(w)

/Q f(wib(6w)) dP(w)
= [ (] stworbtw) deat) ) autun) = o vis)

proving the invariance that v is p-stationary. The hypothesis on b also shows that
for any continuous function f, the sequence
M, (w) =2, -v(f) n>1,

is a bounded martingale. Thus this sequence converges a.s and in L! toward some
limit, say v (f). Since B is separable, this defines actually a random measure v
on B, which is the weak limit of x,, - v, n > 1. Observe now that for all k > 1,

w 0k w

Vi, = TEVs P—a.s.
Moreover E[vY] = v. Observe also that the Dirac measure Jp(,,) has the same
properties. As a consequence for any k£ > 1, any Borel subsets Oq,...,0; C G and
U C B,
P2 Oy x - x Op x U] = / VY (U1 (w1 € Or, ..., we € Of) dP(w)
Q

= / wl...wkuzjw(U)l(wl € O1,...,wi € Oy) dP(w)
Q

= / v((wy ... wp)TTU)1(wy € Oy, ..., wy € Oy) dP(w).
Q
For the same reason

P6b(w)[01 X o+ X Op X U] = / l/((’w1 . ..wk)ilU)l(wl S 01, S, WE € Ok) dP(w)
Q

Thus the two measures Pvy, and Pdy(,) defined on © x B coincide on Fy =
o(wy,...,wg) VB, for all k > 1, where B denotes the Borel sets of B. Since the
filtration (Fk)r>o0 generates the o-algebra of @ x B on which are defined these
measures, they are equal, proving that v is well a Dirac measure. This concludes
the proof of the proposition. |
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2.4. Poisson boundary and asymptotic entropy. The Poisson boundary (B, v/)
is defined as the maximal p-boundary, i.e. it is the u-boundary such that any other
p-boundary is one of its measurable G-equinvariant quotients. A classical problem
is to decide weather a space, that is known to be a u-boundary, is in fact the
maximal one.

For countable groups, there exists powerful techniques based on the estimation
of the entropy introduced by Kaimanovich and Vershik [16] and Derrienic [6] and
further developed by Kaimanovich (see [15] for details). Suppose that the measure
1 has finite entropy:

H(p) ==Y p(g)Inp(g) < oo.
geG
It (B,v) is a p-boundary and z € B, it is possible to define the law P? of w €
conditioned by b(w) = z. Then for n > 0, PZ denotes the law of z,, under P?, i.e.

PZ(Q) = Pz(xn = g) = P(xn =49 | b(w) = Z)
The conditional asymptotic entropy h* is defined by

InP?
he o= — lim 2Fa(n)
n—-+oo n

P? — a.s.

Then (B, v) is the Poisson boundary if, and only if, h* is equal to zero for v-almost
every z.

3. LAW OF LARGE NUMBERS AND j-BOUNDARIES FOR G L4(Q))

In this section we can assume p to be a probability measure on GL4(Q,), not
necessarily supported on matrices with rational coefficients. We are going to show
that, under first moment hypothesis, the random walk on GL4(Q),) satisfies a strong
law of large numbers, in which the "speeds" of the drift are given by the Lyapunov
exponents and the "directions" are given by an element of the associated flag man-
ifold B,. This approach was introduced by V. Kaimanovich in [13] for semisimple
Lie groups, as a group-geometrical version of the classical multiplicative ergodic
theorem of Oseledets (see also [18] and [17]).

Related to this result, we will see that B, endowed with the law of the "direc-
tion", is a p-boundary for the random walk.

3.1. Oseledets’ theorem and law of large numbers. If p = 0o, let A,, = A,,(c0)
be the diagonal matrix of GL4(R) with coefficients
(2) (Ap)i =) Vi <d.

If p e P*, let A, = A, (p) be the diagonal matrix with coefficients
_{mi@)} )

(3) (An)ii:=p L r 1 Vi<d;

where [-] is the integer part. In such a way, A, has rational entries whose p-norms

are close to the e (P)’s,

Proposition 3.1. Assume that [ d,(e,g) du(g) < +oo. Then there exists a mea-
surable map
b=b,:Q— B,
such that P-almost surely b(w) is the unique element of B, such that
1
(4) lim —d, (z,,bA,) =0,

n—+oo n
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for any b in the class of b(w).

To prove this proposition we use the following lemma that translates Oseledets’
Theorem in our setting:

Lemma 3.1. Assume that [ d,(e,g) du(g) < +oo. Then there exists a measurable
map

b=b,: Q— B,,
such that P-almost surely

1
(5) lim —In|jz, 'bA,||, =0,

n—+oo N

for any b in the class of b(w).

Proof. Let us first recall the multiplicative ergodic theorem, first proved by V.L
Oseledets [21] for real matrices and generalized by M.S. Raghunathan [22] to ma-
trices on local fields. It says that P-a.s. there exists a filtration of subspaces of Qg,
{0} =VO(w) c VH(w) C --- C V"(w) = Q, such that

(i) The map w — Vi(w) is measurable for all i < 7.

(ii) For all 1 <i <r, we have v € Vi(w) \ Vi~!(w) if, and only if,

. -1 -1
HEI_POOglnHwn <o Wy UHP = _)\ji(p)7
where r and ji,...,j, are defined as in section 2.2.

Suppose that p # oo (the real case is treated analogously). Denote by (eq, ..., eq)
the canonical basis of Qg. Consider a matrix b € GLq(Q,,) such that for all ¢ < r,
b sends the family (e, ...,e;,) into a basis of V*(w). Then b = [v1]-- - |vg4], where
for all i <r, (vi,...,vj,) is a basis of V?(w). Observe that

z, togp” (=] } .

1 1 _[nh(m]
x, bA, = |z, v1p L P

Then

max <p["?nkff)] x;lvk|p) < oz bAn|, < d max <p["Tffo”] |33;1vklp) _

yeeny

Then, since w; ' ... w;* =z, by (ii)

1
lim —In ||x;1bAn||p =0.
n—-+4oo n
To conclude the proof, just observe that two matrices b; and b give two bases of
the same filtration {Vj(w)}; if, and only if, b; *by is in the group P,, thus such
matrix b can be identified with an element of B,,. O

Proof of Proposition 3.1. Let 7, = (w!)~!---(w})™' = (2¢)~! be the random

: n
walk of law [z, image of ;1 under the map g — (g*)~!. Then the Lyapunov exponents
associated to u are

Ai = —Ad—;-
Let A, be the diagonal matrix constructed with the exponents A; as in (3). For

P-almost all w there exists a b € GL4(Qp) such that:

1 —
lim —In|[2}bA,]|, = 0.
n—+oo n



POISSON BOUNDARY OF GL4(Q) 8

0 ... 1
Consider the matrix s = oL that transforms the basis (e,...,eq) in
1 .-~ 0
the basis (eq,...,e1). Then
||$$j77xn”p = szgss_lj\nsHp since [|s[l, = [ls7"(l, = 1
= \|xZEsA;1\|p since s 'Aps = A
= AL (09) @l since [lg'llp = llg]lp-

Set b = ((bs)*)~!, then
lim = JA5 ], = 0.

n—+oo n

We want to show now that if b is as in (5) then b and b are in the same class in
B,,. To do this observe that

1 1
(6) we€P, < lim —In||A'ul,|l, =0<= lim —In||A, uA,|, <O0.
n—-+oo n n—-+oo n

This can be proved by direct calculations using the fact that max; ; |gi ;1 < |lgllp <
d2 max; ; |gi,j‘p for all pE P.
Then since

A bAL = [ AL wzy oA, < In [ ALYD il + In |2y TOA
it follows immediately that b b € P,.

On the other hand

1 _ _ -1 L I

]S T e 7 | e | Vo Tt M | O Ve W | S [

Then for every by = bu with u in the group P,
o1 11 _
i Szt = o

Thus for all b € b(w),

1 1
lim —d, (z,,bA,) = lim —(In™ ||z, bA,|[, +In"||A, 0 2, |,) = 0.
n

n—+oo n n—-+o0o
It just remains to see that the class b(w) is the unique such that (4) holds. But
if b; and by are two matrices such that (4) holds, then

1 1
0= lim —d,(b1An,boA,) = lim —d, (e, A, 'by "boA,,)

n—-4oo n n—4oco n

and using once more (6) we conclude. O

3.2. The spaces B, and B are p-boundaries. It is easily checked, using left-
invariance of d,, that the function b, defined in Proposition 3.1 satisfies the hy-
pothesis of Proposition 2.1. Then we immediately get

Corollary 3.1. Let y1 be a probability measure on GL4(Qp). Assume that [ dy(e, g) du(g) <
+o0, and let v, be the law of b,. Then (Bp,v,) is a p-boundary.

Let p be a probability measure on GL4(Q). Suppose that E(d(e,w1)) < co. Let
b be the map from Q to B = HpeP B, defined by:

b w s b(w) = (by(w))pep.
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Let v be the law of b. Then (B,v) is a p-boundary.

4. POISSON BOUNDARY OF GL4(Q)

To prove that B is the maximal py-boundary, we use the following lemma, which
is a generalization of the ray criterion of V. Kaimanovich [15], already implicitly
used in our previous works [4, 24].

Lemma 4.1. Let p be a probability measure on a countable group G with finite
entropy. Let (B,v) be a p-boundary and b the associated boundary map. Suppose
that for each n there exits a measurable map C,, from B to subsets of G such that:

lim P(x, € Cp(b(w))) =1 and lim 1 In|Cph(z)| <6 v(dz)-almost surely.
n

n——+oo n—-+4oo

Then h* < § for v-almost all z.

Proof. Observe that

P (2, € Co(b(w))) = /sz [Co(2)] p(dz) — 1.

Thus, along a sub-sequence, PZ [C),(z)] converges to 1 for v-almost all z.
Recall that h* is the P#-almost sure limit of —InPZ(z,)/n. Now for any € > 0
consider the set

An(2) ={9€ G| —-h*—e<InPi(g9)/n < —h* +¢}.
Then PZ (A, (z) N Cy,(z)) converges to 1 on a sub-sequence, while, for large n
P2 (A, (2) N Cr(2)) < e"E7h)|0,(2)] < enE=hT)en(0+e),
Thus d — h* + 2e > 0. Since ¢ was arbitrarily chosen, we get h* < 4. O

In order to apply this lemma in our setting we need to show that the gauge on
GL4(Q) associated to the distance d grows at most exponentially:

Lemma 4.2. For g € GL4(Q) and R > 0, let
B(g,R) = {h € GL4(Q) | d(g, h) < R}.
Then there exits a constant C > 0 such that for all g and R
|B(g, R)| < Ce“F.

Proof. First observe that since d(e,g~'h) = d(g, h), we have g~ B(g, R) = B(e, R).
Thus two balls with the same radius have the same cardinality, and we can restrict
us without loss of generality to the case g = e.

Observe now that if h = (h; ;) € B(e, R) then for all couples of indices (3, j)

> It higl, <> maxIn® |hi ;, < d(e, h) < R.
peP peP ’

It can be shown (see for instance [4]) that there exists C’ such that for all R

geQ| ) mtgl, <Rp| < e
peEP

The desired result follows. O
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Proof of Theorem 1.1. First observe that, since p has finite first moment with re-
spect of to an exponentially growing gauge, it has finite entropy.
For any p, consider the moment of the random walk with respect to dy:

my = /dp(e,g) du(g).-

Observe that > pm, = E(d(e,w1)) < +oo. Fix I a finite subset of P and set
Mpe = Zpch myp. By the law of large numbers, P-almost surely

Zpch dp(2n,€) < ko1 EpGFC dp(Tr, Tr—1) _ Dkt ZpGFC dp(wg, €)
n o n n

— Mpe.

Fix ¢ > 0 and b = (by),cp € B, and set

CHe(b) = 4 g € GLa(Q) | dp(g,bpAn(p)) <neVp e F, Y dy(g,e) <n(mpe +¢)
pEF®

Then by Proposition 3.1
P [z, € CE*(b(w))] — 1.

To apply Lemma 4.1, we need to control the cardinality of CX*¢. Suppose that
CI'¢(b) is nonempty and let gy € CL*¢(b). Then for all g € CI¢(b),

d(go,9) = Y dn(90,9)

peEP
< Y (dp(go,bpAn) + dp(bpAn,9)) + D (dp(go,e) + dyle, g))
pEF pEP—F

< 2n(|Fle + mpe +¢)

Thus

1 1 InC
ﬁln|05’€(b)| < Eln\B(go,Zn(|F|5—|—mpc +e))| <2nC (|Fle + mpe +€) + HT

Thus for all finite ' and all € > 0,
h* <2C(|F|e + mpe + €).

Letting & go to zero and F' grow to P (in such a way mpe. goes to zero), it follows
that h* = 0 and thus that (B, v) is the Poisson boundary. O

To conclude we prove our triviality criterion:

Proof of Corollary 1.1. Tt is immediate that if A;(p) = Aq(p) then P, = GL4(Q,),
thus B, is trivial.

Suppose now that the projection of v on B, is trivial , but that Ai(p) > Aa(p).
In this case B, is nontrivial and the projection of v on B, is a dirac measure whose
mass is concentrated in a point b € B, that is fixed by the support of ;. Then the
support of p fixes all sub-spaces that compose the nontrivial flag associated to b.
This contradicts the fact that no proper subspace of Qg is fixed by the support of
. (I
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