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Abstract

We prove the existence of non-classical p-adic automorphic eigenforms associ-
ated to a classical system of eigenvalues on definite unitary groups in 3 variables.
These eigenforms are associated to Galois representations which are crystalline but
very critical at p. We use patching techniques related to the trianguline variety of
local Galois representations and its local model. The new input is a comparison
of the coherent sheaves appearing in the patching process with coherent sheaves
on the Grothendieck—Springer version of the Steinberg variety given by a functor
constructed by Bezrukavnikov.
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1 Introduction

The aim of this paper is to unravel (and explain) a new phenomenon in the theory of p-
adic automorphic forms. Given a reductive group G over a number field (overconvergent)
p-adic automorphic forms are p-adic avatars of automorphic forms on G. We usually
refer to the latter as classical automorphic forms in order to distinguish them from their
p-adic limits. Additional structures on spaces of automorphic forms, such as the Hecke-
action, naturally extend to the L-vector spaces of overconvergent p-adic automorphic
forms ST(KP), ST (KP), where the field of coefficients L is a finite extension of Q, and
KP C G(AP) is a compact open subgroup (referred to as the tame level) and k is a
weight. A central question about p-adic automorphic forms is to clarify whether a given
overconvergent p-adic automorphic form (of algebraic weight) that is an eigenform for
the Hecke action is a classical automorphic form. Often this question can be answered
in terms of the Hecke eigenvalues. Coleman’s small slope implies classical result [Col97]
and generalizations thereof (see e.g. [Kas06], [Chell], [BPS16]) asserts that this question
can be purely decided using the Hecke action at p if the p-adic valuation of the Hecke
eigenvalues at p is small compared to the weight. Beyond the numerically non critical
slope it is known that this fails. However, one can ask the same question taking into
account the full Hecke action (as opposed to the Hecke action at p).

Assume that we are in a situation where we can construct the Galois representation
pf = py attached to a p-adic eigenform f, respectively to the Hecke character x giving
the system of Hecke eigenvalues of f. Then the Hecke action away from p encodes all
the information about the p-adic Galois representation py, including the p-adic Hodge
theoretic information at places dividing p (though this is encoded in a rather indirect
and mysterious way). The naive generalization of the classicality question about over-
convergent p-adic automorphic forms can hence be phrased as follows (though we phrase
the question in a rather informal way):

Question A: Let f be an overconvergent p-adic eigenform of dominant algebraic weight
such that the corresponding Galois representation py is de Rham at places dividing p.
Is it true that f is a classical automorphic form?

We note that a softer version of this question is the following expectation that is
implied by the Fontaine-Mazur conjecture. Again we state the expectation in a rather
informal way — it might fail without more precise assumptions on the group the level,
etc. (see e.g. [BHS19, Conj. 5.1.1] for a precise formulation).

Rough Expectation B: Let S| (KP?)[x] C SL(KP) be an eigensystem (for the action
of the full Hecke algebra T generated by Hecke operators at p and away from p) in the
space ST (KP) of overconvergent p-adic automorphic forms of weight x on G. We assume
that the eigensystem x at p is of finite slope. Assume that k is dominant algebraic
and that the Galois representation p, associated to the Hecke character x : T — L is
de Rham at places dividing p. Then SI(KP)[x] contains a classical automorphic form,
i.e. its subspace S (KP)[x] of classical forms is non-zero.



Question A then can be rephrased as the question whether S¢(KP)[x] = SI(KP)[x]
in Expectation B. It is known that Question A does not have an affirmative answer
in general. Ludwig [Ludl8] and Johansson-Ludwig [JL23] have shown that there are
counterexamples for SLs. The reason for these counterexamples however, is of global
(endoscopic) nature and it remains a reasonable question to ask Question A for groups
where these phenomena do not apply, e.g. for definite unitary groups.

Expectation B has been verified for GLg (this is basically [Kis03]), and generalizations
of Kisins’ result were proven by Bellaiche and his coauthors ([BC06],[Bel12] and [BD16]).
For definite unitary groups, and under Taylor—Wiles assumptions, these results were
vastly generalized in [BHSI7a], [BHSI19]. We point out that in the cases treated in
[BHS17a] the results imply that S<(KP)[x] = SI(KP)[x], while the more general case
in [BHSI19] only allows to construct some classical form in the eigensystem (though no
counterexample to Question A is constructed in loc. cit.). The reason for this difference
is due to a phenomenon in the geometry of eigenvarieties (i.e. rigid analytic spaces
parametrizing the systems of Hecke eigenvalues in the space of overconvergent p-adic
automorphic forms of finite slope), respectively in the geometry of their local Galois-
theoretic counterparts (the so-called trianguline variety of [BHS17b]). In the case treated
in [BHS17a] the trianguline variety is smooth at the Galois representations in question
(and hence the eigenvariety is local complete intersection). In general the trianguline
variety is not smooth, and as a consequence one can construct non-smooth points on the
corresponding eigenvarieties, see [BHSI9, Thm. 5.4.2]. It is this failure of smoothness
that prevents [BHSI9] from identifying S<'(KP)[x] and S{(KP)[x].

In this paper we prove that the answer to Question A is no for definite unitary groups
in three variables (see Theorem below for a more precise formulation).

Theorem 1.1. There exists a unitary group in three variables U, a tame level KP, a
dominant algebraic weight k and a Hecke character x : T — L that occurs in the space
ST(KP)g of overconvergent automorphic forms of finite slope and weight k such that the
eigenspace S| (KP)[x] contains classical as well as non-classical eigenforms.

The construction of this example also clarifies the role of the singularities of the
trianguline variety X;;. The precise results we prove suggest that the answer to Question
A is no, whenever the dualizing sheaf wx, , is not locally free at the point defined by
p (and the refinement associated to y), i.e. whenever Xy, is non-Gorenstein at this
point (we refer to Theorem below for the precise link with wx,,). In the three
dimensional case, this results in a precise comparison of the dimensions of the eigenspaces
SH(EP)[X] C SLHEP)[]-

We point out that, in contrast to [LudI8§] and [JL23|] this is a purely local p-adic
phenomenon. Moreover, the theorem implies that the usual invariants (i.e. the Hecke
action, respectively the p-adic Hodge theoretic information of the associated Galois rep-
resentation) can not distinguished between classical and non-classical forms. We like to
refer to the non-classical forms in such eigensystems as undercover automorphic forms.

The main result, and in particular the occurrence of the dualizing sheaf wx, , therein,



is inspired by the categorical point of view in the p-adic Langlands program, see [EGH23].
The space of overconvergent p-adic automorphic forms of finite slope ST(KP)g can be
viewed as the topological dual of the global sections of a coherent sheaf (that we simply
refer to as the sheaf of p-adic automorphic forms) on the rigid analytic generic fiber of
the universal deformation space of Galois representations (more precisely, on the product
of this space with the space of continuous characters of a maximal torus T'(Q,) C G(Q,)
at p). The support of this sheaf is, by definition, the corresponding eigenvariety. The
local-global-compatibility conjectures [EGH23l, Conj. 9.6.8 and Conj. 9.6.16] give a pre-
cise description of this sheaf in terms of the geometry of moduli stacks of (¢, I')-modules
(that are closely related to the trianguline variety). More precisely, the categorical ap-
proach to the p-adic Langlands program asks for a functor from certain (locally analytic)
representations of G(Q,) to sheaves on stacks of (¢, I')-modules, and the sheaf of p-adic
automorphic forms is the globalization of the evaluation of this functor on a specific
representation. One of the punchlines of [EGH23] (see section 1.6 therein for a more
detailed discussion) is that avatars of the envisioned functor have been around in number
theory during the past decades in the context of the Taylor—Wiles patching method, in
particular patching functors as used for example in [EGS15] (or also in [BHS19, 5.]) A
crucial point in the proof of the main theorem is the identification of such a patching
functor with an explicit local functor, see Theorem below. This partially confirms
expectations in the categorical picture, see [EGH23, Expectation 6.2.27].

Note that the multiplicity result in Theorem [I.2] has some striking consequence for
the p-adic Langlands Program for GL3(Q,). It implies that the locally analytic repre-
sentation of GL3(Q,) on the Hecke eigenspace of overconvergent p-adic modular forms
over G corresponding to a Galois representation p as in Theorem contains locally
algebraic vectors which are not in the socle of the representation (see Remark .
After finishing this works, the authors learned that Ding also proved examples of this
penomena for generic Galois representations (see [Dinl).

We now describe our results in more detail. Let F' be a totally real number field
and let E/F be a CM (imaginary) quadratic extension in which every place v|p in F
splits in E. Let U be a unitary group (over Q) in n variables for the quadratic extension
E/F which is compact at infinity. By the hypothesis on p the group Ug, is a product
of general linear groups over finite extensions of Q, and we denote 7' a maximal torus
of Ug,. We also fix a finite extension L/Q, which is big enough to split £. Let O, C L
be its ring of integers, 7y, a uniformizer and kj, its residue field.

For any continuous character § : T'(Q,) — L*, we can define a weight x (which is
given by the derivative of ¢ at 1) and a character of the Atkin—Lehner ring A(p) (the ring
of Hecke-operators at p, see Deﬁnition that we still denote by §. We will assume that
870 is algebraic where T% C T(Q,) is the maximal compact subgroup. Let K? C U(AP)
be a tame level and let S be a finite set, containing places above p, away from which KP?
is hyperspecial. We write T® for the unramified Hecke algebra at places not in S and
T = T ®z A(p). Associated to these data we consider the spaces SI(KP?) and S¢(KP),
see Definition for the precise definition, which come equipped with an action of T®



and A(p).

Given a character x — Llet x = x°®6 and consider the eigenspaces ST (KP)[x]
and S¢(KP)[x]. We note that the classical subspace S (KP)[x] is zero unless x is domi-
nant algebraic. To an eigenvector f € SI(KP)[x] we can associate a Galois representation
p = py = py : Galg = Gal(E/E) — GL,(Q,). For the precise form of the main result
we introduce the following (strong) Taylor—Wiles hypothesis. Let 5 : Galp — GLy, (k1)
be the semisimplification of the reduction modulo the maximal ideal of O of p. We
assume that (see Hypothesis in the text)

S:TS

p>2,

E/F is unramified and ¢, ¢ E,

U is quasi-split at all finite places of F) (1)
if a place v of F' is inert in E, then K, is hyperspecial,

p is absolutely irreducible and p(Galg(c,)) is adequate.

For simplicity of the exposition we assume now that p is totally split in F' (in the
core of the paper we work in the general case). If the representation p is crystalline at
v|p, py can be described by its associated filtered isocrystal which is a finite dimensional
L-vector space Dqis(py) endowed with a linear automorphism ¢ € GL(Dqyis(py)) and a
complete flag D*, called the Hodge—Tate filtration (in our case, this is a complete flag as
we will assume that p, has regular Hodge-Tate weights). We say that p, is p-generic if
the ratio of two of its eigenvalues is not in {1, p}. In this case the character § determines
an order of the eigenvalues of ¢ (that is called a refinement of p,) which in turn (using
the fact that the p-eigenvalues are pairwise distinct) defines another complete flag Fo on
Deris(py) which is g-stable. We denote w5, € &, the relative position of the flags F,
and D*® in the flag variety of Deyis(py). When w5, = wo is the longest element of &,
i.e. when the two flags D*® and F, are in generic position, we say that f is non-critical at
v. The “most critical case” is the case where w, s, = 1, i.e. when the two flags coincide.
In this case we say that f is very critical at v.

Theorem 1.2. Assume n = 3. Let 6 : T(Q,) — L™ be a continuous character of
weight k dominant algebraic. Let x° : T — L be a character and let x = x° @ 6. We
assume that the eigenspace Si(KP)[x] is non-zero and that for any v|p the local Galois
representation py, = py|cal,, : Galp, — GL3(Qp) is crystalline with distinct Hodge-
Tate weights and is p-generic. Assume moreover that the Taylor—Wiles hypothesis
is satisfied. Let r be the number of places v|p in F' such that w, s, = 1. Then

dim S (K?)[x] = 2" dim S (K7) ]

We refer to Corollary for a more general statement where p is not necessarily
totally split in F'.

Theorem would be vacuous without proving the existence of characters x and
(and a group U and a tame level KP) such that the corresponding eigenspace S¢(KP)[x]



is non-zero and consists of very critical forms. As there exist only countably many
classical automorphic forms, but uncountably many flags it doesn’t seem very easy to
construct an f with w, s = 1. This is Corollary the main result of section , which
uses global automorphic methods that are rather disjoint from the methods of the other
parts of the paper. The Galois representation corresponding to the constructed Hecke
character is induced from a degree 3 extension of E.

We finally discuss the relation of these results with patching functors and the cate-
gorical approach to a p-adic Langlands correspondence. Assume that 6 = 0,0%" is the
product of a dominant algebraic character d) and a smooth unramified character 03"
(which is in fact implied by the assumption that p, is crystalline). As the notation
suggests, the character §%" corresponds to the choice of a refinement R of p, == (py)y|p-
Let &, = Spec(R),) be the scheme associated to the universal deformation ring of p,.
Using results of [BHS19], we can construct a subscheme

X,?:;z = Spec(Rg;r’;z) C X,,
of “quasi-trianguline” deformations of p, associated to the refinement R. By loc. cit. this
scheme has a local model modeled on the Steinberg variety (or rather its “Grothendieck—
Springer” variant) and its irreducible components X;g’w are labeled by the Weyl group
W of [[,, GL3. It is known that these irreducible components are normal and Cohen—
Macaulay.

Let’s denote A = 6|70 (= 670 ), this is a dominant algebraic character. Using hypoth-
esis the Taylor-Wiles method, as extended to the setting of completed cohomology
in [CEGT16], can be used ([BHSIY, 5.]) to construct coherent sheaves Mo (L())) and
Moo (M(w - X)) for w € W over ngﬁ = Spec(Rg:j;z[[:Ul,...,xg]]) for some g > 0,
that “patch” the duals of the spaces of classical, respectively p-adic, automorphic forms.

More precisely

Moo(L(N)) ® k(py) = Homp, (SS(KP)[x], L),
Moo(M(w - \) ® k(pp) = Homp(S] ,(KP)[x], L).

These coherent sheaves are in a certain precise sense associated to the U(g)-modules
L(X) (the algebraic representation of highest weight A) respectively the Verma modules
M(w - X), where g is the Lie algebra of U, = [],, GLs. The results of [BHS19] show
that the coherent sheaves My (M (w - \)) have generic rank (when nonzero) equal to
dimy, S§}(KP)[x]. Denote Xgr;% = ng;ﬁ X Xg%i’w. The key to the proof of
Theorem is the following result:

Theorem 1.3. Under the assumptions of Theorem let m = dimy, Sf\l [x]. For any
w € W, there is an isomorphism

Moo(M(w - N)) = w28, 1.

00,p, R

qtri,wwo thri,wwo

Here watiww, s the dualizing sheaf of a complete intersection X o, ) » o R

Xoo,pR



In order to prove Theorem [I.3] we extend My to a functor on the whole category
O,, the block of the BGG category O containing L(A). This is the patching functor
alluded to above. More precisely, assuming that p, is crystalline with regular Hodge-
Tate weights, and ¢ is (p-generic, we construct an exact functor

Mg : Oy — Coh(XE" 1),

such that, for every M € O, the sheaf M (M) is Cohen-Macaulay of the expected
dimension.

In spirit of the categorical approach to the p-adic Langlands correspondence the
functor M, should be a “local” functor, that is (up to multiplicities coming from con-
tributions at the places away from p) the functor My, should be the pullback, denoted

Bso, of a functor .
B, : Oy — Coh(X;1"%).

This functor B, can be written down explicitly using the local model for Xg:r;z and a
functor constructed by Bezrukavnikov [Bezl16], see[7.2| for details. Our main local result
compares My, and B, (see Corollary for the general version):

Theorem 1.4. Under the assumptions of Theorem let m = dimp, S[x]. Then there
is an isomorphism of functors Mu, ~ BZ™. As a consequence, we have

1) forallw € W, Moo(M(w - \)V) ~ 027

—atri,wwqy
Xoo,p,R

2) for allw € W, Moo(M(w - \)) ~ wﬁ’;ﬁri,wwo ;

Xoo,p,R

3) for all M € O, we have Moo(M") ~ Moo(M)Y where (-)V denote both the dual

in Oy and the Serre dual in the category of coherent sheaves.

Remark 1.5. We can only prove Theorem in the three dimensional case. However,
we expect an isomorphism M., = BL™ for higher dimensional definite unitary groups
as well.

In fact B, should factor through the category of locally analytic representations, and
is expected to extend to a functor with values in coherent sheaves on the stack of all
(¢, I')-modules (compare [EGH23| Conjecture 6.2.4 and Expectation 6.2.27]). Theorem
should be viewed as some partial evidence for these expectations. In fact, in view of
the conjectures in [EGH23| we can formulate an expectation how Theorem (and its
technical key input Theorem should generalize beyond the case of GL3, respectively
a unitary group in three variables.

Conjecture 1.6. Assume the situation of Theorem but drop the assumption that
n = 3. Then, for any w € W, there is an isomorphism

MOO(M(U) ° >\)) = w%zri,wwoa

00,0, R



where m = dimp, Sﬁl[x]. In particular, in the situation of Theorem (but dropping
the assumption n = 3) the dimension of the eigenspace x-eigenspace in the space of
overconvergent automorphic forms SI(KP) of weight k and level KP can be computed as

dim S(KP) = (dim o o © by, R) (i S (K7) )

Let us return to the three dimensional case and indicate how to prove our main
results. The key to proving Theorem is to extend the functor My, to a larger
category O,y and to a deformation (5a1g as introduced in [Soe92|, which we think of as
a deformed version of Oys. We would like to emphasize that we first prove |1){ and we
deduce the isomorphism My, ~ BE™ from this in a second time . The proof of [1)| is
based on a dévissage whose roots can be found in the paper [EGS15]. We first prove the
result in the case where Xg%w is smooth and then proceed inductively. Note that the
evistence of Bezrukavnikov’s functor Bso plays a key role in this induction. The second
main input into this induction is the computation of Moo (M(w-\)) where Mi(w-A) is a
generalized Verma module (corresponding to some parabolic Pr). These sheaves, that are
related to sheaves of p-adic automorphic forms on the partial eigenvarieties constructed
by Wu [Wu], are supported on “partially de Rham quasi-trianguline” deformation spaces

X;p_,%tri which have been studied by Breuil and Ding in [BD].

We finally note that the component X gr;%o is not Gorenstein and its dualizing sheaf

has a 2"-dimensional fiber at p,, which is the reason for the factor 2" in Theorem

Note that, while many constructions in the body of the paper work for arbitrary
dimension n, there are severe difficulties in generalizing our proof to a full proof of
Conjecture [1.6} one of the main inputs in the proof of Theorem is that we know that
Xg;iéw is smooth unless w = (wy),, € W = Hv‘p S3 has the property that w, € Ss is
the longest element for at least one v|p.

We now describe the content of the article. In section 2] we introduce the cate-
gory Oy)g and its deformed versions. Section |§| studies Emerton’s Jacquet functor and
gives the abstract framework to construct patching functors. In section [4, we recall the
quasi-trianguline deformation spaces of [BHS19], their local models, and their parabolic
version ([BD], [Wul). Section [5| recalls the definitions of the global objects like completed
cohomology, overconvergent automorphic forms and their patched versions. Section |§| is
devoted to the further study of the functor M, and its factorization through ng;,R,
the (global) quasi-trianguline deformation space. In section |7} we study the supports of
the sheaves Moo (M) for specific objects of Qg (and their deformed version), and we
recall results on Bezrukavnikov’s functor before deducing Theorem (in the three di-
mensional case). Finally, in section |8 we explain how to explicitly construct very critical

forms satisfying the assumptions in Theorem [1.2]for n = 3.
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Notations

We fix p a prime number. When K is a field, we fix K°P a separable closure of K we
write Galg = Gal(K®P/K). We fix L a finite extension of @, which will be chosen
sufficiently large in the text.

If b is a Lie algebra we note h* its derived Lie algebra.

2 Variants of the BGG-category O

In this section, we fix L to be a field of characteristic 0. Let G be a split reductive
group over L. Let B be a Borel subgroup, T a maximal split torus of G contained in B
and N the radical of B. We use the notation g, b, t, n... for the Lie algebras of G, B,
T, N... We denote by X*(T') the finite free abelian group Hom(T, G,, 1) of characters
of T. This abelian group can be identified with a Z-lattice in t* := Homp (¢, L). For
A € X*(T), we also write A for the character of t induced by A. Let ® be the set of roots
of the pair (G, T), ®* C ® the subset of positive roots with respect to B and A C &+
the subset of simple roots. If & € ®, we denote g, the a-eigenspace in g. We write
0 € X*(T) ®zQ for the half sum of positive roots. Let W be the Weyl group of (G, T).
For w € W, we write A — w - A for the dot action of W on X*(T') (with respect to B,
that is w - X\ == w(A + dg) — dg). We equip W with the Bruhat order corresponding to
the choice of B and we denote wg € W the longest element for this order.

If I C A is a subset of simple roots, we denote by ®; C & the subset of roots which
are sums of elements of I, P; D B the standard parabolic subgroup of G such that
pr=0b+> ,co, 9o and N; its unipotent radical. Let L; be the standard Levi subgroup
of P; and Z; be the center of L;. We say that a character A € X*(T') is dominant with
respect to Py if (A\,a") > 0 for a € I and we denote X*(T)} the set of such characters.
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When I = A, we have Py = G and we write X*(T)* = X*(T)X. We define an order
relation on X*(T'), by saying that A > p if and only if A — € 3 e+ Nav.

We write Wy for the Weyl group of (L;,T); it is the subgroup of W generated by
the simple reflections s, for a € I. Given w € W, we denote w™" (resp. w™®) the
unique minimal (resp. maximal) element for the Bruhat order having the same class as
w in Wi\W. This definition depends on I (and on the fact that the quotient is on the
left) but we hope our notation will cause no confusion. We have (wwg)™" = w™™@wy

and (wwp)™ = w™My, for any w € W . Finally, we write /W for the set of minimal
length representatives of W \W in W, i.e. TW = {w™® | w € W}.

2.1 Recollections

For I C A, we consider the full subcategory O1> of the category U(g)-mod of U/(g)-
modules whose objects are all finitely generated U(g)-modules M such that

o for any m € M, the L-vector space U(py)m is finite dimensional,

e for any h € t and any h-stable finite dimensional L-vector subspace V' C M, the
characteristic polynomial of hyy, is split in L[X].

This is the category OP/*° in [AS22] §3.1].
For M in O'>® and p € Homp(t, L), we write M* C M for the L-subspace of those
v € M such that, for any h € t, (h — pu(h))” - v =0 for some n > 1. We have

M= & M-
HEHOmL(t,L)

We write Oil’go for the full subcategory of O1'*° whose objects M satisfy M* = 0 for
0 X*(D).
Moreover, we write Oilg C (’)il’go for the full subcategory whose objects are direct

sums of finitely generated semisimple U (I7)-modules (when seen as U (I7)-modules). This
coincides with the usual parabolic (algebraic) category O, which is denoted OF in

alg
[OS15]). When I = () we simply use the notations Ogf, and Oa for Ogl’go and Oglg'
Note that (’)il’go C Ol for any I C A. As these categories depend on the choices of

g and b we write O%" (with additional decorations) instead of O, when the context is
unclear.

These categories are stable by subobject and quotients in the category of U(g)-
modules. Moreover the category (’)il’go is stable under extensions.

For any character A € X*(T)7, we write L;()) for the simple U (I)-module of highest
weight A. This is a finite dimensional L-vector space and we define the generalized Verma
module of highest weight A as

Mi(N\) = U(g) ®up,) L1(N).
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The generalized Verma module is an object of Oilg and has a unique simple quotient
which is isomorphic to L(A) = La(A). When I = (), we simply write M(\) = My(\)
and say that M(X) is a Verma module. We also denote by P()\) the projective cover
of the simple module L(A). If A is dominant with respect to B, we call P(wg - A) the
antidominant projective (with respect to A).

2.2 Nilpotent action of U(t)
Given I C A we denote by m; the augmentation ideal of U(3;) and set

A =UG1)m,
A=Ay =U{)m.

The canonical Lie algebra decomposition [; = 37 @ [} defines a canonical morphism of
Lie algebras py : [ — 37 which extends to a morphism U(l;) — U(3;) of L-algebras also
denoted by p;y. This morphism induces a surjective morphism A — Ay of Aj-algebras.

We show that the category O naturally embeds into the category U(g)a,-mod,
where U(g)a, =U(g) @ Ar.

Let M be an object of the category O1>°. Let h € t. For v € M the element h defines
an L-linear endomorphism of the finite dimensional L-vector space U(t)v and we write
h = Dy, + Nj,, for its Jordan decomposition with semisimple part Dy, ,, and nilpotent
part Np,. As M is locally U(t)-finite, uniqueness of the Jordan decomposition implies
that these endomorphisms “glue” into an endomorphism D; and a locally nilpotent
endomorphism Nj, of M such that Dy, (resp. Np,) is the restriction of Dy, (resp. Nj)
to U(t)v for any v € M.

Lemma 2.1. The endomorphism N}, is U(g)-equivariant.

Proof. By construction N and Dj, commute with the action of t and stabilize each M*.
Let « € ® and = € g,. For v € M#, we have z - v € M*T® and [h,x] = a(h)x so that

Dpz-v+ Npx-v=aDp-v+xNp-v+ alh)zv.

By definition of M*, we have Dy, - v = p(h)v for any v € M*. This implies Dpx - v =
(u(h) + a(h))z - v and Dy, - v = p(h)x - v. Therefore Npx - v = xNp, - v. We conclude
that Nj commutes with the endomorphism of M induced by x. Therefore N}, is U(g)-
equivariant. ]

Given M € O Lemma implies that we can define an U (t)-module structure on
M by letting h € t C U(t) act via Np,. As the action of each h on M is locally nilpotent,
this action extends to an A-module structure.

Lemma 2.2. Let M be an object of O1:>°, then the A-action on M factors through Ar.
Moreover, this Ar-module structure makes O1> into a full subcategory of U(g) 4,-mod.
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Proof. In order to prove that the A-action factors through A — Aj it is enough to prove
that for h € t N[ the endomorphism NNy, is zero. This is a direct consequence of the
fact that [° is a semi-simple Lie algebra and that the L-vector space U(I7)v is finite
dimensional for any v € M (by definition of O7>°). As the U(g)-action commutes with
the A-action by Lemma the module M is an U(g)a,-module. Finally we note that,
given h € t, the construction of N, is functorial in M. O

Remark 2.3. Let M € O and p € Homy(t, L) then the above construction implies
that
M¥ ={ve M| hv= (u(h)v)+pr(h))v Yh € t}.

Let M € O}, Lemma also implies that we can define another structure of U(g)-
module on M where an element h € t acts through the semisimple part Dy, and the action
of an element z € g, for a € ® is not modified. We denote this U(g)-module structure
by M®. Then M*® is an object of O, and [OSI5, Lemm. 3.2] implies that there is a
unique structure of algebraic B-module on M lifting the structure of U(b)-module on
M#s. The compatibility of this B-action with the original U(g)-module structure on M
is made explicit in the following Lemma.

Lemma 2.4. Let M be an object of ngg endowed with the B-module structure defined
above. Then
b-(X-(b71-v)=(Ad(B)X) v

foranybe B(L), X € g andv € M.

Proof. Tt is sufficient to prove the formula for b € N(L) and for b € T(L). If b € N(L),
then b = exp(n) for some n € n. It follows that Ad(b)X is equal to the finite sum
S k=0 ad(n)*X and that the action of b on M is given by the series Y ;5o 2n” (which
is locally finite). Therefore we have,

_ 1
bo(X-(b7tu)= Y (—1)8mn’ixnf.v
k>0,0>0

1 m
= Z — Z (—1)k_m< >nan£-v
ms0 M k

= Z %(ad(n)mX) -v=Ad(b)X - v.

m>=0 """

If be IT'(L), then if « € U {0} and X € g4, and if v € M*, we have

b (X (071 w) =0 (X (u(07H)v) = (1 + @) (H)p(d™ )X - v
=ab)X -v=Adb)X -v
as Ad(b)X = a(b)X. O

[e.e]

alg 88 follows:

For later use, we note that we can resolve objects in O
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Lemma 2.5. Let M be an object of Ogy,. Then there exist finite dimensional U(b)-
modules Vo and Vi such that for any h € t, the characteristic polynomials of hyy, and
hyv, are split in L[X], and an ezxact sequence of U(g)-modules

U(g) @uw) V1 — U(g) @y Vo — M — 0. (2)
Moreover U(g) @y vy Vi is in O fori € {0,1} and this exact sequence is B-equivariant

for the B-actions (on each of the three terms) defined just before Lemma .

Proof. The existence of a finite dimensional U(b)-module Vj and a surjective map
U(g) ®u@w) Vo = M is a consequence of the fact that M is a finitely generated U(g)-
module and locally finite as a U(b)-module (it also comes from Proposition below).
The existence of V1 and of the map U(g) @y ) Vi — U(g) @y () Vo follows the fact that
U(g) is noetherian and U(g) ®y ) Vo is locally U(b)-finite. The B-equivariance is a
direct consequence of the definition of the algebraic action of B-action on each term of
the sequence . ]

2.3 Deformations of the category O

Fix I C A and let M be some U(g)a,-module. For p € X*(T'), we define the Aj-
submodule
MF ={ve M|Yhet, h-v=(pr(h)+ uh))v}.

We note that for M € O this coincides with the generalized eigenspace for p by
Remark Inspired by the construction of [Soe92l, §3.1], we define (’)ilg as the category
of U(g)a,-modules M such that

o M is finitely generated over U(g)a4, ;
o« M =@,cx+q) M" and each M" is a finite free A;-module ;
o for any m € M the Ar-submodule (U(pr) ®1 Ar)m is finitely generated.

Lemma 2.6. Let M be an object of@c{lg. Then for anyn > 0, the U(g)-module M /m} M

is an object of Oi{go and M /miM is in (’)ilg.

Proof. This is a direct consequence of the definitions. O
For A € X*(I)}r we define the deformed generalized Verma module of weight A\ as
Mi(\) = U(g) @upy) (L1(N) ®1 Ap)

where U(pr) acts on Ay via the composition U(py) — U(lr) L U@r) — Ar. The
module M;(A) is an object of Oilg and we have an isomorphism of U(g)4,-modules

Mi(X) @4, (Arfmr) = My(N).
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2.3.1 Duality

Recall that there exists an internal duality functor M — M"Y on the category Oyig (see
[HumO8|, §3.2]). We will define an analogue on 6alg- Let M be an object of the category
@ilg. We define an action of U(g) on M* := Homuy, (M, A;) by z - f(m) = f(7(x)m)
where 7 is the anti-involution of U(g) defined in [Hum08|, §0.5]. We then define MY to

be the sub-U(g)-module of M* given by

MY = @ (M

REX*(T)

Lemma 2.7. If M is an object of the category (5£lg’ then so is MV and there is a
canonical isomorphism of U(g)-modules MY /m;M" ~ (M/m;M)". Consequently is in
the category Oilg. Moreover there is a canonical isomorphism M — (MY)V of U(g)a, -

modules.

Proof. We have a canonical isomorphism of Aj-modules

M* ~ H Homy, (M*, Ar)
pEX*(T)

and we easily check that (M*)* = Homa,(M*, Ar) for p € X*(T). As any M* is a finite
free A7-module, so is (M*)* = (M")". By definition, we have M = @,,c x-(p) M V" and
MY foi MY = @,ex+r) MY+ /mp MY, Therefore we have MY+ /my MY* C (MY /my MY )",
As the eigenspaces (MY /m;MY)* are in direct sum, we must have, for any pu € X*(T),

MYH fog MYH = (MY fmp MY -,
The reduction modulo m; induces a sequence of morphisms of U(g)-modules

MY /myMY — M*/m;M* = Homy, (M, A;)/m; — Homa, (M, Ay/my)
= Hom(M /m;M,L).

We claim that the composite of these maps induces an isomorphism from M"Y /m;M"
onto (M/m;M)V. In order to see this it is sufficient to check that, for any u € X*(T),
it maps MV#/myMV+* onto Homp (M*/m;MH*, L) ~ (M/m;M)V*. This comes from
the fact that, as the Aj-module M* is finite free, all maps in the following sequence are
isomorphisms

MV,,u/mIMV,u l} HOHIAI<MM,A[/I‘I‘L]) l) HOHIL(MM/TTL[MM,L).

Let ny =& ae—oH\3; Ba denote the nilpotent radical of the parabolic Lie subalgebra
opposite to pr. Note that a U(g)a,-module M such that M = @, M" with M* finite

free over Ay is in @élg if and only if we can write M = U(n; ) - (@,c5 M*) for some

finite set S C X*(T'). By Lemma , the object M /m;M lies in the category (’)ilg and it
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follows from [HumO8, §9.3] that (M/m;M)" lies in Oilg. This implies that there exists
a finite set S C X*(T') such that

(M/mM)" =U(ny) - (P (M/mpM)"H).
pes

It follows that for any p such that (M/m;M)Y+# # 0, the map

D (M/md) s (M/mM)
uezae_é\qﬁ Na
w'es
Wv=p
given by the action of the corresponding element of U(n} ) on each summand, is surjec-
tive. As M* is a finite free A;-module and Ay is a local ring, we deduce from Nakayama’s
Lemma that the map
p MMV
”ezae—m@, Na
wes
Wtv=p
is surjective and thus that MY = U(nj) - (EB#,GS Mv’“/). This implies that M"Y is
a finitely generated U(g)a,-module and we also deduce from this equality that M" is
locally U(pr) a,-finite.

In order to prove that M = (MV)" we note that the natural map M — (M")* of
U(g)a,-modules factors through (M")" and respects the weight decomposition. More-
over as M* is free over Ay for all p, the induced bi-duality M* —— (M#*)* morphism
is an isomorphism. O

2.3.2 Blocks

Let Z(g) denote the center of U(g) and let x : Z(g) — L be a character of Z(g). Let O,
be the subcategory of objects M of Oy such that z — x(z) acts nilpotently on M for
any z € Z(g). For I C A, we denote by (’){< the full subcategory of objects of O, which

alg
are also in O,. We deduce from [HumO8| Prop. 1.12] that there is a decomposition into
blocks
1 I
ol - oL
X
We write 6>I< for the subcategory of objects M of 6£Ig such that M/m;M lies in Oi,

and similarly Oi’oo.

Remark 2.8. For A € X*(T), let x be the character x, defined in [HumO8| §1.7]. Then
loc. cit. implies that M()) is in O)I(A. Note that xn = x, if, and only if, there is w € W
such that w- A = pu.

Lemma 2.9. We have decompositions (Z{lg =D, (5>I< and (’)iigo =D, (’)i’oo.
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Proof. Let M be an object of 6ilg' For a character x : Z(g) — L and u € X*(T), let
MHX denote the subset of elements x € M* such that (z — x(2))"z — 0 for the m;-adic
topology on the finite free A;-module M*. We easily check that MX = @,,c x«(p) M*"X

is an U(g) 4,-submodule of M which lies in OI and that M = @, M*. The case of (’)alg
is similar. ]

Lemma 2.10. Let A1, A2 € X*(L). Assume that Mr(\) and Mi(Xs) are in the same
block (’){< for a character x : Z(g) — L. Then there exists w € W such that w - \y = Asg.

Proof. By Remark the claim follows from the same claim in the category Oi. As
M;(A1) and M(A2) are quotients of M (A1) and M (A2), this is a consequence of [HumO8,
Thm. 1.10]. m

When A\ is a character of t, we often write by abuse of notation O, (resp. (’)I > (’)I 3)

for the block O, (resp. Oifo, OI ,) where x, is the character defined in Remark

Corollary 2.11. Let A\ € X*(T) be a dominant weight and let x» be the associated
character of Z(g). If M is an object of OI (resp. OF>), then M* = (M*)".

Proof. Assume that this is false. Then there exists € ® and = € g, such that
xM?* # 0. Thus there exists u > A such that M* # 0. As M lies in the category (’)alg
(resp. (9{< ), we can choose p to be maximal which then implies nM* = 0. As M* #0
Nakayama’s lemma implies that there exists v € M* which is non zero in M*/mM*.
Then v defines a map M (u) — M with > A, which is non-zero after reduction by m.
Thus it induces a non-zero map M(u) — M/mM € O,,. It follows that p = w - A
which is a contradiction. O

2.3.3 Deformed Verma modules

Let A € X*(T) and let V be a finite dimensional U(g)-module. Then we have an
isomorphism of U(g) 4-modules

M) @LV ~U(g)a Qupy. (Vie ®L A(N)).

Indeed there is a canonical map from the left to the right, which then is easily checked
to be an isomorphism. As V}, is a successive extension of one dimensional U (b)-modules,
and as U(g)a ®y(v), (—) is an exact functor (as follows from the PBW Theorem), we
have a filtration (Fil;) of M (\) @V such that each subquotient Fil; / Fil;_; is isomorphic
to M (X + v;) for v; a weight of V. Moreover the family (v;) is the family of weights of
V' (counted with multiplicity).
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Proposition 2.12. Let K denote the fraction field of A. Then the filtration (Fil; ® 1K)
of ( M(\) @1 V) ®a K splits in the category of U(g) x-modules, i.e. there exists an iso-
morphism of U(g) x-modules

(M(\) @ V) ®AK2@(]\7()\+V¢)®A K)

compatible with the filtration (Fil; @ 4 K).

Proof. This is a consequence of the paragraph preceding [Soe92, Thm. §]. O

Lemma 2.13. Let A € X*(T)} be a dominant weight (with respect to P;) and let V' be

a finite dimensional U(g)-module. Let M be an object of (’)il’go. Then the map

Homy(g), (Mr(A) @1 V, M) — Homy (g (M;(A) @1, V, M/m; M)

given by reduction modulo my is surjective.

Proof. The L-vector space Homp,(V, L) has the structure of an U(g)-module induced by
g-action defined by z-¢ = —¢(x-) for z € g and ¢ € Homp(V, L). For any U(g)-modules
M; and Mo, the adjunction isomorphism Homp (M ®1 V, M) ~ Homp (M, My ®p,
Homp (V, L)) is g-equivariant and hence induces an isomorphism,

Homy(g) (M1 ®, V, M2) ~ Homy (g) (M1, M2 @1, Homp(V, L)).

Thus, as M ®1, Homp,(V, L) lies in Oil’go, we can assume that V' = L. Using Lemma
we can assume that M is in (’))I(’OO for some character x and by Remark it is sufficient
to consider the case where xy = x). By construction of the deformed generalized Verma
modules we have Homyg), (M;(\), M) = (M*)™ and Homy g (M;(\), M/m;M) =
(M /m;M)*)™. However it follows from Corollarythat (MMM = M* and (M /m;M)N™M =
(M/my)*. Tt is thus sufficient to prove that the map M* — (M/m;M)? is surjective,
which is obvious. O

Proposition 2.14. Let M be an object of the category Oil’go. Then there exist weights

AL, A € XH(D)T and finite dimensional U(g)-modules W1, ..., W, and a surjective
map of U(g)a,-modules

(M(A\1) @ W) @ -+ & (My(A\) @1 W) — M. (3)

In particular M is a quotient of an object of the category 6£lg' Moreover there exists an
integer N = 0 such that the map (@ factors through

((M}(/\l) QLW @& (Mi(\) @1 WT)) @4, (Ar/md).
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Proof. By [HumO8, Thm. 9.8] (and its proof), there exist dominant weights A, ..., A,
finite dimensional U(g)-modules W7, ..., W, and a surjective map

(Mp(\1) @L W) @ -+ @ (Mr(\) @ Wy) — M/mM.
By Lemma this map can be lifted into a U(g)4,-equivariant map
MIO\l) QL Wi -- 'M[()\r) Qr W, —- M

which is surjective by Nakayama’s Lemma. The last assertion is a consequence of the
fact that M is finitely generated as a U(g)-module and all its elements are killed by some
power of my so that M is killed by mY for some N > 0. O

2.4 Bimodule structure

Let £ : Z(g) — U(t) be the Harish-Chandra map. Recall that it is defined as follows:
for x € Z(g) there exists a unique element &(z) € U(t) such that = € £(x) + U(g)n (see
[KnaO1l, Lem. 8.17]). For any v € X*(T') we denote by ¢, the unique endomorphism of
U(t) such that t,(z) =  + v(z) for = € t. Note that t_;, o { induces an isomorphism
from Z(g) on to U(t)" (see [KnaOl, Thm. 6.18]). For a dominant weight A\ € X*(T) we
define a map

hy: Aor Z(g) 225 Aep UM 29 A ,w A

following [Soe92, §3.2], It follows from [Soe92, Thm. 9] that h) is surjective (note that
Wi in loc. cit. is trivial in our situation). If I C A is a finite subset, tensorization on
the left with p; : A — A yields a map hy : Ay @1 Z(g) — Ar @ 4w A.

For w € W, let I, C A; ®1, Z(g) denote the kernel of the map

haw : Ar ®r Z(g) L NYY: Qv A 2@y (zpr (Ad(w)y)) A,

It is not hard to see that this kernel only depends on the choice of w € W \W.

Proposition 2.15. For w € W, the A; @1 Z(g)-modules My(w- ) and Mj(w-\) are
annshilated by I,.

Proof. The result for M;(w - \)V follows from the result for M;(w - A) and the inclusion
My(w-X\)Y C Homu(Mj(w- ), A).

Hence it is enough to check that the action of A; @7 Z(g) on My(w - \) factors through
hyw. As this action is central and My(w- \) is generated by Mp(w-\)*> as an U(g) 4,-
module, it is sufficient to check that the action A; ®p Z(g) on Mj(w - \)** factors
through h) ,,. Using the fact that n acts trivially on Mj(w “A)®A an element x € Z(g)
acts on this space via . For the clarity of the computation let us write ¢, : U(t) — A
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for the L-algebra homomorphism associated to an L-linear map v : t — A; and let
t:t— A — Aj. Then for z € Z(g) and v € Mj(w - \), we have

wnti(E(2)) = Ewiriogrwt () T-d0 (E())) = Expaniw-1 () (t-ss (E(X)))
= 10 (ha(2)) = pr(Ad(w) (ha(z)))

(where we use that the image of t_s. o & lies in U(t)"). As an element y € U(t) acts
by multiplication by ey.ap.(y) on Mj(w - A)¥?*, we conclude that an element z ® z €
Ar ®1 Z(g) acts by multiplication by zpr(Ad(w)(ha(z))) on My(w - A)**, which is the
desired formula. O

Remark 2.16. The ring U(t) (resp. U(3r)) is the affine coordinate ring of the (affine)
L-scheme associated to the dual t* of t (resp. to the dual 37 of 37) so that A (resp.
Ar) is the stalk of the structure sheaf of t* (resp. of 37) at the origin. The ideal I, is
the ideal defining the irreducible component Ty, of (37 X W f*)(o,o) consisting of pairs
(A, ) € 37 x t* of characters such that p = w(X\).

Later in the paper we will view the L-scheme t* as the Lie algebra tV of the dual torus
TY of the Langlands dual group GY, that we consider as an algebraic group over L. As
we will later specialize to the case where G is isomorphic to a product of r copies of GL,
the reductive group G is self dual and we will identify t* = t" with t in order to avoid
the additional (=) in the notation. In particular we will consider U(t) as the affine
coordinate ring of t. The inclusion 37 < [} induced by the projection p; : [; — 37 is then
identified with the inclusion 3y < [} of the center of the Lie algebra of the Langlands
dual group of L and again we use self duality (in the case of products of copies of
GL,,) to identify this map with 3; < [;. Hence we obtain a canonical map 37 < t of
L-schemes corresponding to the morphism U(t) — U(37). With this identification the
ideal I,, defines the irreducible component T7 ., of (31 X¢w t)(0,0) whose points are the
pairs (x,y) € t? such that y = w=!(z).

We finally recall the following result of Soergel (Endomorphismensatz 7 [Soe90]).

Proposition 2.17. The action of Z(g) on P(wo - A) factors through the map ty o & :
Z(g) » L @ w A and induces an isomorphism L ® 4w A ~ Endp(P(wp - A)).

3 The Emerton—Jacquet functor

Let G be a quasi-split reductive group defined over Q,. Let B be a Borel subgroup
and T be a maximal torus of G contained in B. We set G = G(Q,), B = B(Qy),
T =T(Qp). We also fix L a finite extension of Q, which will be the coefficient field of
our representations. We assume that L is big enough so that the torus T' xq, L is split
(and then G xq, L is split). We denote g, b etc. the Lie algebras of G xq, L, B xq, L
etc. For a Qp-analytic Lie group H, we consider the category ReplfL H of locally analytic
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representations of H on locally convex L-vector spaces of compact type. In [Eme06al
Def. 3.4.5] Emerton constructs a functor

JB : Replf‘G — Replf‘T
that we refer to as the Emerton—Jacquet functor. We briefly recall its definition. Let
Np be a compact open subgroup of N and let 7% := {t € T | tNot~! € Ng}. If V is a
L-linear representation of B, we endow the L-vector space VN0 with the action of the
monoid T defined by
1

T
[N().tN()t ]uENo/tNot*1

[t]v == ut(v).

Then Jp(V) is the finite slope space (see [Eme06a, Def. 3.2.1]) (Vo) of VN0 with
respect to the action of T on which the T -action extends to a locally analytic repre-
sentation of T'. Of course this construction does not depend on the choice of Ng.

3.1 Families of locally analytic representations of the Borel subgroup

Let s € Z>g be an integer and let II be an object of Replf}(Z‘;) x B). We consider the
following hypothesis on II.

Hypothesis 3.1. There exists a locally analytic representation of Ny on a locally convex
L-vector space of compact type V such that

ITANIVRES C™(Z3, L)LV

Given s, we set S = O[[Z5]] and write Spf(S)"® for the rigid analytic generic fiber
of Spf(S). This space is a rigid analytic open polydisc and we write

S™8 = I'(Spf(S)"8, Ogpt grie)

for its ring of rigid analytic functions, which is a Fréchet L-algebra (when endowed with
its natural topology). We note that a finitely generated projective S*'&-module C' defines
a vector bundle on Spf(S)™8. As every vector bundle on a rigid analytic polydisc over
L is free (see [Gru68|, §V]), it follows that C is free as well, i.e. every finitely generated
projective S™8-module is finite free. Moreover the following lemma implies that finite
dimensional quotients of S™8 admit resolutions by a perfect complexes.

Lemma 3.2. Let a C S™8 be a closed strict ideal such that dimy S*8/a < co. Then
there exists a perfect complex Cy of S*&-modules which is a resolution of S*'8/a and such

that Cp = S™e.

Proof. As S[1/p] is dense in S™8, its image in 5™ /a is a dense L-vector subspace and, as
S8 /a is finite dimensional, is in fact equal to S™8/a. Setting ag := a N S[1/p], we have
S[1/p]/ag =~ S™&/a. As S™8 is a flat S[1/p]-module, it is sufficient to prove that S[1/p]/ag
has a finite resolution by finite projective S[1/p]-modules, which is a consequence of the
fact that S[1/p] is a regular noetherian ring. O
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Let Cs be a complex of finite free S™8-modules. If V is an object of ReplLa(Z;), a
choice of S*8-basis of C,, induces an isomorphism of Homgris (Cy,, V) with a direct sum of
copies of V. We endow Homgrig (Cy,, V') with the product topology which does no depend
on the choice of the basis of C,,. With this topology the differentials in the complex
Homgrig (Cy,, V) are continuous. The complex II® := Homgrig(Cs, IT) is then a complex
of locally analytic L-representations of Z; x B. We also set [17N0:* = Hom guig (C,, IIN0)
and Jp(II)® := Homgrig (Co, Jp(II)).

Lemma 3.3. Let 0 > U - V = W — 0 be a short exact sequence of topological L-
vector spaces of compact type (resp. nuclear Fréchet spaces) and let X be a topological
L-vector space of compact type (resp. nuclear Fréchet space). Then the following sequence
18 exact

05URX - VeLX - WarX — 0.

Proof. The claim follows from [Schlll Lemm. 4.13], [ST02, Cor. 1.4] and from [EmelT,
Prop. 1.1.32]. O

Lemma 3.4. Let II be a locally analytic representation of Zy X B satisfying Hypothesis
3.1 Then the two complexes II® and TIN0* are complexes of L-vector spaces of compact
type with strict continuous transition maps. Moreover for any integer n > 0, we have
an isomorphism of topological T - modules

Hn(HNO’.) ~ Hn(H.)NO.

Proof. Fix an isomorphism IIjzs . v, ~ Cla(Zf,, L)®pV whose existence comes from hy-
pothesis As any C,, is a finite free S™8-module and as the completed tensor product
—®p— commutes with finite direct sums ([Koh07, Lem. 1.2.13]), we have an isomorphism
of complexes of topological representations of Z;, x No:

IT* ~ Homguig (C, Cla(ZZ, L)&LV.

The terms of the complex Homsrig(C.,Cla(Z;,L)) are locally analytic representations
of Z;, isomorphic to finite direct products of copies of Cla(Zz,L) (with Z; acting by
translation on the left or the right, which is equivalent as it is a commutative group) and
transition maps which are continuous and Z;-equivariant. As Cla(Zz, L) is an admissible
locally analytic representation of Z3, it follows from [ST03, Prop. 6.4] that the transition
maps of the complex Homsrig(C.,Cla(Zf,, L)) are strict with closed images. We deduce
from this fact and from Lemma that the complex II® has strict transition maps and
that we have topological isomorphisms H"™(II*) ~ H"(Homgue(Cs,C**(Z5, L)))&LV for
any n > 0. The commutation of &; with finite direct sum implies that we have a
topological isomorphism of L-vector spaces for any m > 0:

Homgrig (Cpn, TIN0) = Homguig (Cy, C*(Z5, L)), V0.
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We deduce as before that the complex IT*™0 has strict transition maps and that we have
isomorphisms

Hn(HNO,o) ~ Hn(H.)NO
for any n > 0. O

Proposition 3.5. For any integer n > 0, there is an isomorphism
H"(Jp(I)*) ~ Jp(H"(II*))

of locally analytic L-representations of Zy x T

Proof. Tt follows from [Eme06a, Prop. 3.2.4.(ii)] that there is a natural continuous 7*-
equivariant map of complexes (ITV0-*)g — II™V0® inducing a continuous 7 -equivariant
morphism H "(HNO’ ) — H™(ITVo*). By loc. cit., the universal property of the functor
(—)ss provides a T-equivariant map H ”(HNO ) — H™(IINo:*)g. Tt follows from Lemma
[3:4] that it is sufficient to prove that this map is a topological isomorphism.

We now deduce from [Eme06al, Prop. 3.2.27] and [Fu, Thm. 4.5] that given an exact
sequence 0 - U — V — W — 0 of spaces of compact type with continuous action of
T+, then 0 — Up, — Vis — Wi — 0 is exact, the image of Uy is closed in Vi and the map
Vis — W is strict. The open mapping theorem then implies that the sequence is strict
exact. As the complex ITN0-® has strict transition maps by Lemma we conclude that
the map H”(HNO’ ) — H"(ITY0:*)g, is a topological isomorphism. O

Proposition 3.6. Let IT be a locally analytic L-representation of Z;, X B satisfying the
hypothesis E Let a be a closed strict ideal of S8 such that dimy, S“g/a < 400. Then
the map

a Qgrg Jp(ll) — Jp(II)’

18 injective.

Proof. By Lemma there exists a perfect complex C, of S™8-modules such that, Cy =
St Ho(C,) ~ S™8 /a and H;(C,) = 0 for i > 0. By Hypothesis we have I|zsx n, =~
ClaL(ZS L)®LV for some topological L-vector space of compact type V. As C, has strict
transition maps, it follows from Lemma |3.3) E 3 that the complex Cy @grig II' ~ Co@ V' is a
resolution of (S™8/a)®V’. We then deduce from Hom guie (Cy, 1)’ =~ C; @gug [T for any
i > 0, that H'(Homgug(C,,II)) = 0 for i > 0. Therefore Proposition implies that
H(Hom grie (Ce, Jp(IT))) = 0 for i > 0. We denote by (=)’ the duality between spaces
of compact type and Fréchet spaces. This duality implies that H;(Ce Qgrig Jp(II)) = 0
for i > 0. As a = Coker(Cy — C1), we deduce that

a @ grig JB(H)/ = Coker(Cg ® grig JB(H)/ — 4 & grig JB(H)/)
c Cy & grig JB(H)/ = JB(H)I. O
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3.2 Families of locally analytic representations of ¢

Let IT be an admissible locally analytic L-representation of Z; x G. The aim of this
section is to use II in order to construct a functor

M — HOHIU(Q)(]W7 H)

from the category ngg to the category of locally analytic Z; x B-representations, and
then, by composing with Jp, to locally analytic Z; x T-representations. We will usually
assume that II satisfies the following hypothesis.

Hypothesis 3.7. There exists a uniform open pro-p-subgroup H of G, an integer m > 0
and a topological Z; x H-equivariant isomorphism

Migs s = C*(Zy x H,L)™.

Recall from section that if M is an object of Og,, there is a unique algebraic
action of B(L) on M which lifts the structure of U(b)-module on M*. We endow M

with the action of B = B(Q)) obtained by restriction to B.

Let M be an object of Og}, with its semi-simplified B-action. We define an action of
B on Homp, (M, II) by

b-f=bf(b7"-)

for f € Homp(M,II) and b € B. It follows from Lemma that this action preserves
the subspace Homy(g)(M,II). We moreover endow Homp ) (M, 1) with the left Z-
action inherited from the one on II. While the definition of the B-action using the
semi-simplified action on M might not seem very natural at a first glance, the following
lemma says that this definition applied to deformed Verma modules allows us to compute
generalized eigenspaces. Given an U(t)-module X we write

X[t=N={zeX|Vtet (t—At)*z=0}.
With this notation we have the following result:

Lemma 3.8. Let A € X*(T)} and M = M()) ®a, (Ar/m%). Then there is an isomor-
phism ‘
Homyy(g) (M, 1) =~ (1™ @1, Ly(A))”7)[m]]

of B-representations, where (=) denote the dual (algebraic) representation. In particu-
lar, when I = 0,

Homy(g) (M(A) @4 (A/m*), TT) = (I"(A™1) [m*] = (T[(¢ = A)F(A )

where the symbol (1) denotes the twist by the algebraic character u of T' seen as a quotient

of B.
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Proof. We compute using the U(g)-structure

Homy q)(M, 1) = Homy(g)(U(g) @u(p,) (L1(A) @1 Ar/mf), I0)
= Homy(,)(Li(\) ®p Ag/mf, 1I™)
= Homy,)(Ar/m7, I © Li(A))
= (I @ L;(\))Y ) [m}].

Moreover each equality is compatible with the semi-simplified B-actions. O

Lemma 3.9. Let 11 be a locally analytic representation of Z, x G and let M be an object
of (’)gfg. Then the Zy x B-representation Homg g (M, 1I) is locally analytic.

Proof. Let U(g) @y Vi — U(8) ®ue) Vo — M — 0 be a resolution as in Lemma
Then Homy; gy (M, II) is the kernel of the map

Homys(g) (U (a) @u(e) Vo, IT) ~ (Vg @1 I1)® — Homyr() (U (a) @u ey V1, 11) ~ (V] @ 10)°

which is continuous and B-equivariant. Therefore Homy;(g)(M,II) is isomorphic to a
closed B-stable subspace of Vj @ II. As Vj is an algebraic finite dimensional representa-
tion of B, the representation Vj @, II is locally analytic and hence so is Homy; gy (M, IT).

O

As Homy;(4) (M, IT) is a locally analytic representation of B this action may be derived
and induces the structure of an U(b)-module on Homy g (M,II). Via restriction to
U(t) C U(b) we may view Homg; () (M, II) as an U (t)-module.

Lemma 3.10. Let II be a locally analytic representation of Zy x G and let M be an object
of Ogy- Then the U(t) action on Homy ) (M,II) factors through a finite dimensional
quotient.

Proof. By Proposition there exist dominant weights A1, ..., )., finite dimensional
g-modules Vi,...,V, and a surjective map

MM\)@LVi®-&M\) LV, — M.

Moreover by the same Lemma, there exists k£ > 1 such that this map factors through
mF (recall that A is the localization of U(t) at its augmentation ideal m). Therefore we
have an inclusion of U (t)-modules

Homyr(g) (M, IT) — @D Homyy(gy (M (A;) ©4 A/mF @ Vi, I0).
i=1
By Lemma HomU(g)(M(Ai)/mk ®r Vi, II) = (M@ V;(\;)")*[m*]. Let u1,. .., us be the
finitely many characters which appears in the restriction to U(t) of Vi(A1),..., Vi(A).

Then the action of U(t) on Homy g (M, II) factors through the quotient of U(t) by the
intersection of the k-th powers of the kernels of the ;. O
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Lemma 3.11. Assume that Il is an admissible locally analytic L-representation of Z, xG
satisfying Hypothesis and M € Og,. Then Homgy ) (M, I1) satisfies Hypothesis

Proof. We can assume that Ng C H. As we assume Hypothesis there is an isomor-
phism IT = C**(Z5 x H, L)™ ~ C*(Z$, L)@ C(H, L)™ of Z3 x H-representation.

Let [U(g) @upy Vi — U(g) ®u(e) Vo] be a resolution of M as in Lemma Then
Homy; 4y (M, C'*(H, L)™) is the kernel of the map

(Vo @1 C*(H, L)™)* — (V{ @1, C**(H, L)™)". (4)

We claim that this is a strict map, then the lemma follows, as exactness of the func-
tor Cla(Zz, L)®p(—) implies that we have an isomorphism of locally analytic Z5 x No-
representation

Homy gy (M, IT) ~ C*(Z$, L)& 1, Homy () (M, C*™(H, L))™.

In order to prove that is strict, we use an additional H-action. We let H act on
C'*(H, L) by right translation and extend this to V/ ®, C'*(H, L) by acting trivially on
V!. This action commutes with the (diagonal) action of U(b), as the U(b) action on

7

C'*(H, L) is induced by left translations. It follows that (V/ @ C'*(H, L)™)® is a closed

1
H-stable subspace of an admissible locally analytic H-representation, and hence an

admissible locally analytic H-representation itself. Hence is an H-equivariant map
between admissible locally analytic H-representations and hence a strict map which
proves the claim. O

Proposition 3.12. Let IT be an admissible locally analytic representation of Z; x G
satisfying the hypothesis and let M be an object of (’)gfg. Then the locally analytic
representation Jp(Homy ) (M, 1)) of Z;, x T is essentially admissible.

Proof. Using twice Proposition [2.14] there exists a resolution
My — My— M —0

of M in the category ngg where each M;, i € {0, 1}, is of the form

(MM) @LVi® -+ M(\) @1 V,) ® (A/mF)

for some dominant weights A1, ..., A, finite dimensional g-modules V1,...,V, and k > 1.
Then we have an exact sequence

0— HomU(g)(M, H) — HOmU(g)(Mo, H) — HOmU(g)(Ml, H)

of locally analytic representations of Z; x B (see Lemma . As the functor Jp is left
exact ([Eme06al Lem. 3.4.7.(iii)]), this induces a short exact sequence

0 — Jp(Homy(g) (M, I1)) — Jp(Homy g) (Mo, II)) — Jp(Homy g (M7, I1))
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of locally analytic representations of Z; x T'. As the kernel of a morphism between essen-
tially admissible representations is essentially admissible and the category of essentially
admissible representations is stable under finite direct product([Eme06a, Thm. 3.1.3]),
it is sufficient to prove that Jp(Homy 4 (M,II)) is essentially admissible when M is of

the form V @7, (M (X)) @ (A/mF) for some finite dimensional algebraic representation V
of GG, some dominant weight A\ and some integer £ > 1. From now let’s assume that M
is of this form. By Lemma [3.8] we have an isomorphism of B representations

Homyq) (M, TT) = (V' &, T)P[(t — (A7),

The representation V' ® II satifies Hypothesisso that, by [BHS17b, Prop. 3.4] (whose
proof follows [Eme06a, Thm. 0.5]), the locally analytic representation Jp(V’ ®@r, II) of
Z3 x T is essentially admissible. As (V'@ IT)"[(t— M\)F] is closed in V' @1 II, we conclude
from [Eme06al, Lem. 3.4.7.(iii)] and [Emel7, Prop. 6.4.11] that J((V' @ II)*[(t — \)*])
is essentially admissible and so is

Jp(Homy(g) (M, IT)) = Jp((V'@LID"[(t=A)"|(\) ) = Jp((V'@L )" [(t=2) D(A). O

Lemma 3.13. Let Il be a locally analytic representation of Z; x G satisfying Hypothesis
(7

(i) The functor M +— Homyg)(M,1I) from O, to the category of locally analytic
representations of Z, X B is exact.

(i) The functor M ~ Homyq) (M, I)No from Ogly to the category of locally convex
L-vector spaces sends short exact sequences on short exact sequences with strict maps.

Proof. The assertion is [BHS19, Lem. 5.2.5]. We recall the proof as we will need
notation for the proof of Let M be an object of the category Opy,. Let H C G be
a uniform compact open pro-p-subgroup. Recall (see for example the proof of [ST03|
Prop. 6.5]) that iz w i = lim IL, with

r<l

1T, = Hom§™ (D, (Z;, x H) @ pzgxa,n) I, L).
As M is a finitely presented U(g)-module, we have

HOHIU(g) (M, H) >~ hﬂ HomU(g) (M, HT) = hg’l HOHIUT(Q) (MT, HT)

r<l

with M, = U,(g) @y M. Note that there exists an integer m > 0 such that II, ~
Hom§o"* (DT(Z; x H), L)™. Therefore we have

HOIIlDT(H)(DT(H) ®U(g) M, Hr)
~ Homiont(DT(H) ®U7»(g) MT7 Hom(iont(Dr(Z]sw L), L))m’
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for r < 1. As the functor M — M, is exact and D,(H) is a finite free U,(g)-module,

this proves

Now we prove As Ny is a compact group and L is of characteristic 0, it is
equivalent to prove after replacing Ny by an open subgroup. Therefore we can
assume that Ng = H N N and that H = (NN H)(T N H)(N N H) where N is the
group of Q,-points of the unipotent subgroup of G opposite to N. Let r < 1. The
space HomU(g)(M ,I1,)™0 is the space of maps from M to II, that are equivariant for the
actions of Ny and U(g). Therefore we have

HomU(g) (M, HT)NO = HomUr(g)@)UT(n)DT(NO) (M., 11;)
~ Hom§™ (D, (H) @, (g)oy, () Do (No)) Mrs Hom§™ (D,(Z;, L), L))™.

As D, (H) is a finite free right U, (g) ®y, (n) Dr(No)-module (see [Koh07, Thm 1.4]), this
proves the claim. 0

Theorem 3.14. The functor M +— Jg(Homy g (M, IL)) from the category Ogy, to the
category of essentially admissible representations of T is exact.

Proof. This is essentially a consequence of Lemma and we conclude as at the
end of the proof Proposition [3.5] O

3.3 The case of Banach representations with coefficients

Let R be a complete local noetherian Op-algebra. As above we will write R"® for the
ring of rigid analytic functions on (Spf R)"8. Let II be an R-admissible R-Banach repre-
sentation of the group G (see [BHSI7D, Def. 3.1]). We assume that our representations
satisfies the following property.

Hypothesis 3.15. there exists an integer s > 0, a local morphism of Op-algebras
S = O[[Z;]] — R such that, for some (resp. any) open pro-p-subgroup Go C G,
the S[[Go]][1/p]-module II' := Hom$*™(II, L) is finite free (as a consequence II is also
S-admissible).

Using the hypothesis, one shows that the R-analytic vectors II®~2" and the S-analytic
vectors IT9~2" of II coincide and they also coincides with the subspace of Z,, x G-locally
analytic vectors in II (see [BHSI7D, Prop. 3.8]). We will simply denote this subspace by
I in what follows. This is a locally analytic representation of Z, % G with an action
of R"'& commuting with G. Moreover if we forget the R"&-action, the representation IT*
satisfies Hypothesis [3.7]

In the following we will write T for the rigid analytic space of continuous characters
of T and Ty for the space of continuous characters of the maximal compact subgroup
To C T. We recall that the ring of rigid analytic functions on Tj is identified with the
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algebra D(Tp, L) of L-valued distributions on Tp. Restriction to Ty defines a canonical
projection T' — Ty. Moreover, the derivative of a character at 1 defines a weight map

wt : Tp — ¢, (5)

where by abuse of notation we write t* for the rigid analytic space associated to the
L-vector space t*. The map wt is étale and locally finite. Moreover, étaleness implies
that for any character g : Tyo — L>* we can identify the tangent space of Tp at &y with
the L-vector space t*.

Lemma 3.16. For any object M in Og,, the dual Jp(Homy () (M, 1'2)) of the Emerton-

Jacquet module Jp(Homy gy (M, 1)) ds coadmissible as an R'&&;O(T)-module.

Proof. This is essentially the same proof than for Proposition [3.12] using the fact that
Jp(I1'®) is essentially admissible as a representation of Zf; x T for any s’ and surjection

O.[[Z5]] - R by [BHSITH, Prop. 3.4]. O

Let M be an object of Ogy,. It follows from Lemma that there exists a unique
up to unique isomorphism coherent sheaf M (M) on Spf(R)" x T such that

D(SpE(R)"™ x T, Mu(M)) = Jp(Homy g (M, T1)Y.

In particular we obtain a functor from ngg to the category of coherent sheaves on
Spf(R)"E x T.

Theorem 3.17. The coherent sheaf My (M) on Spf(R)"&xT is, locally on Spf(R)"$xT,
finite free over Spf(S)™8. In particular, if nonzero, it is Cohen—Macaulay of dimension
S.

Proof. Let Ty be the maximal compact subgroup of 1" and let ﬁ be the rigid analytic
space of characters of Ty over L. Set N := Jp(Homy 4 (M, 1)), Tt follows from the
proof of [BHS17b| Prop. 3.11] that there exists a family Z of pairs (U, V) where U is a
rational open subset of Spf(R)"8 x T and V is a rational open subset of Spf (S)rie x Ty
such that V' is the image of U and such that Supp(Mn(M)) C Uw,y)ez U. Moreover,
we may assume that T'(U, My (M)) is a finite projective O(V)-module that is a direct
factor of O(V)@Srig@LD(TO7L)N.

After shrinking each U and V' if necessary, we may even assume (by the construction
of the family 7) that for each (U,V') € Z, the rational open V is of the form V; x V5
with V; rational open in Spf(S)'® and V5 rational open in To. It is sufficient to prove
that, for any pair (U, V; x Vo) € Z, the O(Vy)-module I'(U, M(M)) is finitely generated
and flat.

The map Vo — t* has finite fibers (as the weight map is locally finite), and hence
there are only finitely many points of V5 lying over a given character of U(t). It thus
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follows from Lemma that the action of L[Tp] on I'(U, M(M)) factors through a finite
dimensional quotient. It follows that I'(U, M(M)) is finitely generated over O(V7).

Let m C O(V1) be a maximal ideal. As O(V}) is an affinoid L-algebra, m is closed in
O(V1) and O(V7)/m is a finite extension of L. As the image of S™8 in O(V}) is dense,
we have S™8/(S8 Nm) ~ O(V;)/m. The ideal a := S™8 N'm of S™8 is finitely generated
by Lemma so that the sheaf a ®grig My(M) is coherent and

L(Spf(R)"& x T, a @griz M (M)) ~ a @gsie [(Spf(R)"8 x T, My (M)).

As the functor M — I'(U, M) is exact on the category of coherent sheaves, we have
an isomorphism

LU, a @grie M(M)) =~ a @grie ['(U, M(M)) ~m @) (U, M (M)).
Therefore we deduce from Proposition [3.6] that the map
m ®ov;) @L(U, Mn(M)) — T'(U, M(M))
is injective. This implies that I'(U, M (M)) is a flat O(V;)-module. O

Corollary 3.18. Assume that the representation 11 satisfies Hypothesis[3.15. Then the
functor M +— My (M) is an exact functor from the category O;’fg to the category of

Cohen—Macaulay sheaves on Spf(R)"& x T. Moreover if M (M) is nonzero, its support
is s-dimensional, where s is as in Hypothesis|[3.15

3.4 Comparison with the parabolic Jacquet functor

Let II be an R-admissible Banach representation of G satisfying hypothesis We
end this section by computing the evaluation of My on generalized (deformed) Verma
modules in terms of Emerton’s parabolic Jacquet-module.

Let I C A be a subset of simple roots. Let A € X*(T)] be an algebraic charac-
ter dominant with respect to py. Recall that, by [Eme06al, §3.4], the L-representation
Jp, (I1'*) of L; is locally analytic. Following [Wii, §5.2], we define

Jp (1) = Homy () (Lr(N), Jp, (1T%)) @1, L1(A)
Jra(I1) = Jpar, (Jp, (IT%),).

Similarly to Lemma we have the following finiteness result:

Proposition 3.19. The R"6&;,0(T)-module Jr (1) 4s coadmissible.

Proof. This is a consequence of [Wul Lemm. 5.1 & 5.2]. O
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By the above proposition there is a coherent sheaf Mﬁ”\ on Spf(R)"& x T such that
T(Spf(R)" x T, M{) = Jy (112

For k > 1, let T,jm be the k-th infinitesimal neighborhood of the closed subspace Ts™ of
smooth characters in 7 and 1et ik be the closed immersion of TSm in 7. Moreover, for
A€ X*(T) C T, we write t : T —» T for the map defined by tA(d) =0\

Proposition 3.20. Let A € X*(T)] be an algebraic character of T dominant with
respect to Py and let M = M;()\) ®a, Ar/mk € O+ Then there is an isomorphism of
coherent sheaves on Spf(R)"& x T

Mup(M) ~ iy gt M

Proof. Using Lemma and the left exactness of Jp,, there are R"8-equivariant iso-
morphisms of locally analytic representations of Lj:
Tp, (T @, Li(A)) D)) = (Tp, () @1 L(A))Y T mf]
~ Homy i,y (Li(\) @1 Ar/mf, Jp, (T1%)).

Note that as ny acts trivially on (IT% @7, L;(\))Y ) [m¥]), this is a Pr-representation.
Therefore

Homy (A ®@ Ar/mf, Jpar, (Jp, (I1*),))
~ Jpnr, (Homy g (A /mf, Homy ey (L1(X), Jp, (IT%))))
= Jpnr; (Homy(,y(Li(N) ® Ar/mf, Jp, (I1%)))
~ Jpar, (Je, (T @1 Lr(\))Y T [mf]))
~ Jp((I™ @ Lr(A))7T) [mf])
~ Jp(Homy g)(Mr(N) ®4, Ar/m}, 11'%))
where the first isomorphism comes from [Wu, Lemm. 5.3]. The claim now follows form

the fact that the source of this chain of isomorphisms is the dual (of the global sections)
of zk*zZtﬁ\Mﬂ)‘ and the target is the dual of M (M). O

4 Quasi-trianguline local deformation rings

Let F' be a finite extension of Q. We keep the notation of section [3| but we specialize
ourselves to the case G = Res(rg,q,)/0, (GLn,Feew,) = [y, Resr, /g, GLn,F,. We fix B
the upper triangular Borel subgroup and T the diagonal torus. It is therefore sufficient
to choose L a finite extension of QQ, splitting all the F;,. We point out that, though the
field L of coefficients is the same as in the preceding section, the group G in this section
should be considered as the Langlands dual group of the group in section [3]

31



Let ¥ be the set of embeddings of F' in L. This set can be decomposed as Xp =
[Lyp X, where X, is the set of Qp-linear embeddings of F, into L and where the index
set is the set of places v of F' that divide p. We have a decomposition

g~ ( ED Lie(Q) ®F®QvaT L) ~ EB Lie(GLn,L).

TEX R TEX R

Let A be the set of simple roots of G; with respect to By. Then

A= H Ay, Ar= {041,77 s 7an—1,T}

TEX R

where oy r,...,0n—1, are the simple roots of the copy of Lie(GL,, 1) corresponding to
7. For I C A we denote P; the standard parabolic subgroup of G; corresponding to I.

4.1 Local models

Let g := G; xB1 b be the Grothendieck-Springer resolution of g (which is considered as
a scheme over L not just as a vector space in this section). We have a closed embedding
g — G, /B x g given by (9B, X) — (bB,Ad(g)X) and set

X =g%xg9CGL/By xgxGL/By.
More generally if I C A, we set
gy, =G xE1r greny)

where we recall that P; is the parabolic subgroup of G associated to A and py is its Lie
algebra. Moreover, we write 35 for the center of p; and ny for its unipotent radical. Again
we consider all these L-vector spaces as L-schemes. We have also a closed embedding
581 — G /P x g given by (9P, X) — (gPr,Ad(g)X) and we set

Xy, =89, X8 G1 /Py x g x G1/By.

In particular we have X, = X. The scheme X, decomposes into irreducible components
as follows:
Xp= U Xpw CGr/PrxgxG./B.
weW\W

Here X, ., is the closure of on open subset V}, ., C Xp,, which is by definition the
preimage of the G-orbit of G- (1,w) C G/P;xG/B, where w € W is a lift of w € W \W
(see [BD) Cor. 5.2.2] for details). In this paper we need to control the singularities of
Xp,. Even though, for our purpose, the result of [BHS19, Rk. 4.1.6] would be sufficient,
we mention the following more general result.

Proposition 4.1. Let w € W. Then X, is smooth if, and only if, w is a product of
distinct simple reflections.
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Proof. We note that the natural action
t-(9B,hB,N) = (9B, hB,tN)

of G,, on X by scaling on the g-factor extends to an action of the monoid A'. This
action obviously preserves each X,,. As the singular locus is closed and stable under the
action of G, the singular locus, if non-empty, contains a point of the form (¢B, hB,0).
Namely let z € X, (L) be a point of the singular locus with coefficient in a finite
extension L' of L. The G,,-action on X, induces a map G, — Xy, 1. The composite
G — Xwr — (Gr/Bp)? extends to a map A}, — (G;//B/)? by the valuative
criterion of properness and the composite G, — X, v — grr extends to a map
Al, — gr/ by the L'-linear structure on gr/. As X,, is closed in (G} /B)? x g, the map
G, — Xy, extends uniquely to AlL, and the image of 0 gives us an L’-point of the
singular locus of X, of the desired form. We will thus prove the previous proposition
using [BHS19] Proposition 2.5.3 (ii).

We first assume that w is a product of distinct simple reflections. In this case it is
enough to prove that

a) Uy is smooth in G; /B x G, /B;

b) tv*"" has codimension lg(w) — lg(w’) in t for all w’ < w for Bruhat ordering
(with lg the Bruhat length).

By Fan’s Theorem [BL0O0, Theorem 7.2.14], if w is a product of distinct simples reflec-
tions, then U,, is smooth and @ is true. Thus we only need to prove @ For w € W,
let us introduce

l(w)=min{k >0 |w=ry...7, 7 € W a reflection}

(we recall that reflection is an element of the form s, where o € ® is a root, but not
necessarily a simple root). By [Car72, Lemma 2] and [BHS17a, Lemma 2.7] we have
l(w) = dimp, t — dimy, t* = dy, (in the notations of [BHS17al).

Claim 4.2. If w is a product of distinct simple reflections, we have
Yww'™) = l(w) — £(w') = lg(w) — lg(w")
for all w' < w.

If Claim is true, we have £(ww' ™) = dimt — dimt**" " = lg(w) — lg(w’) thus
Proposition 2.5.3 of [BHS19] applies and X,, is smooth. We now prove the claim. The
second equality of the claim is a consequence of [Car72, Lemma 3] as w and w’ are
products of pairwise distinct simple reflections. Indeed, a product of pairwise distinct
simple reflections si ... s is always a composition of reflections s; along vectors v; such
that vy,...,v; are linearly independent. Thus [Car72, Lemma 3] implies ¢(w) = lg(w)
and £(w') = lg(w').
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We write w’ = s;, ...s;, and w =t ...t as reduced expressions of pairwise distinct
simple roots such that there exists a1 < ... < a; satisfying ta; = Si;- For a; < 7 < agpr
let r; denote the reflection r; := s;, ... s;,t;s;, ...5;;. We then have

ww' ™! =t1...1pSiy, -+ - Siy

=t1 .. tay—1[Sistai+150] - - [Sirtay—150] [Siy Sistaz+1Siy 84
Taj+1 Tag—1 Tag+1
. [Sil . Siktak—i—lsik c. Sil] . [5i1 .. Siktbsik c. 81‘1]
Tp
=t1... g —1Ta14+1 - Tag—1Tag+1 -+« - - Tp.

In particular, £(ww'~!) < lg(w) — lg(w’) = £(w) — £(w'). Now Claim |4.2| follows from

Claim 4.3. Let w € W and w’ be a product of distinct simple reflections. Then
Y(ww'™1) > l(w) — (') = L(w) — Ig(w).

We now prove Claim By induction on the number of simple reflections appearing
in w', it is enough to prove f(ws) > ¢(w) — 1 when w’ = s is a simple reflection. Note
that for any w we have dimp, t**Nt* > dimy, t*¥® — 1 as t° is a hyperplane in t. Moreover,
tf Nt =t Nt* C t*. Thus dimt” > dimt*® — 1. Using /(w) = dim t— dim t* we hence
find

l(w) < l(ws) + 1.

Thus ¢(ws) > ¢(w) — 1, which proves Claim

We now prove the converse, i.e. that X,, is singular, if w is not a product of distinct
simple reflections. We hence assume that w is not a product of distinct simple reflections.

It is enough (but actually equivalent) to prove that X, is singular at (B, B,0). We
will use Mowlavi’s results [Mow23|. The pair (1, w) is a good pair ([Mow23]), and thus
[Mow23|, Theorem 6] applies. Hence [Mow23, Proposition 3.2.2] gives an exact formula
for the tangent space at x = (B, B,0) € (X, N V1)(L). This can be rewritten as

dimy, T, X,, = dimj, T7r(:c) Uy — dy +dimp, t + lg(wo)
> dim B + lg(w) — 1g(w) + dimy, t + 1g(wo),

as w is not a product of distinct simples so lg(w) > d,, ([BHS17a] Lemma 2.7), and
where we use the notation E| dy = dimy, t — dimy, t*“. Thus

dimy, T, X,, > 2dim B 4+ dimy, t = dim G, = dim X,

i.e. Xy is not smooth at z. O

We write X for the inverse image of X, under the canonical projection G /B X
9 X Gy /By — G /P x g x G /By, This scheme can also be defined as

X1 = (G xBr 31 ®ny)) x40,

'see [BAS1Y] just before Proposition 4.1.5
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in particular Xy = X. The map X; — X, is a P;/B/-torsor and thus is projective and
smooth. We deduce that we have a decomposition in irreducible components

XI = U X],wa
weW\W

where each X;,, — Xy, is projective and smooth. Moreover, we have a closed em-
bedding X; < X induced by the closed embedding 3; & n; < b, and this induces
a closed embedding Xj, < Xymax, as each fiber of X; — X, over a point in
Vorw contains a (dense) open subset consisting of points that lie in the Schubert cell
GL(1,w™) C G/B x G/B.

Lemma 4.4. The schemes X and X,, are generically reduced.

Proof. As X1 is smooth over X,,, it suffices to prove the claim for X,,. For w € W,
let Uy = G (1,w) C G, /P; x G1,/B and let V,, C X;, be the inverse image of U,,. It
follows from [BD Prop. 5.2.1] that the V,, are smooth L-schemes, and they all have the
same dimension. As they also cover X, their generic points are the generic points of
the irreducible components of X,,. This shows that X, is generically reduced. O

Recall that we have two maps ki,k2 : X — t (see [BHS19, §2.3]) defined by
ki(g1B, N, g2B) = gi_lNgi(mod n). By construction, the image of iy x, lands in 3;
and the map ry|x, factors through X,,. This provides a commutative diagram

where ©7 is the restriction of the map (k1, k2) to X7.

The following result is the analogue of [BHS19, Lem. 2.5.1] in our context, with
analogous proof.

Lemma 4.5. The irreducible components of 31 xw t are the (Tyw)wew,\w where

Trw= {(z,Ad(wil)(z)) | z € 31}

Moreover, the irreducible component Xr,, (resp. Xy, w) is the unique component of Xy
(resp. Xy, ) whose image under O (resp. Oy, ) dominates Ty .

Remark 4.6. For future use, we make the following notational convention: When F' = Q,
we have G, = GL,, 1, we will use the notations X,,, X, 1, X,, 1. etc. for the schemes X,
Xy, Xl,w etc.
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4.2 Partially de Rham deformation rings

For each place v|p of F', we fix r, : Galp, — GL,(L) a framed ¢-generic Hodge-Tate
regular crystalline representation, that we assume that the (¢, I')-module D,ig(r,) asso-
ciated to r, is crystalline p-generic with regular Hodge-Tate type in the sense of [HMS)
§3.3&§3.4]. We also fix a refinement R, = (¢1,...,¢n) € L™ of r,, (see loc. cit.). We will
use the notation r = (ry),|, and R = (Ry),|p, and say that r is p-generic Hodge—Tate
reqgular and that R is a refinement of r.

vlp

Let Cr, be the category of local artinian L-algebras. Fix v|p a place of F. Let XE
be the groupoid over Cj, of deformations of r,. It is represented by a formal scheme
over L that we also denote by XE by abuse of notation. We recall from [BHS19, 3.6]
that, given the refinement R,, the groupoid of trianguline deformations of M, , is rep-
resentable by a closed formal subscheme th%v C X-. Here M,, the (,T')-module
over Ry 1[1/t] obtained from Dyig(ry) by inverting ¢ which is equipped with the unique
triangulation corresponding to the refinement R,. We set W, = Wagr (Drig(r)[1/t]) and
Weo = War(Ma,) and let Xy, 1, , denote the groupoid of deformations of (W, W)
as defined in [BHS19, §3.3].

Fix a finite subset I, C A,. For an object A of Cr,, we define X%ﬁ“’,w_ U(A) to be the
subset of all (Wa,Wa,.) € Xw, w,, (A) such that for any 7 € X, and dw ISWAVIENG
the B:{R-representation Wai QK L / Wa j+1 ®k,r L is de Rham, where j is the largest
integer < ¢ such that a,; ¢ I (and j = 0 if 7 is the smallest integer such that a; » ¢ I).
It is obvious from the definition that XI%J W., 152 subgroupoid of Xy, w, -

For an object A of Cr, and r4 € Xf:f;zv(A), we denote by M4 o the unique triangu-
lation of Dyig(r4) lifting M, . We say that r4 is P;-de Rham if

(War(ra), War(Ma)) € XBI“W.,U(A)

vy

(see [Wul, Def. 3.10 ]). It now follows from [Wul, Lemm. 3.11] that this functor is repre-

sentable by a closed formal subscheme of ng,t,?% that we denote Xﬁy%?}tri. More precisely,
we have an isomorphism of groupoids

Iy—qtri _ q,qtri Pr,
X”’mRv - X”’mRv XXWUaW.,U XWU7W.,U‘

Fix an L ®q, Fy-basis o, of WUGalK and let X%/v be the groupoid of deformations of
the pair (W, a,). We set

O _ O
XWmWo,v — XWv XXW’U XW”’W'KU

Iy—qtri,0d _ 4,1, —qtri |
T, Ry o X'f'v Ry X Xw, XWv .

As the map X?it;i% — Xy+ Xxy, Xw, W, is formally smooth by [BHSI9, Cor. 3.5.6],
we deduce that the map Xﬁ;{j‘tn’m — X+ XXy, XI?/?,E/. _ is formally smooth as well,

Y
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If I =1, CAandif a = ()
I—qtri,0 . Iy —qtri,0]
Xr,Rq = 1_Ivlp XTU,R% .

We consider the point

. I—qtri , I, —qtri
olp 18 fixed, we set X = Hv|p X. %, and

Tpar = (9Bp,0,hBy) € X;(L) C(G/B x g x G,/Bp)(L), (6)

where g € G(L) (resp. h) is the matrix sending the standard flag (corresponding to
our fixed basis ) of [, W&k to the complete flag I[Lp War(Mae )95 (resp. to
the Hodge flag). We deduce the following result (see [BD, §6.3] in a slightly different
context):

Theorem 4.7. There exists a diagram of formal L-schemes with formally smooth maps
I—qtri ¢ I—qtri,d f o
Xr,Rq " Xr,Rq " XI,xde

Proof. Let I =[], s, L, with I, C A, for v € S,. Note that we have a decomposition
X1~ e s, X7, where Xy, is the L-scheme defined in the same way as X but for the
group Resp, g, GLy, F,. We also write Tpar = (Tpdr,v)ves, Where zpqR,p is the image of
Tpdr in X7,. We just have to check that the groupoid

va O
Xyt XXwy KW, X Xw, X,

is represented by the completion of Xy, at zpqr,»,. This can be checked easily as in the
proof of [Wu, Lemm. 3.11] using [BHS19, Cor. 3.1.9 &Thm. 3.2.5]. O

We finally note that the map x; from above induces a map of formal schemes x; :
X1 wpqr — 31, Where 37 is the completion of 37 at 0, and thus a map

I—qtri,[J ~
X ,R — 31.

T

This maps factors into a map of formal schemes k1 : Xf ;zqm — 37

For w € W such that zp,qr € X1.4(L), we denote by XT{ ﬁqtri’w the schematic image
of

I—qtri

I—qtri,OJ v
X XLU),Ide - XT‘,R

X ~
R XI,zde

—5qtri I —qtri, L : . —qtri
and by X ?;{ (resp. X T,Rq ™) the schematic inverse image of {0} under ; in XTI S

(resp. Xi&qtri’w).

The schemes XTI, %qm and Xi ;zqm’w are formal spectra of complete local noetherian
rings that we denote by Ri;zqtri and Ri;gtri’w. It follows from the constructions that

I—qtri,w . . .
moreover R, p is an integral local ring.
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5 Global construction

Let F' be a totally real number field and let E/F be a totally imaginary CM extension
of number fields, in particular [E : F| = 2. We assume that all places of F' dividing p
are unramified and split in £/F and denote by S, the set of places above p in F'. We
fix a set X of places of E dividing p such that, for each place v € S, there is exactly one
place of ¥ above v. Let U be a unitary group in n variables for E/F that we regard, via
Weil restriction, as an algebraic group over Q. We assume that U(R) is compact and
and that Ug, is quasi-split. This implies in particular that there exists an isomorphism
Ug, = Ilves, Resr, /g, GLn,p, that we fix from now on. From now we note G = Uy,
identified with [[,cg, Resp, g, GLn,r, via this fixed isomorphism and we use notations
of section (3], i.e. L is the choice of a field of coefficients that is assumed to be big enough
so that all embeddings of E (equivalently of F) in @p factor through L. Moreover,
B C G is the Borel subgroup of upper triangular matrices, ' C B is the maximal torus
of diagonal matrices, IV is the unipotent radical of B etc.

5.1 Classical and p-adic automorphic forms

We write T' = T(Q,) =~ (Hvesp va>n and let Ty o~ (Hvesp O;U)n C T denote its

maximal compact subgroup. We denote by T (resp. fo) the rigid analytic spaces over L
parametrizing the continuous characters of 1" (resp. of Tj) and recall from [5| that there
is a weight map

wt : Th — t*

with values in the dual Lie algebra t* of T' (considered as a rigid space over L). We will
often, by abuse of notation, also write wt for the composition of wt with the canonical
projection T' — Ty. Recall that we had identified X*(T) with a Z-lattice in t*. Often we
will identify X*(T) with z"FQ,

Definition 5.1. Let § € T' (resp. € Tp) be a character.

(i) The weight of § is the image wt(J) under the weight map.

(ii) The character 9§ is called of algebraic weight if wt(d) € X*(T) C t*.
(iii) The character ¢ is called algebraic if it is of the form

p:(1®1,...,2,01) — H (T(zl)k; . --T(zn)k;)

for some k = (k7,...,k7)rper € ZMFQ | Tt is called dominant algebraic if k € X*(T)7,

»n

ie it k] > ... 2 k] for all 7.

Note that k£ — J;, defines a section of the weight map over the algebraic weights, and
we use this map to identify X*(T') with a subset of T' (resp. Tp).

Let KP C U(A®P) be a compact open subgroup, called a tame level that we assume
to be of the form [],., K¢ where K} is a compact open subgroup of U(Qy). Let I, be
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the Iwahori subgroup of G = G(Q,) = U(Q,) with respect to our choice of B. For any
compact open K, C U(Q,) we consider the Shimura set

Shirrk, = U(Q)\U(A®)/KPK).
As U(R) is compact, this is indeed a finite set of points.

Definition 5.2. The completed cohomology of the tower (SthKp)Kch(Qp) of Shimura
sets is:

I:=T1°®p, L, with TI°:= @@HO(SthI,, Or/7}),
n Kp
see [Eme06h].

The completed cohomology is an L-Banach space endowed with a continuous action
of U(Qp). This space is naturally identified with the space of continuous functions

fU@Q\U(A®)/KP — L. (7)

We denote I1'* the subspace of locally analytic vectors in I for U(Q,). This is the
subspace of functions in which are locally analytic. As ITI'* is a locally analytic
representation, there is a natural U(g)-action on II'* obtained by deriving the G =
G(Qp)-action. Here, as above, we write g for the Lie algebra of G, and b, t, n for the Lie
algebras of the Borel B, of the torus 1" and of the unipotent radical N of B.

Definition 5.3. The space of overconvergent p-adic automorphic forms of tame weight
KP is the space
SHE?) = (%) = Ly ()Y,
NoCN(Qp)
where Ny varies among the compact open subgroups of N(Q)). Given a weight x € t*,
the space of overconvergent p-adic automorphic forms of tame weight KP and weight k

is the eigenspace
SH(KP) C ST(KP)

of eigenvalue x for the U(t)-action.

Denote by T(KP) = Z[KP\U(A>P)/KP] the Hecke algebra of Hecke operators over
Z of tame level KP. Then T(KP) acts by convolution on ST(K?) and Sf(KP). Let S be
a finite set of prime numbers containing p and all the ¢ such that K, is not hyperspecial.
The subalgebra T = Qigs Te C T(KP) is commutative.

Definition 5.4. Let
T(Qy)* = {diag(af,...,ap), € T(Qy) | v(al) > ... > v(ay), Vv € Sp}.

The Atkin-Lehner ring A(p) is the sub-algebra of Z[T'(Q,)] generated by the elements
teT(Qp)*.
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Let 6 : T — L* be a continuous character. Then we can extend ¢ to a character
A(p) — L whose restriction to Tt is given by J. By abuse of notation we still write §
for this character of A(p).

Note that there is a cofinal system of compact open subgroups No C N = N(Q,)
such that tNot~! C Ny for all t € T+. We hence can define a Hecke action of A(p) on
ST(KP) = (II')" by letting t € T(Q,)" act on f € (II'*)N via

1
[t]f = (aj — W Z f(xnt)) ,

nGNo/tN0t71

where Ny is a sufficiently small compact open subgroup of N such that f € (II'*) and
such that tNot—! C No.

Let T be the commutative algebra T @z A(p). Definition provides a structure
of T-module on ST(KP) and Si(KP).

Definition 5.5. An overconvergent p-adic automorphic form f € ST(K?) = (II'*)" is
called a finite slope eigenvector for the A(p)-action if, for any ¢ € T(Q,)", there exists
a; € L such that

t]f = aif.

More generally f is of finite slope for the A(p)-action if for all ¢t € T(Q,)", there exists
a polynomial P € L[X] such that P(0) # 0 and P([t])f = 0.

Given a continuous character  : T — L*, we write ST(KP)[6] for the eigenspace
with respect to the A(p)-action of eigensystem 6 : A(p) — L. Note, that by definition
this eigensystem is automatically of finite slope and of weight x = wt(J). Moreover, the
A(p)-action on ST(KP)[§] uniquely extends to an action of Z[T(Q,)].

Remark 5.6. An overconvergent automorphic form of tame level KP with eigenvalue
d : T — L* for the Hecke-action at p (i.e. for the action of the Atkin—Lehner ring) is
thus the same as a locally analytic function

fU@Q@NU(A®)/KP — L,

such that there exists a compact open subgroup Ny C N(Q,) so that, for all g €
U(Aw),t € Tp,n € Ny,
fgtn) =6(t)f(g),

and such that moreover, for all t € T(Q,)*, [t]f = 4d(¢)f.

Definition 5.7. The space of classical automorphic forms of tame level KP is the sub-
space S(KP) = (TIY" of ST(KP) = (II'*)" of elements which are K)-finite for some
(resp. any) compact open K, C U(Q)).

We note that this subspace is stable under the action of T.
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For any character x° : T¥ — L, we let TI[x°] (resp. ST(KP)[x®], resp. S (KP)[x°])
denote the subspace of y°-eigenvectors for TS in II (resp. ST(KP), resp. S (KP)). If
§: T — L is a character of T (defining a character of A(p)) and if x = x° ® J is the
corresponding character of T = T*®z.A(p), we write ST(KP)[x] etc. for the corresponding
eigenspace.

Let m be a maximal ideal in T®. We then define

Iy =11, ®», L, where II; = L(HO/W"HO)
n
As there are only finitely many maximal ideals m of T such that (II° /7 II°), is nonzero,

the space Il is a topological direct summand of IT stable under the actions of U(Q))
and T.

Recall that if m is a maximal ideal (whose residue field is assumed to equal kr)
such that II; is non zero, then we may associate to m a continuous representation
p: Galp — GL, (k1) which is conjugate autodual, and unramified away from S. Such
representations p are called modular (see for example [BHS17bl §2.4]).

5.2 Patching the completed cohomology

We fix a maximal ideal m C T such that II, # 0 is non-zero and denote by 5 : Galp —
GL,, (k1) the corresponding modular Galois representation. For each place v of F' which
splits in E we write

Py =P Galg,
for a choice of v|v of E. From now on we assume that, for v € S, the place v splits
in E/F, we make a fixed choice v|v as before such that v € ¥ if v| p, and denote

S = {BJv € S} so that S is in bijection with S and contains . For v € S we write R%'
for the universal lifting (i.e. framed deformation) ring of p, and define

0 —U
I, = R,
to be the maximal reduced Z,-flat quotient.

Remark 5.8. If v|p we have in fact, by the main results of [BIP23], E?v = Rﬁ'jv. Using the
main result of [DHKM24] we find that the same applies to places v { p, as the deformation
rings RD may be identified with versal rings to the moduli space of L-parameters. We
still keep the notations introduced above in order to be consistent with the notations
from the references for the patching construction below.

We denote by R5; s the quotient of R corresponding to the deformation problem

Q — _1-ngn o
:(E/F7S7S7OL7P7€1 5E/F7{R5U}UES)
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in the notations of [CHTO8, §2.3], where 0g/p : Galp — {£1} is the quadratic character
associated to E/F, and

loc ._/\*D
R = QR
veS

There is an action of R;s on IL, by continuous TS-linear endomorphisms (see
[BOSITH, §2.4]). If x° : T3 — L is a character such that TI[x®] # 0, then the ac-
tion of R; s on H[XS ] factors through the character R; s — L corresponding the unique
lift p : Galg — GL,,(L) of p which is said to be associated to x°.

Remark 5.9. If 7 is an automorphic representation of U(Ag) such that 75" # 0. Let
% : TS — C be the character of T on 7", If we fix an isomorphism ¢ : C ~ Q, and if
L is big enough so that x° = 10° takes values in L and Ker(x®) C m, then IS [x*] # 0
and p is the Galois representation associated to 7 and ¢.

We assume the following (strong) Taylor—-Wiles hypothesis on p, E/F, U, KP and p.
Hypothesis 5.10. 1. p>2;

2. the extension E/F is unramified and F does not contain a (non-trivial) p-th root
(pofl;

3. the group U is quasi-split at all finite places of Q ;

4. the level KP is chosen such that K, is hyperspecial whenever the finite place v of
F'is inert in F ;

5. the representation pqa, . is adequate.
P

By |CEGT16] sections 2.7,2.8, (see also [BHSI7b, Théoréme 3.5]), we have the fol-
lowing data.

Proposition 5.11. There exist

1. an integer g > 1 ;
2. a continuous, admissible, unitary Roo-representation I of U(Q)) over L, where

Reo i= R°[[z1, ..., 2,]];

3. a local map of local rings Soo = OL[[y1,--.,Yt]] —> Roo with

nn+1)

t=g+dimR" — [F':Q] 5

such that
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(i) there exists an Op-lattice 1, C Il stable by U(Qp) and Roo such that
(H(o)o)/ = Homp, (Hgo’ Or),

is a projective So[[Kp]]-module of finite type (via Sooc — Roo) for some (equivalently
all) compact open subgroup K, C U(Qy) ;

(ii) there exists a surjective map of local R'°“-algebras Ry /aRs — Rps and an
isomorphism of continuous admissible unitary Ro/aRs-representations of U(Qy) on L

Mo[a] ~ Iy,
where a = (y1,...,y:) denotes the augmentation ideal of S,

It is a direct consequence of this proposition that the R.,-representation II,, of
U(Qp) satisfies Hypothesis We note that the same applies to a slightly more
general context:

Lemma 5.12. Let V' be a finite dimensional algebraic representation of U(Q,) over L.
Then the Rs-Banach representation o ®1, V' satisfies Hypothesis[3.15

Proof. As Il satisfies Hypothesis [3.15| for any open pro-p-subgroup H of U(Q),) there
exists an isomorphism of Z!, x H-representations Moozt xm = C(Z;, x H,L)™ for some
m > 1. But then

(Hoo XL V)|Z;><H ~ C(Z}tg x H, V)m ~ C(Z; x H, L)mdimL v 0

In the reminder of this paper we will use the following notations: we set

BHH \ri ~ HH \ri
X7 = Spf(Q), s\, o) = ];{S Spf(R; )",
ve D

where U9 := Spf(Op[[z1,...,74]])"® is an open polydisc. Moreover, we set

—

- O \ri
Xy = Spf(®v€SpRﬁv) g
Koo = SPF(Roo)™® = XP x X5 x Y.
By construction the space X contains X5 s = (Spf Rp’g)rig as a closed subspace. For
a point = (2P, zp,2) € Xx(L) and a place v of F' dividing p, we denote by p,, the

framed representation Galp, — GLj (L) associated to z. Finally we write p,, for the
the family of representations (pzu)y|p-
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6 Patching functors

In this section, we keep notations and conventions of section [5| In particular, we have
G~ e S,,(L Xq, Resp, g, GLn,F,) which is an algebraic group over L and we consider

the associated categories O, Og}, and @alg as in section [2| (for the choice of the upper
triangular Borel subgroup B).

We fix once and for all a point © € Xy (L) such that z maps to the origin in
(Spf. Sso)"8 (i.e. the point defined by the augmentation ideal of S.,) and we denote
by R the completed local ring of X at x.

6.1 Locally analytic patching functors

We fix a smooth and unramified character ¢ : T(Q,) — L* and consider € as a point of
T.

By Lemma [5.12], we can apply Corollary to the admissible locally analytic rep-
resentation IT% | and obtain a functor
%, — Coh(Xo x T)
M — MH . (M )

Definition 6.1. For M < ngg we define
Moo,:p,z—: (M) = -/\/tl_loQ (M)x,e
to be the stalk of My (M) at (z,¢).

It follows from Proposition that Mo 2 (M) is a Cohen-Macaulay }Afoo@-module
and it follows from Theorem that the functor M — M 5 (M) is exact.

Remark 6.2. We also have the following description:
/
Mo (M) 2= (Homyy(g) (M, T [m32]) N [m2] )

where m. is the maximal ideal of A(p) ®z, Q) = Q[T (Q,)"] corresponding to the
character ¢ and m,, is the maximal ideal of R [1/p| corresponding to x.

Remark 6.3. Note that we have two U(t)-module structures on Moo 5 (M): The first
one comes from the nilpotent U (t)-module structure on M as in section The second
one comes from the action of U(t) induced from the locally analytic T-structure on IT .
It is a tautological consequence of the construction, but we point out that these two
actions coincide.

Definition 6.4. Let I C A be a finite subset of simple roots and let M be an object of
Q{lg. Then we define
Moo,ze(M) = 1&L/\/looaca(zw/m?)
n
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Proposition 6.5. The functor M — My 5 (M) is exact on (5;1 and for each M € Oalg

the fioo,x—module Mooz (M) is finitely generated and Cohen—Macaulay of dimension
t +dimg 3. Moreover Mo 5 (M) is flat over U(3r).

Proof. Let Ss be the completion of Seo[1/p] along the maximal ideal generated by the
augmentation ideal a of So,. Moreover, we write U for the completion of U(3;) at the
maximal ideal mj.

By exactness of the functor M, ;, we have
Mooz e(M/mit) /m} & Moo o o(M/m])

for any n > 1. It follows from Theorem m 7| that Mo (M /my) is a finite projective
S -module. We denote its rank by r = 0. The exactness of My ;. implies that
Moo,z e(M/m?) is a finite projective Seo , @1 U(3r)/mf-module of rank r and it follows
that /\/looxg(M) is a ﬁnlte projective SOO®LU[ module of rank r. As the action of
SOO®LU[ factors through Roox we deduce the result. The exactness of the functor
Mo,z is a consequence of the exactness of Moo g ¢ restricted to Of}, and the fact that
each system (Moo o (M/m7)), satisfies the Mittag-Leffler condition.

Let t = (t1,...,tn) be a regular sequence generating the maximal ideal of U (31)m,-
This is also a regular sequence generating the maximal ideal of the completion U;. By
exactness of the functor Ss, ®z, — on strict exact sequences of Fréchet L-algebras, the
sequence t is §M®Lﬁ1—regular. As Mooz (M) is a finite free §M®Lﬁj—module, the
sequence t is Moo 5 (M )-regular. This is equivalent to flatness over U (371)m, - O

6.2 A factorization property

We use the spaces and notations introduced in section 4] A point z € X (L) is said to
be crystalline ¢-generic and Hodge-Tate regular if for all v|p the representation py , is
crystalline ¢-generic and HodgeTate regular. Let z = (pP, pp, 2) € Xso(L) be such a
p-generic Hodge-Tate regular point. We fix a refinement R of pj,.

Recall that G =~ [],eg, (L Xq, Resg, /g, GLn,r,). If I is a set of simple roots of G,
we set

I—qtri | I—qtri o
XOMR _/'\.’Pppx)( x U9,

—-I—qtri I tri .
Xooog =P x X, %" x 19,

00,z,R "

I—qtri

oz R the corresponding

This is a closed subscheme of (I’o\o)x and we write }Afoo,x — R
quotient map. Moreover, for w € W, we set

I—qtri,w . 255 I—qtri,w 1o
Xooxr = XPp X X R x U9,

I—qtriw | I qtrlw =I5
XoarR = prp XX, x U9.
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IR = (Pru - nov)op € [Lyp(LX)", we define dg to be the smooth unramified
character of T' defined by

(xl,va .. ':Unv ‘p —> HH (P;)ZU(IZ v )

vlp @

where g, denotes the cardinality of the residue field of F,. We use the notation My, » =
Moo 2.5 - The goal of this section is to prove the following result.

Theorem 6.6. Let © € Xo(L) be a @-generic Hodge Tate regular crystalline point and
let R be a refinement of x. Then, for any M € OL>®  the R o,z-module Mog o R (M) is
Killed by the kernel of the map Roo,x — RI79 - Bovivalently its support is contained in

00,z,R
I—qtri
Xoo,a:,R :

alg 7

Proof. This is a consequence of Proposition Proposition and Corollary
which will be proved below. ]

We will prove the auxiliary statements in (the proof of) this theorem by making use
of variants of the construction of eigenvarieties. More precisely, for a subset I C A, a
character A € X*(T)} (dominant with respect to P;) and an algebraic representation
V of G we will consider the scheme-theoretic supports

gLy = supp(MI’/\ ) C Xoo x T
EL (V) = supp(MI’\ VYC X x T,

where Mﬁjo respectively Mﬁ;\Ov are the coherent sheaves associated to Jy x(II'2)" re-
spectively to Jrx((Ie @1 V)2) (see section for the notation). We will link the
completions of L (X) resp. EL (A, V) at points (z,0) € Xs x T to the quasi-trianguline
deformation rings of sectlon [ This is done in two steps: we first show that the set-
theoretic support of /\/l _ resp. of /\/lI AV s contained in the (quasi-)trianguline locus
(see the proof of Prop031t10n E We then prove that £L ()\) resp. EL (), V) is reduced
(see the proof of Proposition . The proof of the latter statement follows the usual
argument in the case of eigenvarieties, see e.g. [BHS17bl Corollaire 3.12 and Corollaire
3.20]: the general properties of eigenvarieties (deduced from the fact that the sheaves
./\/lﬁ:o resp. Mﬂi‘ov are locally finite projective over (Spf Sso)™® x Tp imply that £L (X)
resp. £L (X, V) have no embedded components. Hence it is enough to produce on each
of their irreducible components a point y such that €L (\) resp. &L (A, V) are reduced
in a neighborhood of y. By the same projectivity argument as above, the point y can
be chosen so that the weight map to T o is smooth at this point. Reducedness then
boils down to checking that the Hecke operators (that generate the local ring of €L ())
resp. £L (A, V) at y) act semi-simply on the fiber of M * resp. MI AV over Ty which
in turn follows from the fact that Hecke-operators act semi- simply on spaces of classical
automorphic forms. We now give the details of these arguments.
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Let 0 = (010, 50n)|p € T(L) be a parameter for a quasi-triangulation of = at

p, i.e. the trianguline filtration of the (¢,T')-module Djig(pv)[l/t] over Ry, r[1/t] has
graded pieces R, 1(0i,)[1/t]. As x is Hodge-Tate regular, there is a natural map

ws th“ R — TP,

mapping a deformation at p of the (¢, I")-module D;rig(pv)[l /t], equipped with its trian-
guline filtration, to its parameter (see e.g. [BHS19, eq (3.15)]). If ¢ is locally algebraic
of the form § = Aég for A € X*(T) and some smooth character 6z € T'(L), we shift the
previous map to get

w=1_)\ws: quR — T(;R

which only depends on the chosen refinement. This induces a map

iXw: th“R—>meT5R,

or equivalently, a homomorphism Roo z ® (’)9 Sn — Riggtg.
Proposition 6.7. Let A € X*(T)] be a weight dominant with respect to P;. The }?ioo,m—
module Mg R(MI()\)) is annihilated by the kernel of Roo,z — Rio gt%. More precisely,

Moo7x,R(M]()\)) is an Reo z® (’)A —module and annihilated by the kernel of

Bar 0, — RO
YOR

00,2, R
Proof. Tt follows from Proposition and the definition of Moomn(ﬂ 7(A)) that
Moo,x,R(MI()\)) = (t)\M )(ac oRr)

as an Eoo,x ® (9% s -module. It is thus enough to show that the completion of M{I’)‘ at
YOR e
the point (z, \dg) € Xoo(L) x T(L) is supported at the closed subspace

I—qtri Yl A
X ws: X orR Koo,z X RN

We closely follow the proof of [Wul, Prop. 5.13]. Let us write £, C X X T for the
scheme-theoretic support of the coherent sheaf defined by Jg(I112)". By [Wul 5.4] this
contains £ (\) as a closed subspace. As in the proof of [Wu, Prop. 5.13] we consider
a proper birational map f : £, — € such that the universal (¢,I")-module over £,
has a quasi-triangulation, and write £, for the preimage of L ()\) in &,. Let Y C £,
be the Zariski closed reduced subspace of £ whose points are exactly the points of £
where the universal filtered (¢, I')-module over R[1/t] is Pr-de Rham. As in [Wu], the
existence of Y is a consequence of [Wul, Prop. A.10]. It follows that for any y € Y lying
above (x,dr) the map

?y — Xy X T
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factors through X qm . Let U C £L()\) be an affinoid open subset containing = and a
Zariski dense subset of points which are de Rham (and in particular P;-de Rham) and
trianguline with parameter given by &L (\) — T. Such a neighborhood exists by [Wul,
Prop. 5.11 & 5.12]. We deduce that f(Y) D U and hence f~}(U) C Y and we conclude
as in the proof of [BHS19, Prop. 3.7.2] (see the erratum in [BD]) that the map

Uz rsp — Xoo X T

factors through XOIO qm O

Corollary 6.8. Let V' be an algebraic representation of G, then
M= Moo,m,R(MI(A) L V)

1s annihilated by some power of the kernel of Roo z® (9:/; o Rio_;t%

Proof. We recall that
Mi(\) @1V =U(g) @upy) (L1(X) @ A1) @1V 2 U(8) Qupy) (L1(A) @ Vip, @ Ap)

and that V|p, is an extension of algebraic irreducible representations of L;. Exactness
of Moo r (see Proposition unphes that the RC>o z-module M is an extension of

Rooxn module of the form MOOIR(MI( )) for u € X*(I);r. We deduce the result
from Proposition O

Proposition 6.9. Let V be an algebraic representation of G. Then the schematic sup-
port EL (N, V) of the coherent sheaf associated to Jr (Tl @1, V)'®)' is reduced.

Proof. We follow closely the proof of [BHS17b, Cor. 3.20] replacing, where it is nedeed,
some arguments by results of [Wu]. To simplify notations we just write & = &L (A, V)
and M = M{I’;\O’V for the reminder of this proof.

Let NV be the radical ideal of Og. Assume that N # 0 and let = € € be a point in
the support of V. Let T} be the preimage of )\m[sF € (tN[¥)* under the map

T — ¢ — (tN Y,

where the first map is the weight map (5)). According to [Wu, §5. 4] there exists an open
affinoid neighborhood U of z and an open afﬁnmd subset W C T Y x Spf(Soo)™8 such that

I'(U, M) is a finite free O(W)-module (such a data exists according to the results of [Wul
§5.4]). Then I'(U,N) is the radical ideal of O(U). Moreover, as O(U) = T'(U, O¢) is a
sub-O(W)-module of End(I'(U, M)) (by the same argument as in the proof of Theorem
respectively of [BHS17b, Prop. 3.11]), the same is true for I'(U,N). Therefore
I'(U,N) is a torsion free O(W)-module and its support has the same dimension as W
and hence contains an irreducible component Uy of U. As a consequence the support of
N contains an admissible open subset of £. As the support of A is also a closed analytic
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subset of &, it follows from [Con99, Lemm. 2.2.3] that the support of N contains an
irreducible component of £. It hence suffices to produce on each irreducible component
of £ a point y such that £ is reduced in a neighborhood of y.

By [Wul, Prop. 5.11] every irreducible component of £ contains a point with algebraic
weight.

Therefore we fix a point z € £(L) with integral weight X € f)‘\’ . Let U be an open
affinoid neighborhood of z and W C T © X Spf(Seo)™® an open affinoid open subset such
that M = T'(U, M) is a direct factor of O(W)&pJg,(Jp, (12 @1, V),\). Let A = O(W)
and B = O(U). Then M is a finitely generated B-module and a finite projective A-
module. Let C' > 0 and C’ > 0 as in the proof of [Wul Prop. 5.11]. We set Z C W be the
subset of algebraic character dy/ such that, for any simple root o ¢ I, (\'+v, ) > C’ for
any v weight of VV. This is a Zariski dense subset of W. Then for z = 00, With g a
smooth character, using Proposition we see that the B-module M, = M ®k(z) is a
direct factor of Jg(Hom(M;(N), 112 @7 V)). Let (x,6) € U be a point above z, i.e. § =
dx0sm, then arguing as in loc. cit., we have Homg(}"g(N @1 VY, 6mdz5"), T2 [p,]) = 0
for any subquotient N of M;()\') different from L(\'). This implies that M, is actually a
quotient of Jg(Homy ) (L(N) @z VY, 1)) which is isomorphic to a finite direct sum of
J(Homy ) (L(p), 1)) with s dominant. The proof of [BHSI7H, Cor. 3.20] shows that
the global sections of the coherent sheaf associated to each Jp(Homy gy (L(p), 12)) on
UNk=1({dx}) is a semisimple B-module. This concludes the proof. O

Corollary 6.10. The rigid analytic space EL(N\) is reduced.

Proof. This is Proposition [6.9] with V' the trivial representation. O

Corollary 6.11. Let V' be an irreducible algebraic representation of G. Then the }?ioo7r®
Oz, -module Mooz r(Mp(XN) ®p V) is killed by the kernel of the map

A
SR

~

I—qtri
Roo® Op, — RIS
R

o0,z,R"

Proof. By Proposition the support of the module Mm,x7R(MJ1(A) ®r, V) is reduced
for any A € X*(T) dominant with respect to P; and any algebraic representation V' of
G. Therefore the result follows from Corollary [6.8] O

6.3 Bi-module structure on the patched functor

Let M be an object of Og, or @ilg for some I C A. As seen in section there
is a natural structure of A = U(t)m-module on M which provides, by functoriality, the
structure of an A-module on My, ; z(M). This A-module structure extends to an action

of the completion A of A with respect to the maximal ideal m. We recall from Remark
that this action coincides with the structure of an A-module on My o (M) induced
from the T-action on ..
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On the other hand, the ring Rgzr; R also carries a structure of an A-module induced

from the map x; defined in section This gives a further structure of an A-module on
the RA™ _ _module Moz R(M). We will show that these A-module structures agree.

00,z,R

For a € A, we denote by a (resp. a) the endomorphism of Mq, » #(M) defined by
the first (resp. second) action. Note that if M is an object of @alg, then Moo » r(M) is a
finite free A®,Ss-module for the first A-module structure by the proof of Proposition
Thus it is A-torsion free (since A is domain).

1

Lemma 6.12. For any a € A and any M in (’):fg or (5alg,

there is an equality

a=a¢€EndMeq o r(M)).

Proof. If M = M(p) @y U(t)/m" for some p € X*(T), this is a consequence of
[BHSI7D, Thm. 3.21], the commutative diagram [BHST9, (3.30)] and Remark This
implies that for any p € X*(T'), we have a = a on Mg 2 »(M(1)).

Now we consider the general case. By definition of My ;= (M), it is enough to treat

the case of M € Ogf,. It follows from Proposition that it is sufficient to prove
the equality @ = a when M = M(u) @ V for € X*(T) dominant and V a finite
dimensional U(g)-module. Let (Fil;) be an increasing filtration of M () @1, V such that
Fil; / Fil;_1 ~ M (p;) where pu1, ..., pug € X*(T) and d = dimy, V (such a filtration exists
by [Soe92, Lem. 8]. Let K denote the fraction field of A. It follows from Proposition
that we have a decomposition of U(g)x-modules

d
(M(p) ©r V) ©a K =~ M(ui)r
i=1
splitting the filtration (Fil; ®4K). Let p; € EndU(g)K((ﬂ(u) ®r V) ®4 K) be the
projector on M (i) k. As

Endy (g, (M(p) ®1 V) ®4 K) = Endyq)(M(p) @1 V) @4 K

by [Soe92, Thm. 5], there exists, for each 1 < i < d, a nonzero element ¢; € A such
that ¢;p; actually restricts to an endomorphism of M () @r V. Weset g =q1---¢q and
a; = qp;- Then the «; are endomorphisms of M (1) ®1 V that stabilize the filtration
Fil,. As each Fil; /Fil;_; is a free A-module, the endomorphisms «; induce the zero
endomorphism of Fil;_; and M (1) ®r V/ Fil; and the multiplication by ¢ on Fil; / Fil;_;.

In order to simplify notations we set

My = Moo,x,R(M(N) XL V)7
Fil; Moo = Moo oz (Fil).

By construction, for each i the endomorphism «; induces an R ,-linear endomorphisms
of Fil; M for all j. By exactness of Mo, R, the family (Fil; M) is a filtration of
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My and Fil; Mo/ Fil;_y Moo =~ MOOIR(]\A/I(NZ)) for any i, so that a and @ induces
the same endomorphism of Fil; M/ Fil;_1 M. Finally, for 1 < i < d, we denote by

Mé? = o;(Fil; M) the image of the i-th filtration step under «;. It follows from the
properties of o; that

e MY c Fil; My

« the quotient Fil; Moo /(Fil;_1 Moo + ML) is killed by g;

. é? is isomorphic to a quotient of Fil; M/ Fil;—1 Mo.

Therefore, we have a = a on Mé? for any a € A and the quotient of My, by the sum of
the Mo(é) is killed by ¢%. As M is A-torsion free it follows that a = a. O

Let £ : Z(g) — U(t) be the Harish-Chandra map as recalled in section As in
loc.cit. we write ¢, for the unique endomorphism of U(t) mapping = € t to t,(z) =
x +v(x).

Let h = (hiqp < -+ < hprw)re € X*(I) be the weight corresponding to the
Hodge-Tate weights of p, = (pu)y|p and let oG = (0,—1,-2,...,1 = n)., € X*(T) be
fixed central shift of the half sum of the positive roots g € X*(T') ® Q. We have a map

Ko A= (7(\’()“1 — Rg:iR
induced from the map k2 of section and we define the L-algebra homomorphism
a=ryoty 5 0&: Z(g) = Rz;fiR'
As in [DPS|, Def. 4.23], we define, for any v|p, an L-algebra homomorphism

C : O,ri
ng : Z(Lie(Resp, g, GLn)) — Rﬁvrlg
where p, is the universal family of Galois representations over RﬁD Mg A fter completion
at p, and taking the tensor product over all v|p, we obtain an L-algebra homomorphism

¢“: Z(9) = @ Z(Lie(Resp, g, GLn)) — R} — RIS
v|p

Note that the definition of C'pgc from p, depends on a choice of a central shift of dg (see

the discussion ending [DPS] §4.7]). We choose it equal to df;. More concretely (¢ is

characterized by the following property. This is the unique continuous homomorphism

such that, for any local artinian L-algebra and any local homomorphism f : R;‘;f;z — A,

CC

corresponding to pa = (pa, : Galp, = GL;(A))y|p, the composition map Z(g) -—

v|p»

. tu—él
Rg::;g — Ais Z(g) 5 U(t) —< A where

v e Homp (U)W, A) ~ Homp (U)W, A) ~ Homp (U(g*)%, A)

o1



is the map induced by the conjugacy class of the Sen operators
(@SGH,PA,u)v\p € (gL A).

Proposition 6.13. The homomorphisms (¢ and o defined above coincide.

Proof. Tt is sufficient to prove that for any local artinian L-algebra A and any map
f: REZIR — A, we have f o (Y = foa. Note that the map f gives rise to a family
(PAw)v|p Of local Galois representations. It follows from [BHS19, Lem. 3.7.5] that, for any
embedding 7 : F, <= L, the 7-part of the Sen polynomial of p, is [[;_ (X — (hir + Vi r))
where (v; ) € Homyp,(t, A) corresponds to f o kg : U(t) — A. The result is then a direct
comparison of the definitions of a and ¢¢. O

For each element M of the category Oil’go or (5£Ig, there is a natural homomorphism
of L-algebras Z(g) — End(M). By functoriality of My ;. =, this gives a map

z:7Z(g) — Endg (Moo,er(M)).

I —qtri
00,z,R"

The following result tells us that this map factors through R

Corollary 6.14. For any x € Z(g), the element z(x) is the multiplication by a(x)®1 €

I—qtri
Roo,g,'R'
Proof. This is a consequence of Proposition and of [DPS, Thm. 9.27]. O

Remark 6.15. Recall that h = (hy1,7p < -+ < hp,rv)ro denotes the weight corresponding
to the Hodge-Tate weights of p. Let A := wo(h) —d;; € X*(T), which is still a dominant
character. Recall that ¢_s, o & has image contained in U(t)"". Hence we have

th-s,, 0§ =1tp o Ad(wo) o t_g, 0 & = Ad(wo) 0 tyyn) 0 t—g, ©& = Ad(wp) 0ty 0 &.

Therefore
d®a= (Id@Ad(wo))Oh/\ tARp Z(g) —>A®AW A,

where h) is the map defined in section [2.4]

6.4 Computation of a support

Now we can prove our main result of this section concerning the support of the patched
functor applied to a generalized Verma module respectively applied to its dual.

Theorem 6.16. Let x € X(L) be a point whose associated Galois representation is
crystalline, p-generic and Hodge—Tate reqular. Let R be a refinement of x. Let h =
(hir <+ < hnr)rror € X*(T) be the character given by the Hodge—Tate weights of
pz. Let 0g = det 177”5(; =(0,—1,...,1=n)rpor € X*(T), where oG is the half sum of
the positive roots, and define \ :== wo(h) — d;; € X*(T)™.
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Then, for I C A and w € W, the schematic supports of Mw,x7R(M1(wmin - A)) and

MOO,I,R(M[(wmin -A)Y) are either cho_’i%i’w O or empty.

Proof. Let M be Mp(w™™ . X\) or My(w™» - \)V. As R is generically reduced and

0,z,R

equi-dimensional by Lemma and as My 2 (M) is Cohen-Macaulay of dimension

. I—qtri . . . . . . .
dim R__ 2 %, its schematic support is reduced and is a union of irreducible components
I—qtri,w’

/
0., R for some w’' € W.

of Spec Rio_gt%, i.e. it is a union of Spec R

By Proposition the module M is annihilated by I, C A; ®r, Z(g). This implies
in particular that the action of Ay ®1 Z(g) on M factors through hy. By functoriality,
this gives rise to a structure of an A; ® 4w A-module on My, »(M). Note that the
map (ki,k2) of section provides a morphism of L-algebras A; @ qw A — Rgo gt;é
and, using Theorem @7 a second structure of an A7 ® 4w A-module on MoowR(M) It
follows from Lemma[6.12] Corollary [6.14] and Remark that this two actions coincide
up to composition with Id ® Ad(wp). We deduce that M 5 = (M) is killed by the ideal

of RI-atm defining the inverse image of 17w, C 31 X¢w t. Therefore Lemma (see

00,z,R

also Remark D implies that the action of Rl_gm factors through R’ 9" 5o that
the schematic support of My, =(M) is Spec Rc{o gt;é wwo -

The following corollary is also a direct consequence of Theorem and Lemma [6.12

Corollary 6.17. Let x € X (L) be a @-generic Hodge Tate regular crystalline point
and let R be a refinement of x. Then, for any M € OL | the schematic support of the

—I—qt
Rw7w-module Mooz (M) is contained in X 2 ;é

alg’

7 Main results

We keep the assumptions of section[5land[6] in particular that Hypothesis is satisfied.
In this section we assume that our point z = (pp, p¥,2) € Xoo(L) fixed in section [f]
corresponds to a classical automorphic form of tame level KP. This means that x €
X55(L) C X (L) and that there exists an automorphic representation 7 of U(Ag) such
that II[mg] = H[ 51 where x? is the character of T acting on X" ®@¢, Q, for some
isomorphism ¢ : C ~ Q, (see Remark [5.9) . Let p : Galp — GL,(L) be the Galois
representation correspondlng to x so that p, = (p| Gava) |p- Moreover, we assume that
(the Galois representation defined by) z is crystalline, Hodge—Tate regular and ¢-generic
(see section at p. In particular the automorphic representation 7 is unramified, and
thus finite slope, at p. It follows from the proof of [BHSI7al Cor. 3.12] that the image

PP of z in Spf(@yes pho Egv)rig lies in the smooth locus.

We fix a refinement R = (@14,...,¢nw)o of . Let us denote the 7-Hodge-Tate
weights of pg, for v|p in F and 7 : F,, = L by hyr == (hiyr < -+ < hiy). Given
this collection of Hodge-Tate weights we write h = (hy )y, and hy = (hy 7). We then
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define Rffvis’h“ to be the crystalline deformation ring of p, of labelled Hodge-Tate weight
h, and set

cris,h __ Py cris,hy
Rpp - ®1} RPv :
Ip
We further define
Xt = X x (Spf RS )riE x [,

00,t,R —

Note that is follows from the definitions that Xglz% embeds into Xgotr;“éo for any choice
of a refinement R.

We set
Mo, = (hl,’u,ﬂ'a hQ,U,T + 17 B hn,v,ﬂ' + (n - 1)) = hU,T - 5/(;71;,7—7

and ft = (ty,r)v,r, which is thus antidominant (for the upper Borel), and A\ = wg(h) —
b = wo - p € X*(I)*. For all v|p in F, we denote by W, the Weyl group of
GL,,(Fy), which we identify with &,, and denote by $14,...,Sy—1, the simple reflec-
tions with respect to the choice of the upper Borel B, C GL, r,. Moreover, wg, =
Sn—1v---52051,0520 ---Sp—1,0 Will denote the longest element of W,. We then write
W =TI, W, the Weyl group of Go, > Hv‘p GL, r, with respect to the Borel B =
[1.p Bv- Because of the product structure, we will sometimes abuse notations and sim-
ply write s; for the simple reflections and wq for the longest element.

For a scheme X of dimension d we write Z°(X) = Z4(X) for the free abelian group
on the irreducible components of X. Moreover, for d < d we write Zy(X) for the
free abelian group on the irreducible and reduced closed subschemes of dimension d'.
We recall that a coherent sheaf F on X with d’-dimensional support defines a class
[F] € Zy(X), see e.g. [BHSI9, Equation (2.13)].

7.1 Sheaves and supports.
Let A =wg - pu € X*(T)" dominant, integral. We moreover write

my = dim My » R(L(N)) ® k(). (8)

It follows from [BHS19, Thm. 5.1.3] that m, > 1 and that m, does not depend on the
choice of a refinement R. Indeed,

m, = dim Homgy ) (L(N), 2 [m,)) V0 [ms, ] = dim Hom(;(Ind%(é)ﬁRégl)lalg, 12 [m,)),

coincides with the multiplicity of the locally algebraic vectors associated to p in IT'* and
those do not depend on the choice of R. We refer to the discussion before the Corollary
below for the notation and a justification of these facts. To z and R we associate
a permutation

Wz, R = (w$,Rv)v€E = (waz,Rv,’r)v,T eWw
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defined as in [HMS], § 3.7]. We recall that these permutations encode the relative position
of the Hodge-Tate flag with respect to the full flag corresponding to the refinement R.

We recall that, for any object M of Og, (resp. OL.), the sheaf My, = (M) is zero or

alg
qtri

Cohen-Macaulay of dimension ¢ = dim X5, ,  (resp. t + dimg 37 = dim Xgofgtg).

Lemma 7.1. Let R be a Cohen—Macaulay noetherian local ring of dimension d' and
let M and M' be two finitely generated Cohen—Macaulay modules. Let (t1,...,ty) be a
reqular sequence of elements of the mazimal ideal of R which is also M and M’-regqular.
Assume that [M] = [M'] in Zy(Spec R). Then

M/ (t1, ... tm)M] = [M'/(t1, ... ,tp)M'] € Zar—m(R).

Proof. By induction it is sufficient to prove the result when m = 1. Set ¢t = ¢;. Let p be
a prime ideal of R which is a generic point of Supp(M) or Supp(M’). It is sufficient to
prove that [M,/tMy] = [My/tM] in Zy_1(Spec Ry/(t)), i.e. that M,/tM, and My /t M,
are two Ry/(t)-modules of the same length. This is a consequence of [Sta24, Lemma
02QG]. O

Let A C g be the nilpotent cone and let N' — A be the Springer resolution. Similarly
to the definition of the closed subschemes X,, C X in [£.1] we define

Zw CN xy N CX

to be the Zariski closure of preimage under N X A N = G /B x G /B of the orbit
Gr(l,w) CGp/Bx GL/B. Set

qtri
00,x,R?

2y =9(f N (Zw N Xt wag)) X X x VI CX

where f and g are the maps from Theorem [£.7]

In the following we will make use of the following abusive notation for (local) formal
schemes: Let Spf R be a (local) affine formal scheme. Then we will say that Spf R
is reduced, if R is reduced. Moreover, we will say that Spf R is irreducible if Spec R
is irreducible. More generally, for a given irreducible component Spec R/a C Spec R,
we will refer to the formal subscheme Spf R/a C Spf R as an irreducible component of
Spf R. Similarly, we will write Z°(Spf R) = Z°(Spec R) for the free abelian group on the
irreducible components of Spf R to which we also refer as the irreducible components of
Spf R, etc.

Proposition 7.2. Let w € W. Then the following properties hold:

1) For all I C A and all w € W\W satisfying w™Pwy > wy g , the formal sub-
I—qtri,wwo
scheme X ' p
I—qtri
XOO;’%.

is reduced and irreducible and coincides with an irreducible compo-

nent of
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2) The schematic supports of Mooz (M (w-N)) and Mo o (M (w-\)Y), forw € W,

. . ~qtri,wwo . . . .
are contained in X, ;r if wwo = wz R, and this sheaf is zero otherwise. Moreover,

Moo ar(M(w - A)] = my [FL0) ¢ 702 )

tri,ww —5qtri
Mooz m(M(w-N)")] = ma[X TR ") € 2°(Xogam)

for wwg = wy r, where my is the integer defined by (@

3) There is an equality

Mooz (L{wwo - )] =my Y ayw(Za] € 22XE 2)

w/'<w

where the a, . € N are the integers defined in [BHS19, Thm. 2.4.7]. In particular
A = 1.

4) For all I C A, the sheaves

MOO,x,R(MI(wmin - A)) and Moo,m,R(Mj(wmin . /\)v)

are non zero if and only if w™Mwy = we R.

5) For all I C A, the support of

Moo o (Mp(w™™ - X)) and Mo o (Mp(w™™ - X)),

min

forw € W\W, is Kl -atriw

w . 1 .
oz R O if wMMwg > wy R and these sheaves are zero otherwise.

6) The module Moo .2 (L(N)) is free of rank my over X550, ¢ xdtiwo

00,z, R 00,z,R *

7) For any I C A and any w € W, the sheaves
Mooz r (Mp(w™™ - \)) and Mo z = (Mp(w™™ - A))
are generically free of rank m, over their support.

Proof. We first prove point . As X? is smooth at p? (as recalled _in the begining of
this section), the formal completion X?,» is formally smooth. As U9 is also formally
smooth, the claim follows from the fact that

I, —qtri -

I, —qtri,[Od I, —qtri,™J
X X"'v 7R1) and XTU ,Ru XI7J?de

Ty, Ry

are formally smooth and that X Lw,zpar 1S AN irreducible component of X IZpar-

By Theorem the schematic support of the Cohen-Macaulay sheaves

Meoer(Mr(w - X)) and Moo oz (Mr(w - X))
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is contained in X1 which is irreducible. By Proposition as the sheaves are

00,z, R )
Cohen-Macaulay of dimension ¢ + dim 3; = dim XC{O_E%Q“ (e.g. [BHS19, equation (5.8)]

and Proposition [3.20)), we deduce that, if non empty, their schematic support is all
I—qtri,w

X .
00,x,R

By Remark [6.3] we deduce also that

min

Supp(Moo,x,R(MI (w ' )‘))) - ?clxj,gf;gw o
for w € TW. Note that the Jordan-Hélder factors of My(w-)) are among the the L(w'-))
with w’ > w and that L(w-\) is the cosocle of Mj(w-\). Therefore Moy o (M(w-\)) #
0 if and only if Moz r(Mr(w - X)) # 0 if and only if Me z »(L(w’ - X)) # 0 for some
w’ > w. Therefore the non nullity assertions in [4)| and [5)| follow from the exactness of
Mo 2= (Proposition and from [BHS19, Thm. 5.3.3] (and this theorem implies that

the non-vanishing is actually also equivalent to Moo o »(L(w - X)) # 0). This proves
and

We prove point @ By [BHS19, Remark 4.3.1 and Proof of Theorem 5.3.3, Step 7],
the schematic support of Mo » ®(L(X)) is contained in the crystalline locus Xgi% C
Xgr; =» Which is smooth and irreducible of the same dimension as the support of

Mooz R(L(X)). Thus these coincide and Moo » r(L(N)) is free of rank m, over the
crystalline locus.

Now we prove point The first assertion has already been proved with 4)[ and
(together with Lemma7 therefore it remains to prove the assertion on the cycle. Let
us fix w so that wwy > wy . As M(w- ) and M(w- )" have the same Jordan-Holder
constituent With multiplicity), it is sufficient to prove the result for M (w - \). We know

5)

from point [5)|that the schematic support of Mao » = (M (w- X)) is ng,j%wo and it follows
from Step 9 (ii) in the proof of [BHSTY, Thm. 5.3.3] that Mug oz (M (w-\)) is generically
free of rank m, over X gr;%wo Indeed, Propositionidentiﬁes Mooxn(ﬂ (w-\)) with
the localisation of My, of loc.cit. at TR ww,, the point corresponding to x, refinement
R and Hodge-Tate weights determined by wwy (see [BHSIO, §5.3]). As xdhwwo g

00,x, R

Cohen—Macaulay, the result is a consequence of point |5){and of Lemma applied with
M = Oy and M’ = Moo o (M (w- )

o0,z, R
and to a regular sequence generating the maximal ideal of U(t)y. This sequence is
M’-regular by Proposition

We deduce |3)| from [2)| together with formulas (5.23) and (5.24) of [BHS19] and the
fact that the Verma modules form a basis of the Grothendieck group of the category
Oy, -

We prove point As cho_ﬂg%g’wl is generically smooth for any w’, the module

Mooz R(M) is generically free, say of rank r, over its support where

M € { Mooz (Mp(w™™ - X)), Moo pr (Mp(w™™ - A)V)}.
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I—qtri,w
Roo,x,R

such that U intersects the support of Mo =(L(w™™ - X)). The claim then implies
r = mg. Indeed, the restriction of /\/loo,x,R(]\AL(wmi“ - A)) to U is locally free since U
is regular. Therefore Mo o » (M(w™™ - X)) is locally free of rank r over its support
intersected with U. It follows from the point [3)| that Moo 2.z (L(w’- X)) is not supported
at the generic point of Z,miny, for w’ > w™™ and that M ;& (L(w™™ - X)) has length
m, at the generic point of Z,min,,. As L(w™" - \) appears with multiplicity one in
M (w™™ . \) and all other subquotient are of the form L(w’- ) with w’ > w™® we have
r = my. We now construct an open subset U with the claimed properties. We set

Now we claim that there exists an open an subset U in the regular locus of Spec(

U = g(f_l(vwminwO ﬁ X17wminw07de)) X Xé)p X Ug,

where f and g are the maps of Theorem @ and Vmin,,, is the preimage of the Schubert
cell G (1, w™Pwy) C G /B x G/B in X[ ymingy,- This is an open and smooth subset of
X pming,: indeed, the maps f and g are formally smooth, the formal scheme ngﬁ —

X;Lt,r;z is formally smooth and the point as p? lies in the smooth locus of XP. O

Remark 7.3. We would like to emphasize that Proposition is the only place where
we need to work with deformed objects to study the patching functors. Moreover the
equalities in [2)[ and [3)| where essentially proved in [BHS19] (in the proof of Thm. 5.3.3)
but only at points which are in the smooth locus of the support of Mo 5 = (M (w - X)).

Proposition 7.4. Assume that xpqr 5 a smooth point of Xyuw,. Then
Mooz (M (w - X)) and Mooz r(M(w- X))

are finite free O?qtri,wwo -modules.

co,z, R

Proof. By Remark m the two U(t)-module structures on ./\/looxR(M (w - A)) coming
from the U (t)-action on M(w - ) and the one coming from the derivative of the locally
analytic action, coincide. Thus we have the equality between M » = (M (w-A)) and the
localisation

Moo R(M(w - N)) = 48" Moo o m (M(w - \),

where i : 75 — T' denotes the inclusion of the closed subspace of smooth characters.
A similar remark applies to the dual Verma module. In particular, it is enough to show
that the O e -modules

oc0,z, R

Meoer(M(w- ) and Moo 2z (MY (w- )

are finite free. But these modules are Cohen-Macaulay with support the localization at

qtri,wwo . .
x of Xowr » which is smooth. O

o8
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7.2 Recollection on Bezrukavnikov’s functor

The aim of this section (or even of the paper) is to identify the patching functor that
takes objects in Oyl (or more generally in Oglog) to Cohen-Macaulay modules on certain
Galois deformation rings with a functor constructed by Bezrukavnikov in geometric rep-
resentation theory (more precisely: with the pullback from our local models to the Galois
deformation rings). Before doing so, we will need to recall the result of Bezrukavnikov.

Recall that X = g xgg where g is the Lie algebra of G, = [[,ex(L X, Resg, /g, GL»)
as in section [4.1]and denote by X" the completion of X along the preimage of {(0,0)} €
t Xy tin X. Moreover, we write X = X x {0}, where the fiber product is taken
with respect to the map #1 : X — t of [4.1] that maps (¢B,hB, N) to ad(g~')(N)
(mod n) € t. As in the preceding sections we fix the shift

1-n

S = det 2 g € X*(T)

of the half sum of the positive roots ég. As G, is a product of (split) groups G, isomor-
phic to GLy, 1, the Lie algebra g =[] ¢5, 8-, X = [[;exn, and tx t splits accordingly.
In particular, this applies also the the category O. Let A = (A;)rexn, € X*(T). The

category Oy, identifies canonically with the Deligne’s tensor product X ¢y, Oy, of

the categories Oy, where Oy, _is the x, -block of the category ngg;bT. Given an object

M; € Oy, for each T € X, then the object [X], ¢y, M- in the Deligne tensor products
identifies to the tensor product over L of the M.’s viewed as a U(gL) = @, rexn, U(g-)-
module.

Theorem 7.5 (Bezrukavnikov). Let A € X*(T') be a dominant character. There exists

an exact functor
B:0O,, — Coh%(X"),

such that
1) for all M € O, the sheaf B(M) is a Cohen-Macaulay sheaf,
2) for allw € W there is an isomorphism B(M (wwo - \)¥) =~ Ox—,
3) for all w € W there is an isomorphism B(M (wwq - \)) ~ wg—,

4) the image B(P(wp - X)) of the anti-dominant projective P(wp - X) is the structure
sheaf O,

5) the image B(L())) of the algebraic representation L(\) is the line bundle O(—d5)X
O(—dg) on G1,/B x G, /B which is viewed as a closed subscheme of X" via

(9B, hB) — (9B, hB,0).

6) For all M =X, ¢y, M, € O,,, we have
B(M)=X,B.(M;),

99



where By @ Oy, —> Coh8% (X2 is Bezrukavnikov’s functor for the group G, and in-
finitesimal character x .. Here W, denotes the exterior tensor product for (equivariant)
coherent sheaves on each X .

This result is (a small part of a result) due to Bezrukavnikov and his collaborators
whose proof is spread out through the papers [Bez16, [BR12, [BL23, BR22]). For the
convenience of the reader, we explain how to get the result in the previous form.

Proof. We actually construct directly B as a product satisfying @ using [EGNO15,
Proposition 1.11.2] and each B;. The resulting functor is exact as each B; will be. As
each object in points is of the form X, M, , we can assume that we have fixed one
7 and G is one of the G, which we do until the end of this proof.

By the main result of [Bezl6], there are reverse equivalence of categories
U : Do jo 4+ DP(CohSH(3 %4 §)) = 0,0,

where A C g is the nilpotent cone and we have gx4g = X. Up to use translation functors,
we can focus on the case A = 0. By [Bezl6l, Corollary 42 | the functor ¥ in fact takes
values in (G-equivariant) coherent sheaves on X, when restricted to perverse sheaves F €
Pervy(G/B). Moreover, the Beillinson-Bernstein localization theorem, more precisely
by [BG99] Localization Theorem 2.2, and the Riemann—Hilbert correspondence provide
an exact fully faithfull embedding of categories

Oy, — Pervy(G/B).

Composing the Beillinson—Bernstein equivalence with Bezrukavnikov’s functor (noting
that the blocks O,, and O, are equivalent) we get the exact functor B.

The properties and {4)| follow from [Bezl6, Ex. 57]. Denote pn = wp - A denote
the antidominant weight in the dot-orbit of \. Now the proof of [BL23 Proposition
5.8] implies that B(M(s - p1)") = Ox for all simple reflection s and B(P(u)) = Ox.
Bezrukavnikov’s main result [Bezl6, Theorem 1] implies that ¥ (hence B) intertwines
the convolutions on both sides. Here the convolution on the category O,, ~ O,, is
inherited from the convolution in Pervy(G/N) (by pullback from Pervy(G/B)) defined
as in [BR22, 7.]. We write w = s1...s, and compute convolutions on both sides. By
[BR12, Theorem 2.2.1] we have

By [BR22, Lemma 7.7] we have M (w - u)¥ = M(sy - )Y * -+ x M(s, - 1)V and hence
B(M(w-p)V) = O Moreover, by [BR12, Theorem 2.2.1] again, the dualizing sheaf of

Xy is given by the convolution

— = Wk ok W
YX. =YX, X,
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But [BRI2, Proposition 1.10.3] implies that the inverse of Ox; for the convolution is
wx, and as B is compatible with convolution, and as the inverse Cof M (s-p)V is M(s-p)
(agaln using [BR22| Lemma 7.7] for example), we deduce ws— = B(M(s-u)). The point
5)[is a consequence of [BL23| Lemma 6.7] (with P = G).

Finally we prove By points, [BHS19, Prop. 2.3.3](which follows from [BR12,
Thm. 2.2.1] and the fact that any injective object of O, is a successive extension of dual
Verma modules, we deduce that B(M) is Cohen-Macaulay of dimension dim X for M
injective. Each object of O, has a finite injective resolution. Therefore by exactness of
B we conclude that for any object M in Oy, B(M) has a finite resolution by Cohen—
Macaulay coherent sheaves having all the same dimension. It is easy to check that a
coherent sheaf F on X having a finite resolution F[0] — R*® by objects R", in degree
n 2= 0, which are all Cohen—-Macaulay of the same dimension is also Cohen—Macaulay
of this dimension. Namely this is direct if the resolution has length 2 and we conclude
by induction on the length of the resolution by cohomological shifting. O

Remark 7.6. Instead of constructing B as a product as above, we could also directly
apply the previous results of Bezrukavnikov directly to the split group G. The resulting
functor, say B, will satisfy exactly the same Theorem (with the same proof) except
maybe point [6)] Surely, B’ should also satisfy [6), and thus B = B, but we couldn’t find
a reference for this fact and this is beyond the scope of the present article.

Recall that we have fixed a point z € X, associated which we have defined the
positive integer m, in .

Corollary 7.7. The functor B induces an exact functor

B, : Oy, — Coh(xd™ )

00,z,R

such that, for all M € Oy, the sheaf By(M) is a Cohen-Macaulay sheaf and such that

— t 3
Mo m(M)] = ma[Bo(M)] € 22 ).
Proof. Let G be the completion of G at the unit element. As the representations (py ),y
defined by the point x are crystalline and hence de Rham we may choose a basis « of
W(x) = [lyex War(Drig(pz,0)[1/t]) and define a point zpqr associated to z (or rather
to the representations (py),|p) as in @ For all M € O,,, the sheaf B(M) is a G-

equivariant sheaf on X" and hence gives rise to a G;-equivariant sheaf on sz ar- Now
by [BHS19, Theorem 3.4.4. and Corollary 3.5.8], see also Theorem 4.7 - above, we have a
diagram

qtri,™d
Xoo,x,R

N
qtri A
Xoo ,Z, R TpdR*
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More precisely, the map 7 forgets the deformation of the fixed basis «, and hence it
is a G;-torsor. Moreover, W formally smooth and G;-equivariant for the natural left
actions g-& = @&og ! on the source (acting only on the deformation of the isomorphisms
ay: L ®q, Fy s W,) and g - (kB,hB,N) = (gkB,ghB,g 'Ng) on the target of W.

It follows that the pullback of B(M)?  at X

TpdR ZTpdR
and hence descends to a coherent sheaf

B.(M) € Coh(Xd™ ).

00,z,R

along W is a G;-equivariant sheaf

It follows from the construction that M +— By (M) and that B, (M) is Cohen-Macaulay,
as B(M) is. Moreover, B, is exact, as W is formally smooth and hence flat.

It remains to check the assertion on cycles. But as taking cycles is additive and B,
is exact, we only need to check this equality on a generating set of the Grothendieck
group of Oy, such as the Verma modules M (w - ). Hence the desired equality follows
from the previous result on Bezrukavnikov’s functor together with Proposition O

7.3 A detailed study of local models when n =3

From now on we assume n = 3 until the end of section [7], so that the group G is
QL ~ (ReSF®QQp/Qp GLg) XQP L~ H (L XQP ReSFU/Qp GLS,FU) ~ H GL37L .
vESH TEXR

We identify the previous local Weyl group W with [[, W, and each W, with Wgp,, >~ &3
and denote sq 7, s2 - the two simple reflection corresponding to the choice of the upper
Borel, and wq = 51,752,751+ the longuest element in W,. If 7 is understood, we often
omit it from the notation.

As in section [£.I] we denote by X the Steinberg variety for the group
Q = ResF@QQp/Qp GL3,

over L. As L is assumed to contain all Galois conjugates of I we have X ~ [] x, X3 (see
Remarkfor the notation X3). The Steinberg variety X (resp. X3) has dimension 9/
(resp. 9) and 6/>F| (vesp. 6) irreducible components X, w € W (resp. X3, w € G3),
see e.g. [BHS19, Proposition 2.2.5].

Proposition 7.8. For w = (wr)ex,, let s = {7 € ¥p | wr = wo}|. Then the
component Xy, is smooth if and only if s = 0. Moreover, if s # 0, then the component
X s Cohen—Macaulay but not Gorenstein. More precisely, let

Tpar = (9B, hB,N) = (9:B,,N;,h:B,) € Xy(L) = [ Xsw. (L),

TEEF

and assume that N, = 0 when w, = wg. Then
dimy, wx, ® k(.%'de) =2,

where v := |{1T | w; = wo, and g;B, = h;B_}|.
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Proof. The smoothness is a consequence of Proposition As X = [[;en, X3, it is
enough to prove the analogous result for X3 only. Indeed, by base change and com-
position of upper shriek functors, the dualizing sheaf of X is a derived tensor product
®H; prwx,, where pr : X — X3 is projection to the 7-component. But as the product
X =1][, X3 is a product over a field, we find

*
wx = Q) prwx,-
T

Thus from now on we denote X3 simply by X.

It is thus enough to prove that the fiber of w Xug 18 2-dimensional at a point of the
form (¢B,0,9B). Let q : § — g denote the Grothendieck resolution, then X ~ G; x£
g1 (b). Moreover, Y := ¢~1(b) decomposes into irreducible components ¥ = U, ew Yo
such that X, ~ Gy, x8Y,,. Hence it is enough to prove that WY,y has fiber dimension
2 at the point ypar = (B,0). As X, is Cohen-Macaulay and flat over t (cf [BHSI9,
Proposition 2.2.3]), we have the base change formula wy,, ®x X ~ o We are thus
reduced to compute the dualizing sheaf Wy~ of the irreducible component

Yo = Y, Xt {0}

of Y = ¢~!(n). This scheme now has dimension 3 and we can use explicit computations.

A point of Y(L) is of the form (¢B, N) € (G/B x g)(L). We use the embedding
G/B < P7 x (P%)V that sents a full flag (0 C L C P C k) to (L C k3, P C k3). In
homogeneous coordinates ([zg : x1 : 2], [yo : y1 : y2]) the condition £ C P is given by
Toyo + x1y1 + xay2 = 0. Let vy’ C Y denote the open subset defined by the condition
xo = yo = 1. It is enough to compute on this open subset, as this is a neighborhood of
the point ypar = (B,0) = ([1:0:0],[0:0:1]). On Y we can thus remove yo from our
equations. Let us write

0 w2 w3
N = 0 u23
0

for the universal matrix over Y. The ideal defining

40
Y o C Z = Spec(k[z1, T2, Y1, u12, u23, u13])

is then given by
Ly, = (ugzxe, ui2(x2 + x1y1), w1221 + 1322, u23y1 — wi1z(z2 + 1Y1)).

We remark that we can replace uia(z2+x1y1) by w229 —x 13221 using the third equation,
and that automatically y1ui2ues = 0 using our new equation and ua3y1 —u13(ze+1y1) =
0. We then check (e.g. using Macaulay2) that

Al A A
0— 0% 0% 5 05 = Oy
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is a resolution of Oz/I,,, where

Al Yyiu13 — u12 t
T1u12 + T2U13
—X9 0
1 Un3 ToU23
! 1
A = 0 , AT = Y1U12U23
2t T1Y1U13 — Y1u23 + T2u13
0 s ToY1U Tol
2Y1U13 — T2U12
0  ziui2 + xou12
—T2U23 —Y1u23 0 To  —Y1u13 0
Tiulz + ToUu1z  Y1U13  —Y1U12  —Y1 0 —Y1u13 + u12
A= 0 T o 0 1 0
0 0 0 —X9 U192 0
0 0 0 T U13 U93

Let i : ?OwO — Z denote the canonical closed embedding. Then the dualizing sheaf can
be computed as w??uo = i*Ext“Zi)Z (Oﬁoo, Oz) which is given by

woo = 0%/ < (y1,51u13 — wi2), (22,0), (21, u12), (0, wrgugs) >,

wo

as ToUsy = ToUiz + Touiz = 0 on 7?00. It follows that the fiber of W0 at Ypdr is
wo
2-dimensional. ]

Lemma 7.9. Let J C Agr,.-

1. For w € W(GL3) ~ &3 the component X3, is smooth if w # wy.

2. If vpar = (9Bj3, hBj3,0) € X3, (L), with gB3 # hBg, then xpgr is a smooth point
Of X37w0.

3. For 0 # J C Aqgr, = {s1,s2} the component X3 ;i is smooth for any W €
WAWGL, -

Proof. Point 1] is Proposition For the point [2| denote w’ the index of the Schubert
stratum in which xpqp lies. By [BHS19, Proposition 2.5.3(ii)] it is thus enough (as
Uy, = GL3 /B3 x GL3 /By is smooth) to prove that codimg(t“o%'~1) = lg(wp) — lg(w’).
But this codimension is what we have denoted £(wow ') in the proof of Proposition
Asw' # 1and n = 3, wow ~! is a product of distinct simple reflections thus E(wowlfl) =
lg(wow'~1) = lg(wo) — lg(w’). For point |3, as n = 3 we have that J = {s;},{s2} or
J = {s1,s2}. Denote P = P;. In the case J = {s1,s2}, then P; = GL3 and X3 ; =g
is smooth. It is sufficient to prove the case of J = {s1} (the other case is exactly the
same), where an explicite computation gives the smoothness (alternatively, when w™"
has length < 1, [BDl Corollary 5.3.4] also implies smoothness). O
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Corollary 7.10. Let w = (w;); € W and let I =]].I; C A. Let xpqr = (Tpdr,r)r =
(9:B,,h:B., N;) be a point such that N; = 0 whenever I, =0, w, = 1. If

MOO,I,R(MI(wmin : )‘)) (T’@Sp. MOO,I,R(MI(wmin : )\)\/))’

7]_qtri’wminw()

is not a finite free X, , R
I =0, w,=1and wyr,=1.

-module, then there exists an embedding T such that

Proof. Assume that there is no 7 such that I, = () and w; = w, g = 1. Lemma
then shows that the local model X is smooth at xpqr. By @ the support
XA — supp Mooz r(Mp(w - )

00,z, R
is smooth. Thus Moo,x7R<M/](w - A)) is a free of rank m, over X;O_f%i’wwo. By Remark

its follows that My o »(M7(w - X)) is a free of rank m, over ?é;gfg’wwo,
The same argument also applies to MOO,I,R(M[(U) - A)). O

Proposition 7.11. For all w € W the sheaf By (L(w - X)) is cyclic (we recall we are in
the case n = 3). Moreover, for allw € W such that wwoy > wy R the sheaf Moo (L(w-\))
1s free of rank my over its support.

Proof. Recall that, for w € W, Z,, is the closure in N x N N of the preimage V,, of
the Bruhat Cell U, = G;(1,w) C G;,/B x G /B. By [CG10l Prop. 3.3.4], V,, can be
identified with the conormal bundle of U, in N x N ~ T*(G/B x G;/B). As g is
isomorphic to direct sum of copies of gls, the closure U, of U, in G, /B x Gr/B is
smooth, hence a local complete intersection. This proves that the conormal bundle of
U, is a closed smooth subscheme of NxN containing V,, as an open dense subset so
that it coincides with Z,, and Z,, is smooth. This implies that 3,, is a smooth. As
Moz R(L(wwp - N)) is Cohen-Macaulay, it follows from Proposition and from the
fact that a,, = 0 for w # w' (see [BHS19, Rk. 2.4.5]) that the sheaf M 5 = (L(wwg- X))
is locally free over its support. For the same reason, the support of the Cohen-Macaulay
sheaf B, (L(w-\)) is Z,,, which is smooth, and thus the sheaf B, (L(w- X)) is free of rank

1 over its support (i.e. cyclic). O

7.4 The case of dual Vermas

For later use, let us recall the following Lemma.

Lemma 7.12. Let R be a commutative local ring and let I C J two ideals of R. Let m >
landm: (R/I)™ — (R/J)™ a surjective R-linear map. Then there exist isomorphisms

p: (R/I)" — (R/)™, ¢ (R/D)™ — (R/T)™

such that @ o™ = 7o) = can®™ where can : R/I — R/J is the quotient map.
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Proof. Let (eq,...,en) be the standard basis of (R/I)™ as an (R/I)-module and (f1, ..., fm)
the standard basis of (R/J)™. Then (7(eq1),...,m(em)) is a generating family of (R/J)™.
As any generating family of cardinal m of a finite free module of rank m over a local ring
is a basis (see Cor. to Prop. 6 in [Bou, Ch. 2§3.]), we see that (mw(e1),...,m(en)) is also
a basis of (R/J)™. Therefore we can define ¢ by the formula ¢(w(e;)) = fi. Now, for
any 1 <i<m,let f/ € (R/I)™ such that n(f!) = fi. By Nakayama Lemma the family
(f1,--., fr,) generates (R/I)™ and so is a basis of (R/I)™. We can therefore define 1
by the formula ¢(e;) = fI. O

We will use the previous Corollary to start a devissage which will be assured by
the following Lemma. Note that in Lemma below, we don’t need to assume that
n=3.

Lemma 7.13. Let M be an object of Oy, and let Q1,...,Q, be quotients of M. Let Q)
be the smallest quotient of M dominating all the Q;, i.e. @ = M/(MyN---N M,) where
M; = Ker(M — Q;) for 1 <i<r. We assume that

(i) for any 1 < i < r, the sheaf Moo o 7(Qi) is free of rank my over it support;
(ii) for any 1 < i < r, the sheaf B,(Q;) is cyclic (generated by one element);
(iii) for any 1 <i <1, Supp Mooz, r(Q:) = Supp B4 (Qi) ;
(iv) the sheaf B,(Q) is cyclic.

Then the sheaf Mo 2= (Q) is free of rank m, over its support and

Supp(Mz,0o,r(Q) = Supp(B:(Q)).

Proof. To ease notation we note m = m;. Let’s prove the result when r = 2. Let
A = ngj;ﬁ be the ring of global sections of XEZT;,R and let I; = Ann(B,(Q;)) for
i € {1,2}. Define Qg the largest common quotient of Q1 and Qq, i.e. Qo = M /(M;i+ M>).
Then we have a short exact sequence

0—Q —Q1DQ2 — Qo — 0,

where the map Q1 & Q2 — Qo is given by (z,y) — = — y. By exactness of Mo, » =, We
have a short exact sequence

0— Moo,x,R(Q) — Moo,x,R(Ql) s> Moo,x,R(QQ) — Moo,x,R(QO) — 0.

We fix isomorphisms (A/;)™ = Ms »r(Q;) for i € {1,2}. As Qo is a quotient of
both @)1 and )2, we have surjective maps

(A/Ii)m — Moo,x,’R(Qi) — MOO,IE,R(QO)a
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whose composite factors through (A/(I1 + I2))™. Using Lemma we can choose the
previous isomorphisms such that the following diagram commutes

T,Y)—T—y
_— 5

(A/L)™ & (A/ )™ AJ(I + )™ —— 0

: 1 g

Moo,;v,R(Ql) @Moo,:v,'R(Q2) I Moo,ac,'R(QO) — 0.

As the kernel of the upper horizontal map is isomorphic to (A4/(I; N I2))™, we obtain a
commutative diagram

0 —— Moo,z,R(Q) O Moo,z,R(Ql) EBMOO,JC,R(QQ) I Moo,x,R(QO) — 0.
(10)

As Ann(B,(Q)) = I1 N I and B,(Q) is cyclic, there exists an isomorphism B, (Q) ~
A/(I; N I). Moreover, by hypothesis, we have Supp(B,(Q;)) = Spec(A/I;) so that the
maps A/(I1 N Iy) ~ B,(Q) — B,(Q;) factors through isomorphisms A/I; ~ B,(Q;).
Therefore, by exactness of B,, we also have a commutatif diagram

0 —— (A/(I N 1)) 0% (a/n) @ (A/I)

5 R

0 ——— Bu(Q) —— Bo(Q1) @ Bx(Q2) —— Bz(Qo) —— 0.

This implies that we have an isomorphism A/(I; + I2) >~ B;(Qo). As B;(Qo) is Cohen—
Macaulay, so is A/(I1 + I2). As the ring A/(I; + I2) is Cohen-Macaulay, the vertical
right arrow of diagram (9)) is a surjective map (A/(11 + I2))™ = Mooz = (Qo) between
two Cohen—Macaulay modules with the same cycle by Corollary [7.7] It is therefore an
isomorphism and the Snake Lemma allows us to conclude that the left vertical arrow in

is an isomorphism.

Assume that the result is proved for some integer r > 2. Let Q1,...,Qr11 be
quotients of M satisfying the hypotheses of the Lemma. Let Q" be the smallest quotient
of M dominating all the @; for 1 < ¢ < r. Note that B,(Q') is a quotient of B,(Q)
and is therefore cyclic. By induction, Mu » 2(Q’) is free of rank m over its support
and Supp Moo » =(Q') = Supp B;(Q'). The quotient @ is now the smallest quotient of
M dominating Q" and Q,41. Therefore the case r = 2 implies that Mo » z(Q) is free
of rank m over its support and Supp Muo o 7(Q) = Supp B, (Q), which concludes the
induction. O

Proposition 7.14. The coherent sheaf Moo »m(M(X)Y) is locally free of rank my over
its support. We recall that the hypothesis n = 3 is in force in this statement.
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Proof. Recall that W = []..p,; W; and write wy x = (wg ). Let J C Hom(F, L) be
the set embeddings such that w,, = 1. Let E be the set of elements w = (w,) € W
such that w; € {s1,s2} if 7 € J and w, = 1 if 7 ¢ J. By Corollary and Theorem
for w € E, the module My, g(M(w - \)Y) is free of rank m, over its support
and Mooz r(M(w - A)Y) = By (M(w - \)¥)™. Let Q be the smallest quotient of M (\)Y
dominating all the M (w- )Y for w € E. Lemma [7.13]implies that M » = (Q) is free of
rank m, over its support and My 5 7(Q) = Bz(Q)™*. Let N be the kernel of the map

Let I of the form [, ;{si, } where i, € {1,2}. Then the image of the map M(\)¥ —
MN)Y = Qs Qr =X,y L(s3-i, - A\r) X;¢; M(Ar)". By Corollary the module
Moo o r(Mp(N)Y) is free of rank m, over its support. Thus Mo » =(Qr) is generated
by m, elements, and the quotient

L= & L(Sg_iT . )\7—) X & M(wx,TU)O ’ )‘7’)\/7

TeJ T¢J

of QQ; satisfies

Moo,x,R(LI) = Moo,x,R( & L(SS—i-,— : /\7') X & L(wz,rwo : )\T))
TeJ T¢J

by Proposition [7.2] Moreover, by Proposition [7.11} this module is free of rank m, over
its support so that its fiber at & has dimension m,. This implies that the following
surjective maps are all isomorphisms

k(2)"" ~ Moo e r(M1(A)Y) ® k(x) = Mooz (Qr) ® k()
S Meoar(L1) @ k() = k(z)™.

As moreover Ker(Mp(\)Y — Qr) = N N M;(\)Y, we see that the map
Moo,z,R(N N MI()‘)V) ® k’(.ﬁ) — Moo,x,R(M()‘)v) ® k‘(l‘)

is zero. As M ()Y is multiplicity-free, we have N = Y ;(N N M;(A\)Y) and we conclude
that the map
Mooz R(N) @ k() — Mooz r(M(AN)Y) ® k(z)

is zero. Therefore Mooz R(M(A)Y) ® k(z) ~ Mooz 2(Q) ® k(z) ~ k(z)™=. It follows
from Nakayama Lemma and the first part of Proposition that we have a surjection
Oy = MooaR(M(A)Y).

—atri,wq
Xoo,a:,R

These modules are both Cohen—Macaulay of the same dimension with identical associ-
ated maximal cycle by the last assertion in Proposition Therefore this map is an
isomorphism. O
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7.5 The isomorphism between the two functors

We recall that we assumed that n = 3.

Theorem 7.15. There is an isomorphism of coherent sheaves ngfm ~ Moo 2R (P(wo-

oc0,z, R
A)).

Proof. Recall that A = U(t), and set D := L ® 4w A. By Proposition the action of
Z(g) on P(wp-\) induces a structure of D-module on P(wq-A). As M(A)Y is an injective
object, it follows from [Soe90l Prop. 6], that M (\)Y ~ P(wo-A) ®p (D/mp), where mp

is the maximal ideal of D. We have also a local map of local algebras o : D — O}qtri
c0,z, R

defined in section [6.3] It follows from Corollary [6.14] that these define the same action
of D on Meozr(P(wp - A)). As moreover the functor My, g is exact, we have an
isomorphism Mg o R (M (N)Y) ~ Mooz R(P(wo - A)) ®p (D/mp). As moreover the map
AR gw A — qum is a local map of local rings, we have an isomorphism My . = (P(wo-

co,z, R

) ® k(z) = Moo 2 R(M(A)Y) @ k(x) and thus dimz M 5= (P(wo - ) @ k(z) = my
by Proposition [7.14]

It follows from Corollary [6.17] that we have a surjection
Og:tri - Moo,x,R(P(U)O : )\)V)

oco,x, R
These modules are both Cohen—Macaulay of the same dimension with identical associ-
ated maximal cycle by Corollary [7.7] Therefore this map is an isomorphism. O

Recall that the map (x1,k2) of section provides a map A @ ;w A — RI™

00,2z, R
and thus a map C '= L ®,w A — Eﬁff;R We use this map to see Egﬁj;ﬁ as a local
C-algebra. Recall from Proposition that the map

is surjective and that its kernel of E coincides with the kernel of the natural map Z(g) —
End(P(wp - A)). For any object M of O,,, this provides a structure of C-module on
V(M) = Homp,, (P(wo - A), M) (note that the twist by Ad(wp) compared to [Soe90]
comes from Remark .

Proposition 7.16. There is an isomorphism of functors B'* ~ My, . r on the full
subcategory of Oy, whose objects are the injective objects of Oy, .

Proof. Let M be an injective object of the category O,,. By [S0oe90, Prop. 6], the
canonical map P(wo - ) ®z(g) V(M) — M is an isomorphism. If F is My or B,
there is therefore an isomorphism of functors on the subcategory of injective objects of
Oy, F(—) = F(P(wo-A)) ®c V(—). This follows from the exactness of F and Corollary
for F = My r and from [Bezl6l Prop. 23] for F = B,. Therefore the result

follows from Theorem and Theorem O
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Corollary 7.17. There exists an isomorphism of functors B}'* ~ Muo 4R

Proof. As the functors B'* and M, ;= are both exact, this follows from Proposition
and [Gab62, Cor. 2 to Prop. 14]. O

Corollary 7.18. Let Q) be a quotient of the anti-dominant projective P(wg - \) in the
category Oy, . If Moo 2 (Q) # 0, then it is finite free of rank m, over its support and
its support is Cohen—Macaulay.

Proof. As By (P(wp - A\)) is generated by one element so is B, (Q) which is thus free of
rank 1 over its support. It follows from Corollary that Moo » =(Q) is free of rank
my over its support. (]

Corollary 7.19. For all w € W, the coherent sheaf
Moo,m,R(P(w : )\)\/)’

1s free of rank my over its support.

Proof. By Corollary it is sufficient to prove that Mo 4= (P(w - A)¥) is non zero

and that there exists a surjective map

P(wg - \) — P(w - \)Y.

As P(wyg - A) is the projective envelope of L(wp - \), this is equivalent to showing
that the socle of P(w - \) is isomorphic to L(wp - A). By [Str03] Thm. 8.1], the socle of
P(w - A) is isomorphic to L(wg - A)™ with m = [P(w - X) : M(N\)] = [M(A) : L(w - \)]
by [HumO8, Thm. 3.9]. As g is isomorphic to a direct sum of copies of gl ;, we have
[M(X): L(w- A)] =1 for any w € W.

Moreover, as [M(\) : L(\)] = 1, we have
[P(w- )Y : L\)] = [P(w-A): L(\)] = 1.
As Mooz R(L(X)) # 0, we have Moo » z(P(w - X)Y) # 0. O

Theorem 7.20. For all w € W, with wwy > wy R, the coherent sheaf Moo o r (M (w -
A)V) is isomorphic to O@Z@LQWO. For all w € W, with wwy = w, R, the coherent sheaf

oo,xz, R

Mooz R(M(w - X)) is isomorphic to

DMy
(w?qtri,wwo ) .
c0,x, R

Proof. This is direct consequence of Corollary and Theorem and O
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7.6 Duality

We recall that we assumed that n = 3.

For a Cohen-Macaulay sheaf F on ?2?;73 of dimension dim?g;fixﬁ, we write
w? i for the dualizing complex and the complex
co,z, R
. 3qtri
D(F) := RHomjggr; R(]:, w'}qm R)[— dim XZO;R].

is concentrated in degree 0. We denote
FY = HY(D(F)) = Hompauwi _(F,wpani )
co,z, R co,x, R
the degree 0 coherent sheaf to which we refer as the shifted Serre dual of F, where

. —=Sqtri
L —dim X ° _ mV
W?qtri . — H 00,2, R (wﬂ]m ) — O—qtri
c0,z, R co,z,R Xoo,z,R

Lemma 7.21. Let F be a maximal Cohen—Macaulay coherent sheaf over ngr;R Then

[FY] = [F]. As a consequence if Y C YEZT;R is a maximal Cohen-Macaulay closed
subscheme (i.e. a closed subscheme whose structure sheaf is a maximal Cohen—Macaulay
coherent sheaf), we have [wy] = [V].

Proof. Let R be a local complete regular ring such that O?qtri is isomorphic to a

co,x, R

quotient of R. Then we can compute F¥ by the formula F¥ = Ext%(F, R) where
d is the codimension of ?23;773 in Spec(R). By definition, we have [F] = >, a(z)z
where the sum is over all maximal points in Supp(F) and a(z) is the length of the finite
length R,-module F,. Let z € Spec(R) be a maximal point of the support of F. The
localization R, of R at z is a local regular ring and we have F ~ Ext} (F., R.). As
Extcéz(—, R.) is a an exact functor on the subcategory of finite length R,-modules and
dimy,,) Ext‘]i%z(k‘(z), R.) =1, the length of the R,-module Ext%z (F:, R:) is a(z). So we
have proved the claim. O

Proposition 7.22. Let M be a subobject of the anti-dominant projective P(wg-\). As-
sume that Mo z r(M) # 0 and let Y be the support of Moo o r(M). Then Moz r(M)
is isomorphic to wginz and Y is Cohen—Macaulay.

Proof. Let @ be the quotient of P(wq - A\) by M. If Mu »=(Q) = 0, then Theorem
implies the result. So we can assume that My, »(M) # 0 and Mooz r(Q) # 0.
By Corollary [7.18] M 2= (Q) is isomorphic to OF* for Z C Ygfj‘

» R maximal Cohen—
Macaulay. Using Lemma [7.12] we can construct a commutative diagram

0 — Moo (M) —— Mooz r(P(wg - A)) —— Mooz r(Q) —— 0

; Lk
0 Ker ome. e, 07— 0.

oco,z, R

71



Let I be the ideal defining Z so that Ker ~ I"* so we can assume m, = 1. As ?2::;’73

and Z are Cohen—Macaulay of the same dimension, then I is also Cohen-Macaulay of
the same dimension. In particular its support is determined by its cycle and Lemma
gives [IV] = [I]. But as Ygf,f;ﬁ is a complete intersection, the dual of the previous
bottom sequence gives

I Vi Oy,

with Y = Supp(I") = Supp(I), which is thus Cohen-Macaulay, and thus I = wy. O

Remark 7.23. Actually Proposition [7.22] is also true with the functors B and B, of
Theorem [7.5 and Corollary [7.7], with the same proof. For B, this uses that the dualizing
sheaf of X is the structure sheaf. This is true as the closed immersion given as the
composite X < § X4 g — § X g is a global relative complete intersection and the latter
has a trivial dualizing module, by [MvdK92, Lemma 2.3], and [Sta24, Lemma 0AA2,
0AA3].

We choose for all A dominant weight, and all w € W a surjective map m, : P(wy -
A) — P(w - \)V (see proof of Corollary [7.19).

Lemma 7.24. For all map fu,. @ P(w-\)Y — P(w' - \)Y there exists a map fww/ :
P(wg - A) — P(wo - \) such that the following diagram commutes

Plwo - A) % Pw - \)

bl w

Plw-A)Y 25 A

Proof. As my @ P(wg - \) — P(w' - \)V is surjective and P(wg - \) is projective, the
map Hom(P(wp - A), P(wo - A)) — Hom(P(wp - ), P(w' - \)¥) is surjective, thus there
exists fy, v mapping to fy, . o m,. This proves the claim. O

Lemma 7.25. Let F be either B, or Mq .. There exists a family of isomorphisms
indexed by w € W
Uyt F(P(w-N)Y) = F(P(w- ).

such that for any w,w' € W and any if fyu : P(w- )Y — P(w' - \)Y, the following
diagram commutes

FPw- )L F (P \)Y)

pr l\pw, (12)
F(fo o)
F(P(w-N)Y —= F(P(w'-\))"

where we denote by the same symbol (-)V the duality in O and Serre duality on coherent
sheaves.
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Proof. Let w € W. The sheaves F(P(w - \)Y) and F(P(w - X)) are isomorphic to the
same quotient of F(P(wg-A)) by Theorem[7.5 for B, and Corollary [7.19 and Proposition
for Moo 2. This implies that there exists an isomorphism ¥, : F(P(w - \)Y) =
F(P(w- )Y such that the following diagram commutes

F(P(wo - N) —22 F(P(uwg - \)"
Jf(m) J}'(wm)v (13)

FPw-\)Y) —2s F(Pw- )V

Fix w, w” and let’s show that the diagram is commutative. Let f,, v € Hom(P(w-
AV, P(w' - \)V). By Lemma there exists a map fy, v € End(P(wp - A)) such that
the diagram is commutative. We first consider the following diagram

Wy,
F(P(wo- X)) —= F(P(wo - A))Y
|# [EGY (14)
W,
F(P(wo - A)) — F(P(wo - \))"
But as fmw/ € Endp(P(wo - A), P(wg - A)) ~ D = L ®,w A, it follows from Corollary

for F = Moo and [Bezl6, Prop. 23] for F = B,, and the fact that ¥, is
O yawi _-linear, that this diagram commutes. Now consider the diagram

00,x, R
F 7rv, v
F(Pwy - \) ) FP( V)
W T W,
]:(ﬂ-w/) Vi \V2 \ \
F(P(wo - M) F(Pw' - \)Y) FY )
FFL DY
F (o) F(P(wo - N)" T F(P(w- N)Y
\I/wo f(fw,w’) /
F(m) o
F(P(wo - A)) F(P(w-A)Y)

All faces, except maybe the right hand one (which is the one of the statement), of

this cube are commutative diagrams by functoriality and diagrams , , .
Moreover F(my), F(my)Y, F(my ), F(m),)V are surjective, thus the last right hand face

w/
also commutes. O

Corollary 7.26. For any M € Oy, there is a compatible choice of isomorphisms

Uy F(MY) = F(M)Y,
where F is either the functor B,B; or Mooz r. In particular, F is compatible with
duality.
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Proof. By Lemma we have an isomorphism F((—)") ~ F(—)" on the full subcate-
gory of O, whose objects are the injective one, when F is M, o =, B, or B, see Remark
The result follows again from |[Gab62, Cor. 2 to Prop. 14]. O

7.7 Consequences

We recall that the point & = (pp, p¥, 2) is associated to an automorphic representation
m with associated Galois representation p and that n = 3. We write m, for the ideal of
R5 s corresponding to p, see Remark and just before. In particular m, is the pullback
of m, by Roc — Rps. We recall that we assumed that p, is ¢-generic. In this section
we keep the setting introduced in subsection [7.3] In particular n = 3.

Lemma 7.27. For all M € O,,,

/ /

Moz (M)@hk(x) = (Homys(g) (M, T [my]) 0 [mg,]) = (Homys(g) (M, I [m,]) ¥ [ms,])
Proof. By construction (see Remark , we have
/
Meg (M) 2= (Homyy(g) (M, T [m3]) Vo [m3])

. By Corollary the X x T-structure on the sheaf Moz R (M) factors through
thri

00,x,R

Moreover, as x Corresi onds to p, which is classical, we have [T, [m,] = II[m;] (Proposition

— Xoo X T'. Thus,

/

Moz (M) @ k(x) = (Homy ) (M, T [m,]) ¥ [ms,]) O

Corollary 7.28. Let § = §)\0sm : T — L* be a continuous character with A\ € X*(T)*
and Ssm : T — L* smooth, and let x° : T¥ — L be a character such that ST(KP)[x® ®
8] # {0}. Assume that the Galois representation p associated to x° is crystalline Hodge-
Tate regular and p-generic at p satisfying and let x = (pp, pP, 2) associated to p as
before. Let r = |{T € ¥p | wyrr = 1}|. Then

dim ST(KP)[x® @ 6] = 2" dim S (KP)[x° ® 6] 0.

Proof. The assumptions imply dsm = o for a refinement R of p,. In particular dgy, is
unramified. By Breuil’s adjunction formula [Brel5, Théoréme 4.3] (see also [BHS19, eq.
(5.5)]) and [BHS19, Lemma 5.2.3] we have

ST(KP)[x® © 8] = Homy(g) (M (A), I [ °]) ¥ [maye ]

SUEP)[x® ® 8] = Homyq) (L(N), I [ °]) " [ms .
In particular, by Lemma [7.27], these spaces are indentified with the dual vector spaces of

the fiber of Mo » R (M (X)) resp. of Moo o R(L(A)) at k(x). Thus, as m, = dim Mo o = (L(A))®
k(x), the result is a direct corollary of Theorem (and Proposition [7.§)). O

74



We can also deduce the following corollaries on the structure of the completed co-
homology II (see Definition , which is a representation of G := U(Q)). Recall that
g = Lie(Gyp).

If M is a U(g)-module, we denote Homp, (M, L) the U(g)-module with underlying
vector space Homp (M, L) and action of v € U(g) given by

(t-¢)(m) = ¢(tm), ¢ € Homp(M,L),m e M,

where v — t is the anti-involution of U(g) extending the multiplication by —1 on g.
We denote B the Borel opposite to B with respect to T, b its Lie algebra and @ the
nilpotent radical of . We then denote B = B(Q,), B = B(Q,) and dp the modulus
character of B. We then denote M’ := Homp, (M, L)"" the vectors which are killed by

some finite power of the augmentation ideal of U(n). If M = @cx=r), Mr € Ogig,

then M’ € Ogig. Finally recall that if M € Ogig and ¢ is a smooth character of T'(Q))

with values in L™, then Orlik-Strauch constructed (see [OS10] or also [Brel6])
F5 (M. ),

which is a locally analytic representation of G. In particular, locally analytic principal

series are of this form : if A € X*(T'), then we have (M(\)V) ~ U(g) Qv @) (=) € Ogig,
and
FE((M(N)Y),6) = Ind%(5:0)" (15)

where Ind%(é 20)'® denotes the locally analytic induced representation of 6, from B to
G. When ) is dominant, it contains the (locally) algebraic induction Ind%(5 \0)lle,

Recall that p : Galgp — GL,,(L) associated to our point x € X (L) is crystalline,
Hodge-Tate regular and @-generic. Let R a choice of refinement and dx the associated
unramified character. Denote A = (A\;); = HT(p) — d¢ € X*(T)" the (dominant)
algebraic character associated to p as before, where HT(p) = (h17 < -+ < hp7)resny €
X*(T) gives the Hodge-Tate weights of p. Recall also w; g = (Wg R r)rex, and my > 1
as in Section [7.1] More directly

my = dim Homg(lnd%(&\én&;l)lalg, " [m,))),

and is independant of R as Ind%(é A5R5§1)lalg is, by [Brel6l Lemme 6.2].

Corollary 7.29. Let x,p, A\, R as above. For all w < w; rwo, we have
dim Homg(Ind%((Sw.)ﬁRcsgl)la, M [m,]) = m,.
Proof. By [Brelbl, Proposition 4.2] and [BHS19, Lemma 5.2.3|, we have, for all M € O

Homy (g (M, I [m,]) " [ms,,] ~ Homg (fg(M/, 6r0zY), I m,)]). (16)
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Thus, using II[m,] = II[m,], equation and Lemma we deduce that the state-
ment is equivalent to

dim Homygy gy (M (w - X)", % [m,])[ms] = dim Moo 2 r(M(w-A)Y) @ k(z) = my,

which is Theorem [7.200 O

Let gl; be the Lie algebra (over L) of the group GL3. For a dominant \ for gl; we
consider the extension

N(\) = [L(s1-\) @ L(sg - \) = L(\)] € Exty(L(N), L(s1 - \) @ L(sz - \)),

which is non trivial when mapped in each of Ext(L(\), L(s; - A)), for i = 1,2. This
extension can be realized as quotient of the Verma module M (\) by M (s1s2-\)+ M (s251-
A). As before we consider the Lie algebra

g = Lie(G) ~ Lie((Respg,q,/0, GL3) xq, L)~ ][] k-

’TGZF

We have a decomposition with b ~ [[_ b, where b; is the projection of b on the gl;-factor
of g indexed by 7 € Y. Associated to a dominant weight A\ = (\;), € X*(T)" and
w = (wr)rex, € W we define the objects

N\, w) = ( X ronw X N()\T)) and S\ w) = [X] S(Ar,w,)

Tiwr#£1 Tiwr=1 TEX R

of the category O,,, where

. @w’<w-rwo L(w/ * )\T) lf Wr # 1
S0 ) = { Doy LW - A)BN(A) ifw,=1"

so that N(A\,w) C S(A,w) and moreover S(A\,w) = @y, L(w' - A) if wr # 1 for
all 7. The motivation for defining N (A, w) in this way is that fg(N()\, weR), 0RIG)
(resp. fg(S’()\,wzﬁ)’,&R(El)) should be the largest subrepresentation of IT'*[p] which
can be realized as a quotient of ]-"g (M()\),6r65") (resp. through which all maps from
fg((M(w A, 0r65Y), w e W, to TI[p] factors).

Theorem 7.30. For z,p, A\, R as before, we have an injection of G-representations
FE(S(A\ war), 0rd51)E™e s T [m,).

Moreover, Yw € W, each map from }"g(M(w M), 0R651) to TI®(m,] factors through a
map from fg(S(A,w%R)’, or0zY) to T [m,)].
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Proof. In order to simplify notations, in all this proof we will use notation F(M) =
fg(M ! 5735?) for any object M in O,,. In particular note that F is covariant.

Let J :={w € W | w < wy gwo} and let ~ be the equivalence relation on J generated
by w ~ w' if and only if there exists 7 € ¥ such that wy r » = 1 with w,,w) € {s1,s2}

and wo = w., for all 7" # 7. Note that we have
SA\wer)~ P F(w (17)
weJ/~

where, given w, let I, = {7 € ¥p | wyr, = 1 and w; € {s1,s2}} for any choice of a
representative w of w, and

F@)= [X] Llw, A) & X N,

TEEF\LU TE€Ly

For later reasons, we introduce the following notation. Let w € W and I C {7 € ¥ |
We,R,r =1 =w;}. Then we set

Fr(w) = L(w, - ) B X N(Ar)

TeXp\I Tel

Then Fj(w) is a quotient of M (w - \). Remark that F(w) = FJ, (w') where w' = (w.),
with w, = w; if 7 ¢ I, and w. =1 if 7 € I,,. Conversely not all Fr(w) are some F(w')
but is a subobject of a unique F(w'), namely F(w).

We first prove the second claim, i.e. that each map from F(M(w - )\)) to II'%[m,]
factors through a map from F(S(\, w, r)) to II'®[m,]. This will be a consequence of the
fact that the map

Moz r(M(w - X)) @ k(z) = Mooz r(Fr(w)) ® k(z)
is an isomorphism when
1= {7’ EXp ‘ Wy R,r = Wr = 1}.

Let’s prove this claim. By Corollary [7.17] it is equivalent to prove the same claim with
Mo 2= replaced with B,. By Theorem @, it is sufficient to prove that for each
T € X, the maps
B (M (wr - /\T))xde,r ® k(zpar,r) — Br(L(wy - )‘T))afde,T ® k(Tpar,r) f 7 ¢ 1
Br(M(Ar))zpan., @ k(@pdr,r) = Br(N(Ar))apan., @ k(zpar,r) if 7€ 1
are isomorphisms. For the case 7 ¢ I, this is a consequence of the fact that B, (M (w; -
Ar))apar.- 18 free of rank one over its support (using Theorem and the fact that the

support is a complete intersection by Proposition |7.8)). Therefore it is sufficient to prove
that the map

BT(M(/\T))zde,T ® k(Tpar,r) — BT(N()‘T))xde,T ® k(Tpdr,r)
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is an isomorphism when 7 € I. As N(\;) is the cokernel of a map
M(s182 - Ar) @ M(sas1 - Ar) = M(A\;),

it is sufficient to prove that the unique (up to scalar) non trivial map M (s1s2:A) — M(\;)
induces the zero map after application of the functor B-(—)z, 4., ® k(Tpar,r) (the case
of M(sas1 - ;) is similar). As the map M (s1s2 - A) — M(\;) factors through the
unique non trivial map M(s; - A;) — M()\;), it is sufficient to prove that any map
M (s182-\) — M(s1-A;) induces the zero map after application of B-(—)z 4 , ®k(Zpdr,7)-
As the composition M (s1s2 - A;) — M(s1 - A;) — L(s1 - A;) is zero, it is sufficient to
prove that the map M (s; - A;) = L(s1 - ) induces an isomorphism after application of
the functor B;(—)z,qr., ® k(Tpdr,r). This is again a direct consquence of the fact that
B-(M(s1-N)) is free of rank one over its support.

Note that this proves that

ZpdR, T

dlmL BT(N(AT))Ide,T ® k(xde»T) = dlmL BT(M()\f))xde,T ® k(‘rdeﬂ—) = 2

for any 7 such that w,r, = w; = 1. Using Corollary Theorem @ and
Proposition [7.8, we deduce that

dimy, Moo oz (F1(w)) ® k(z) = 2Hm,, (18)

for any w and I C {r € £p | wyrr =w, =1}. When I = {7 € ¥p | wyrr = w, = 1}
this coincides with dim; Moo o »(M(w - X)) ® k(z) proving the equality and thus the
second part of the statement.

We now focus on the first part of the statement, i.e. that there is an injection of
G-representations
F(S\ wgr))®™e < M?[m,)].

We first show that the kernel of the map

Moo o R (F(W)) @ k(z) — P Moo,r(Q) @ k() (19)
Q

has dimension m, for any w € J/ ~, where the sum is taken over all strict quotients @

of S(\, wz.r).
We claim that if 7 € I, then
dimz, Br(N(Ar)/L(si - Ar))apar,..m @ k(Tpar,r) = 1 (20)

for any i € {1,2}. As N(\;)/L(s; - A;) =~ Mg,y (A), it is sufficient to check that
B;(Ms,3(N)) is free of rank 1 over its support. However this is a consequence of Theorem
[75] and the fact that its support is a complete intersection as follows from the explicit
computations of section
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Now each quotient of F'(w) is of the form

Frp@) = [X LR LOABX N/ Lisi » A8 X N,

TE(ZF\Iw) T€J1 TEJ2 Tl \(J1UJ2)

for some J = J1[[J2 C Ly, ir € {1,2} for 7 € Jo. Using again Corollary Theorem
@ and , we deduce that

dimy, Moo oz (Fr,.0 (@) © k(z) = 2Mwl=h0 Rl |
Moreover, we have the natural quotient map

Fj,0,(@) — Fju,0(W),

and thus, because of equality of dimensions,

Moo,x,R(FJ1,J2 (E)) ® kZ(ZL‘) = MOO,GE,R(FAUJQ,@(@)) ® k(m)

Therefore the kernel of the map is equal to the kernel of the map

Moo m(F(W) @ k(z) — P Moowr(Frp(W)) @ k().
@#KC]U}
For K C I, set G(K) = Ker(Mog 2,7 (F(W0))®k(2) — Mooz (Fip(W))®k(x)). Note
that if K, K’ C I, Fxnr¢(®W) is the smallest quotient of F(w) dominating Fi ¢(w)
and Fgr (W). As Moo r(—) ® k(z) is right exact, this implies that G(K N K') =
G(K)NG(K").
By Grassmann’s formula the dimension of the kernel of the map is thus

D) :=dimG(0) — Y dim(NpexG({k})).

(Z)#chw

Now for each K C I,, we have NyexG({k}) = G(K) which has dimension 2/=|=1Klpm,
so that
D(w) = 2Mvlm, — = (—1)EH 2=y, = .
0#KCI

Now we prove that, for any w € J/ ~,
socq(F(F(w))) = ]:(SOCOX/\ (F(w))). (21)

As any F(w) is of the form Fy(w) for some w € Jand I C {1 € ¥p | wyrr = w; = 1},
it is sufficient to prove, more generally, that for any w € J and I C {7 € ¥p | wa g+ =
wr =1}

socq(F(Fr(w))) = ]-'(socoxA (Fr(w))).
First we remark that F7(w) is multiplicity free and that all its simple subquotients are
isomorphic to L(w' - \) for some w’ € J so that dim(Meozr(L(w' - N)) ® k(x)) =
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m, by Proposition Moreover it follows from [OS15, Theorem 1.1] and [Brel6l,
Thm. 2.3] that each F(L(w' - X)) is topologically irreducible. By exactness of F(—), we
have socq(F(Fr(w))) D F(soco,, (Fr(w))). We prove the converse : let @ be a simple
subquotient of Fr(w) such that 7(Q) C socq(F(Fr(w))), then Q C soco,, Fr(w). We
prove the result by induction on the cardinal of I. If I = (), there is nothing to prove as
Fr(w) is simple. So we assume I # () and let @ be a simple subquotient @ of Fy(w) such
that F(Q) € F(Fr(w)). Then Q is of the form L(w’-\), for some w’ such that w, = w.
forall 7 & I, w) € {1,s1,s2}. Let I' = {7 € I | w. = 1}. Then

Fitu) = [ 6 2 B[R VO,

T¢I Ter

is a subrepresentation of Fr(w) (as L(s; - A7) is a subrepresentation of N(\;)) and @ is
the cosocle of Fy/(w'). By [Brel@, Cor. 2.7], the representation F(F(w)) has multiplicity
one so that F(Q) C F(Fpr(w')). If I' C I, our induction hypothesis implies that Q C
soco,, Fr(w') C soco,, (Fr(w)). So we can assume that I = I’ and Q = L(w - ) is
actually the cosocle of Fr(w). The exactness of F(—) and our hypothesis assure that

F(Fi(w))) ~ F(Q) & FE(N),

where N = Ker(Fr(w) — L(w - \)). Now, N has 2/l distincts simple objects in its
cosocle which are of the form L(w’-\) for w’ € J so that, using the exactness of My ;=

and ,

2lm, = dimy, Home (FE(Fr(w)), 11*m,))
= dimz, Homg(F(Q), T*[m,]) + dimy, Homg (F(N), 1*[m,])
> dimp Moo 2,r(Q) ® k() + dimp, Moo 2 r (cosoco,, (N)) ® k()

=my; + 2H|mx > 2|I|mx.

This gives a contradiction and finishes the induction.

Finally we prove the existence of an injection
F(S\ wyr))®m — Hla[mp}.
Let w € J/ ~. Dualizing , we see that the cokernel of the map

D Home(F(Q), 11 [m,]) — Home(F(F(w)), I1*[m,)]) (22)
Q

has dimension m, where the sum is taken over the strict quotients @ of F(w). We
choose my maps fi,..., fm, in Homg(F(F(w)), [1*[m,]) whose images in this cokernel
are linearly independant. We claim that the map fiz = (f1,. .., fm,) is injective. Namely,
if it is not, a linear combination of these maps is zero on some simple constituant of the
socle of F(F(w)) and thus on some F(Q) for @ C F(w) by (21). This implies that this
linear combination is zero in the cokernel of , that is false.
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Finally the decomposition , the fact that the socles of the various F'(w) are two
by two distincts, and [Brel6), Cor. 2.7] again impliy that the map (fz)we s/~ provides
the desired injection. O

Remark 7.31. Assume for simplicity that X g is reduced to one element 7 so that G =
U(Qp) ~ GL3(Qp). Assume moreover that wgr = 1 so that the Galois representation p,
is completely reducible and semisimple, i.e. a direct sum of three characters. Let

LALG := Ind%(6)0r05")™® = L(\) ®1, Ind%(6rd5")*™.

Then the subspace of locally analytic vectors of H[mp]la is isomorphic to LALG™=. More-
over it is expected that II[m,] is isomorphic to the direct sum of (m, copies of) 6 con-
tinuous unitary principal series and an other direct factor SC which should be a kind of
“supercuspidal” representation of GL3(Q,) (see [BHHT] for a similar and precise con-
jecture in the mod p case). We deduce from Theorem the existence of an injection
of the following locally analytic representation of GL3(Q,) in II[m,]:

fg(N(A)’, ord5") = [(LAs, ® LA,) — LALG],

which is a non split extension of LALG by the direct sum of two topologically irreducible
locally analytic representations without locally algebraic vectors. More precisely, for
s € B3,

LA, = FS(L(s- \), 6r65") (23)

is the socle of the locally analytic principal series Ind%(&s. ,\5735151)13. If our expectation
holds true, the representation appears as a subspace of locally analytic vectors of
SC'™ showing that this representation SC' has to contain non trivial locally algebraic
vectors in subquotient but not in its socle.

8 Existence of very critical classical modular forms

In this section we show the existence of a classical form f satisfying the hypothesis of
Theorem[I.2] The main difficulty is to find a form satisfying the Taylor-Wiles hypothesis,
which is moreover completely critical at p (i.e. Wy, R = 1).

For a finite extension F' of Q,,, we denote by recp : F* — Galj‘pb the local reciprocity
map sending a uniformizer of F' on a geometric Frobenius. If K is a number field we
denote by Artg the Artin reciprocity map Ay /K* — Gal?}) such that, for any finite
place v of K the precomposition of Artx with the inclusion K < Ay is recg,. If ¥ is
a character of Aj; /K> and v is a finite place of K such that U, is unramified, we write
U(v) for the evaluation of ¥, at an uniformizer of F,*. First, we remark the following,

Lemma 8.1. Let K/Q, be a finite extension and let p, : Galg — GL,(Q,) be a
crystalline representation with reqular Hodge—Tate weights such that there exists a re-
finement Fy C Deyis(pp) which contains the Hodge filtration. We moreover assume that
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the eigenvalues of the linearization of the crystalline Frobenius on Deyis(pp) are pairwise
distinct. Then pp is a split sum of characters.

Proof. This is a simple application of weak admissibility. Up to extending scalars, we
can assume that D = Dis(pp) = @, D7 is split, and is a filtered ¢-module. We consider
the linearization ¢f of the Frobenius on D, where f = [Kj : Qp). We write Fil*D, for
the filtration on D, induced by the Hodge-filtration on D. The assumption is that the
Hodge filtration on D is ¢-stable i.e. there is a full flag of K ® Q,-modules Fy, stable
under ¢, such that, for all 7, if k] < ... < k], are the (opposite) 7-Hodge-Tate weights
(with multiplicities) then F;, C Fil*»—#+1D.. Denote the eigenvalues of gof on F; . by
(¢1,...,9i). Thus by weak admissibility,

1 i
?(U(%) ot o) 20 kg

T k=1
Now, if G; is a complementary @-stable subspace of F; in D (which exists due to the as-
sumptions on the eigenvalues of /), then we see directly that the 7-Hodge-Tate weights
of G; are k7, ..., k] _;. Thus by weak admissibility again,

L)+ o) > 3 S A

! =
But by weak admissibility of D, the endpoints of both polygons gives

1

—(v(r) + -+ ulen)) =D K.

f 2
Thus both G; and F; are weakly admissible, thus admissible, thus p, splits accordingly.
As this is true for all i, we get the Lemma. O

It follows that, when n = 3, an eigenform f as in Theorem has a split represen-
tation at p. In the case of modular forms, it was asked by Greenberg (see the work of
Ghate and Vatsal [Gha04], [GV04]) if a cuspform whose representation is split at p is
necessarily a CM form. The natural generalization of this question to GL3 would suggest
that we cannot find a form f to apply Theorem with very large image. Fortunately,
we can construct an analog of a CM form for GL3 (more precisely for U(3)) which still
has adequate image modulo p.

8.1 Choosing a Hecke character

Let E be a CM field with totally real subfield ET = F and let F’ be a totally real field
disjoint from F, such that F'/Q is Galois and such that [F' : Q] = 3. Set K = EF".
This is a CM field. We moreover assume that all the ramified primes of K/FE lie above
split primes in E/ET. Choose two distinct primes p and ¢ such that ¢ is totally split
in K = EF' and primes above p in E* = F are totally split in K. Moreover assume
p>8(=2(n+1) whenn=3)and (, ¢ E.
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Ezample 8.2. 1. The easiest choice is F' = Q(¢;7)* and E = Q(iv/3) so that 7 is split
in E. For this F’, we can also choose E = Q(i, /3), with maximal totally real subfield
ET = Q(+/3) so that E/ET is unramified everywhere.

2. The second easiest choice for F’ is F’ = Q({9)*. In this case we can choose
E = Q(iv5).
3. If E = Q(i), we can choose F' = Q(a) with « a root of X3 — X% —4X — 1, which

has discriminant 132.

4. If F' = Q(a) and E = Q(i), we can choose any prime p > 8,/ congruent to
1,5,21,25 (mod 52), like 5,53, 73, .... In particular in that case we better should exclude
p = 13 as in the early version [Bell0] (who knows?).

5. If F/ = Q(¢7)T and E = Q(iv/3), we can choose any prime congruent to 1,13
(mod 21) like 13,43,97....

6. If I/ = Q(¢7)t and E = Q(i,/3), we can take any prime £ = 1,13 (mod 84) like
13,97,169... and p = 1,13 (mod 21) like 13,43, 97....

7. If we really want to use p = 13 and that p = 13 is inert in ' = ET, and if we
want moreover E/ET to be unramified everywhere, we can choose E = Q(i,+/7) with
F' = Q(B) C Q(¢43) as 43 is split in Q(4,/7)/Q(\/7), with 8 a root of X3 — X2 14X 8.

In the following we say that a weight k € ZHomKC) is very reqular if, for 7 # 5 in
Hom(K,C), we have |k, — kr,| > 2.

Let ¥ be an algebraic Hecke character of A with algebraic very regular weight
k = (ky)y|oo, such that W = UV and such that ¥ is unramified both at p and £. Choose
an isomorphism ¢ : C ~ @,. We moreover assume that

(U, p) if p|p in E, we have ¥ (v)¥ (')~ ¢ {1, p} for v # ¢’ places of K dividing p.
(¥,¢) There exist A|[¢ in E, and XN|\ in E((,), such that for all v; # vy places of

K dividing A, if v, v5 are the corresponding places above ' in K((,), ¢(¥(v]))
(mod mg ) # ¢(¥(v3)) (mod mg ).
P P

Consider moreover the following hypothesis on W :

(¥, Ram) If v is a place of K such that ¥ is ramified at v, then v divides a prime which
is totally split in K/Q.

Let U, : Ay — @; be the p-adic realization of ¥ and ¢, and v, : Galg — @; such
that ¢, = ¥, o Artg. It is a Galois representation satisfying %\)/ = p.
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8.2 Galois induction

Definition 8.3. We denote by p the induced Galois representation
p=Indga ¥, = {f : Galg — Z,"| f(gk) = ¢, (k) f(9)Vg € Galp, k € Galx},
where the action of g € Galg is given by (g f)(z) = f(¢g~'2).

Then p is a three dimensional Galois representation since [K : E] is Galois of degree
3. We claim the following

Lemma 8.4. 1. The representation p = p@F, is absolutely irreducible, in particular
p s absolutely irreducible.

2. The representation p(Galgc,)) is adequate.
3. The representation p is polarized, i.e. p° =~ pV.

4. The representation pGalg, is split, p-generic, Hodge—Tate regular for any vlp in
E,

5. If v is a place of E such that p is ramified at v, then Homgai,, (pv, pu(1)) = 0.

Proof. We will actually prove that p(Galg,)) acts absolutely irreducibly, which will
imply point (1] and point [2| will follow by [Thol2] Lemma 2.4. To prove point 1, remark
that if we denote by o € Galg a lift of a generator of the Galois group Gal(K/E) =
G >= 7/37, then p has a basis given by f,o - f,0% - f, where f is the function

f: Galg = Galg HUGalK H02GalK — Z;,k € Galg — @bljl(k:),ak:,an — 0.

Then o3- f = Qj)p(US) [ Thus, after restricting to Galg, there is an isomorphism p|qa1, =
Up @ Yy B d) , where ¢ = ¢p(0_1 -0). We reduce mod p, where we have a similar
reductlon after restricting to Galg. Because of the hypothesis (U, ¢) away from p, we
have that pgar, oy for N'|¢, is the sum of three distinct characters. Moreover the

group Galg acts transitively on these three eigenspaces. Therefore this representation
is absolutely irreducible. To prove point [3, we compute p¥. By [CR81], Prop. 10.28], we
have an isomorphism

~ GalE —1 . GalE C ~u AC
Indg,; ¥, =Indg,) ¥, ~ p".

Let us prove 4] I As p is totally spht in K/F, we have for v|p in E, Galg, C Galg
so that pgal, = Ypo O Yy, @ wgv As the group Galg acts transitively on the three
places of K over v, we have pjgal,, = EBMU Yp- Therefore pgaly, 1is crystalline and
the eigenvalues of the Frobenius endomorphism of Deyis(p|Gat,, ) are the ¥(v') for v'[v in
K. Tt follows from hypothesis (¥, p) that pqal &, 18 p-generic. Moreover the Hodge—Tate
weights of pgal, —corresponds to the algebraic (infinitesimal) weight of W, which was
assumed regular so that pga By 18 Hodge—Tate regular.
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Finally we prove [f] Let v be a place of E such that p, is ramified. Then either v
is ramified in K/E or VU, is ramified. Assume in a first time that ¥, is ramified. Then
(U, Ram) implies that v divides a prime of @Q which is totally split in K. In particular,
v is split in K/E. As above, we have p, ~ Do jp Yp,or With ¥y = Wy 0 recl}i/ as v’ tp.
Therefore it follows from Lemma below that Homgaiy, (pv, po(1)) = 0.

Now assume that v is non split in K. As K/F is Galois there is a unique place w of

Gal . . .
K over v and p, ~ IndGZlf{l Ypw. By Frobenius reciprocity, we have

2
HomGalEU (pfuv pv(l)) = HomGalxw ("pp,w D wz,w D wg,w, wp,chyde)'

2
—_ (e I o} ag I g
Assume that ¥pw = V) Xeye| Ko+ AS Xeye|Kw = Xoye|Kyr W€ deduce ¥y ,, = Vp  Xeye|Ku

2 3 . .
and ¥p., = ¥y wXeyelKw = VpwXeye|K, SO that ¢y, = wpwxg’ycmw which is false. We
prove similarly than 1, ,, # wgiuchc\ K, and deduce Homgal,, (v, po(1)) = 0. If ¥, #

U, oo, then the characters ¥,,, ¥,, 0 o, ¥ o g2 are pairwise distinct and p, is irreducible
so that Homgai,, (pv, po(1)) = 0. If ¥,y = ¥y, 0 0, then p, is not irreducible, but clearly

Homgalg, (pv; pu(1)) = 0 (as Ypqaly, # Vplcalg, (1))- 0

Lemma 8.5. Let ¥ : A /K* — C* be an algebraic Hecke character of very regular
weight k. Then, if £ is a prime number which is totally split in K, then U, # Uyl|-|, for
all places v,w of K dividing £.

Proof. Let ¥ and ¢ be as in the statement. Fix ¢ : C ~ Q, and let |-|; be the unique
absolute value on Qy extending the one on Q. Let ¥, be the continuous character
AXJK*KZ — Q) defined by

\I’w(l‘w) if w /V,w /{/OO
\I/L,w(xw) =41 if w|oo

(P (W) T, cttom( s, Ty o T(Fw) 71 i w]E,

where 7|w means that |.|,oT extends the absolute value given by w on K, and (ks )scHom(k,C)
is the weight of W. As the group Ay /K*KZ is compact, we have Im(¥,) C Z,. As (
is totally split ¢ induces a bijection between {v|¢} and Hom(K,C). Let v be a place of
K dividing ¢ corresponding to 7 (i.e. |.|;0¢7 17 extends |.|,) and denote k, == k We
have

=17

[T (O)T ()] =1
so that |¢(U,(£))| = I**. As £ is a uniformizer of K,, for any v|¢, the result follows. [

8.3 Construction of an explicit set of Hecke characters

In this subsection we explain one way to find a ¥ as before, satisfying hypothesis
(U, p), (W, £), (¥, Ram). Fix E a CM extension, with ET = F its maximal totally real
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subfield, so that [E : ET| = 2. Fix also F’ disjoint from E, a totally real degree 3 Galois
extension of Q. Choose p, ¥ two primes with are totally split in K := EF’ such that
p > 8. The following Lemma is a more precise version of [CHTO08, Lem. 4.1.1].

Lemma 8.6. Let F' be a number field. Let S be a finite set of places of F'. Let xg be
an unramified continuous character FS = [[,cq FX — C* of finite order. Let T be a
set of finite places of F', disjoint from S and of Dirichlet density 1. Then there exists
a continuous character x : Aj/F* — C* of finite order such that X|px = XS and the

ramification places of x are in T.

Proof. Let U® be the product of the O}X;v for v ¢ S. Then F*NU? is a finitely generated
subgroup of F*. Let us write m for the order of the finite cyclic group yg(F* N U%).
It follows from the proof of Theorem 1 in [Che51] that we can find finitely many places
w1, ..., wy in T such that the subgroup of F*NU* congruent to 1 modulo Pwyrs- - Pw, 15
contained in (F* NU%)™. We conclude as in the proof of [CHTO0S, Lem. 4.1.1] choosing
for U the product of the U, for v not in S nor {wy, ..., w,} and a small enough subgroup
at wi, ..., W ]

Lemma 8.7. Let K be an (imaginary) CM field with totally real subfield K+ and complex
conjugacy c. Denote ¢ : Al /K* — C* be a continuous character. Assume that there
exists a finite set S of places of K which are split in K/K* and such that 1, ! = 1, for
v € §. Moreover, assume that S contains the Archimedean places. Let T be a finite set
of places of K that contains S and is stable under ¢, such that v is unmmzﬁed outside
ofT Then there exists a Hecke character ¥ : A’ /KX — C* such that vt = ¢° and

wy =, for v €S and such that ¢v is unramified outside of T .

Proof. Let 0 = 1 o Ny rc+. As S contains the Archimedean places, the character 0 is
trivial at Archimedean places and is therefore a character of finite order. Let Ur C
[Toers K, be a compact open subgroup such that 6y, is trivial and such that c¢(Ur) =

UT. Let
=([Io%,) Ur- (1] K).
vgT ves

We have an injection of compact groups
Ng/re+ (A )/ (Ngyre+ (A ) N K*U) — A /K*U.

Under our hypothesis, the character w‘ N

K/K+
Therefore it extends to a character « of finite order of AIX( trivial on K*U. We thus

(ax) 18 trivial on (Ng g+ (Ag) N K*U).
have ¢ o Ng/p+ = avo N+ It is easy to check that the character J = 1pa~! satisfies
our requirements. O

Proposition 8.8. For each choice of fields E and F' and places p and £ and very reqular
weight k as above there exists a Hecke character W : A /K> — C* satisfying (U, p),
(U, ¢) and (¥, Ram) and such that U= = We,
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Proof. Let k be a very regular weight. It follows from [Sch88|, Section 0.3, that there ex-
ists a Hecke character ¥( of A% /K* with weight k. Using Lemma we can construct
a Hecke character 6 of finite order such that, setting V1 = Wy, we have

o the character Wy satisfies (U1, p) and (¥q,7) ;

o there exists finitely many primes /1, ..., ¢,, different from p and ¢, which are totally
split in K and such that W; is only ramified at places dividing ¢4, ..., 4, ;

e we have \111_11” = WUy ¢y for any place w of K dividing ¢ or p.

Now it follows from Lemma that there exists a Hecke character U of Aj /K> such
that

. \I/_l — Je° -
e U, =W, if vis a place of K dividing p or ¢ ;

e U is ramified only at places dividing ¢, ..., 4. O

8.4 Automorphic Induction and base change

Let ¥ and p as in subsection [8.I]and let U denote the unitary group in three variables for
E/E™ that is compact at infinity and quasi-split at all finite places. We need to find an
automorphic form for U whose associated Galois representation is induced representation

p from B3]

Proposition 8.9. There exists an automorphic representation 11 of GL3 g, cuspidal,
cohomological at infinity, unramified at £ and p, polarized, whose associated Galois rep-
resentation is given by p.

Proof. This is the content of [Henl2] Théoreme 3 (as K/E cyclic of degree 3) for the
existence of the automorphic representation, Théoreme 5 for the compatibility with the
local correspondence at ¢ and p and at infinity (cf. the following remark of [Henl2]).
Polarization can be checked after base change of the automorphic induction to K, where
it follows as W¢ = ¥V and as ¥ # U7 for o € Gal(K/FE) such that o # 1. Moreover,
the automorphic induction is also cuspidal (Theorem 2 of [Henl2]). O

Conjecture 8.10. There exists a cohomological, cuspidal, automorphic representation
m of U whose base change to GL3 g is I1.

Proposition 8.11. If E/E™ is everywhere unramified (e.g. for E = Q(i,\/3) or
Q(i,v/7)), then the previous conjecture is true.

Proof. This is [Labl1] Theorem 5.4. O
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Proposition 8.12. If E is quadratic imaginary, then the previous conjecture is true.

Proof. By [Mor10] Corollary 8.5.3 (ii), there exists 7’ an automorphic representation for
GU (3) associated to IT x 1, which is automorphic for GL3 x GL;. By [HS22] Lemma A.7
(based on [HTO01]), there exists 7, an automorphic representation of U(3) associated to
. O

Corollary 8.13. If E is quadratic imaginary or if E/E% is everywhere unramified, then
there exists a classical form on U(3) satisfying the hypothesis of Theorem .

Proof. Let m be the automorphic representation of U considered above, and let f € 7
be an eigenform for the Hecke operators away from a set S of bad places of m. Then
pr = pr = p is crystalline at p and (-generic. In particular it has 3! = 6 refinements
which are automorphic and split at p. Hence there exists an automorphic refinement R
of f with relative position wg = 1 with respect to the Hodge filtration. In particular,
for this choice of a refinement, there exists a refined classical modular form f’ satisfying
all hypothesis of Theorem But, by Lemma (5) we know that f gives, for all
v € S\Sp, a point of Xp% which satisfies Homgal,, (pv, pu(1)) = 0. When v splits in

E/E*, such a point is a smooth point by [AII16] Prop 1.2.2. O
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