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Abstract

We prove the existence of non-classical p-adic automorphic eigenforms associ-
ated to a classical system of eigenvalues on definite unitary groups in 3 variables.
These eigenforms are associated to Galois representations which are crystalline but
very critical at p. We use patching techniques related to the trianguline variety of
local Galois representations and its local model. The new input is a comparison
of the coherent sheaves appearing in the patching process with coherent sheaves
on the Grothendieck–Springer version of the Steinberg variety given by a functor
constructed by Bezrukavnikov.
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1 Introduction

The aim of this paper is to unravel (and explain) a new phenomenon in the theory of p-
adic automorphic forms. Given a reductive group G over a number field (overconvergent)
p-adic automorphic forms are p-adic avatars of automorphic forms on G. We usually
refer to the latter as classical automorphic forms in order to distinguish them from their
p-adic limits. Additional structures on spaces of automorphic forms, such as the Hecke-
action, naturally extend to the L-vector spaces of overconvergent p-adic automorphic
forms S†(Kp), S†

κ(Kp), where the field of coefficients L is a finite extension of Qp and
Kp ⊂ G(Ap) is a compact open subgroup (referred to as the tame level) and κ is a
weight. A central question about p-adic automorphic forms is to clarify whether a given
overconvergent p-adic automorphic form (of algebraic weight) that is an eigenform for
the Hecke action is a classical automorphic form. Often this question can be answered
in terms of the Hecke eigenvalues. Coleman’s small slope implies classical result [Col97]
and generalizations thereof (see e.g. [Kas06], [Che11], [BPS16]) asserts that this question
can be purely decided using the Hecke action at p if the p-adic valuation of the Hecke
eigenvalues at p is small compared to the weight. Beyond the numerically non critical
slope it is known that this fails. However, one can ask the same question taking into
account the full Hecke action (as opposed to the Hecke action at p).

Assume that we are in a situation where we can construct the Galois representation
ρf = ρχ attached to a p-adic eigenform f , respectively to the Hecke character χ giving
the system of Hecke eigenvalues of f . Then the Hecke action away from p encodes all
the information about the p-adic Galois representation ρf , including the p-adic Hodge
theoretic information at places dividing p (though this is encoded in a rather indirect
and mysterious way). The naive generalization of the classicality question about over-
convergent p-adic automorphic forms can hence be phrased as follows (though we phrase
the question in a rather informal way):
Question A: Let f be an overconvergent p-adic eigenform of dominant algebraic weight
such that the corresponding Galois representation ρf is de Rham at places dividing p.
Is it true that f is a classical automorphic form?

We note that a softer version of this question is the following expectation that is
implied by the Fontaine–Mazur conjecture. Again we state the expectation in a rather
informal way – it might fail without more precise assumptions on the group the level,
etc. (see e.g. [BHS19, Conj. 5.1.1] for a precise formulation).
Rough Expectation B: Let S†

κ(Kp)[χ] ⊂ S†
κ(Kp) be an eigensystem (for the action

of the full Hecke algebra T generated by Hecke operators at p and away from p) in the
space S†

κ(Kp) of overconvergent p-adic automorphic forms of weight κ on G. We assume
that the eigensystem χ at p is of finite slope. Assume that κ is dominant algebraic
and that the Galois representation ρχ associated to the Hecke character χ : T → L is
de Rham at places dividing p. Then S†

κ(Kp)[χ] contains a classical automorphic form,
i.e. its subspace Scl

κ (Kp)[χ] of classical forms is non-zero.
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Question A then can be rephrased as the question whether Scl
κ (Kp)[χ] = S†

κ(Kp)[χ]
in Expectation B. It is known that Question A does not have an affirmative answer
in general. Ludwig [Lud18] and Johansson–Ludwig [JL23] have shown that there are
counterexamples for SL2. The reason for these counterexamples however, is of global
(endoscopic) nature and it remains a reasonable question to ask Question A for groups
where these phenomena do not apply, e.g. for definite unitary groups.

Expectation B has been verified for GL2 (this is basically [Kis03]), and generalizations
of Kisins’ result were proven by Bellaïche and his coauthors ([BC06],[Bel12] and [BD16]).
For definite unitary groups, and under Taylor–Wiles assumptions, these results were
vastly generalized in [BHS17a], [BHS19]. We point out that in the cases treated in
[BHS17a] the results imply that Scl

κ (Kp)[χ] = S†
κ(Kp)[χ], while the more general case

in [BHS19] only allows to construct some classical form in the eigensystem (though no
counterexample to Question A is constructed in loc. cit.). The reason for this difference
is due to a phenomenon in the geometry of eigenvarieties (i.e. rigid analytic spaces
parametrizing the systems of Hecke eigenvalues in the space of overconvergent p-adic
automorphic forms of finite slope), respectively in the geometry of their local Galois-
theoretic counterparts (the so-called trianguline variety of [BHS17b]). In the case treated
in [BHS17a] the trianguline variety is smooth at the Galois representations in question
(and hence the eigenvariety is local complete intersection). In general the trianguline
variety is not smooth, and as a consequence one can construct non-smooth points on the
corresponding eigenvarieties, see [BHS19, Thm. 5.4.2]. It is this failure of smoothness
that prevents [BHS19] from identifying Scl

κ (Kp)[χ] and S†
κ(Kp)[χ].

In this paper we prove that the answer to Question A is no for definite unitary groups
in three variables (see Theorem 1.2 below for a more precise formulation).
Theorem 1.1. There exists a unitary group in three variables U , a tame level Kp, a
dominant algebraic weight κ and a Hecke character χ : T → L that occurs in the space
S†

κ(Kp)fs of overconvergent automorphic forms of finite slope and weight κ such that the
eigenspace S†

κ(Kp)[χ] contains classical as well as non-classical eigenforms.

The construction of this example also clarifies the role of the singularities of the
trianguline variety Xtri. The precise results we prove suggest that the answer to Question
A is no, whenever the dualizing sheaf ωXtri is not locally free at the point defined by
ρ (and the refinement associated to χ), i.e. whenever Xtri is non-Gorenstein at this
point (we refer to Theorem 1.3 below for the precise link with ωXtri). In the three
dimensional case, this results in a precise comparison of the dimensions of the eigenspaces
Scl

κ (Kp)[χ] ⊂ S†
κ(Kp)[χ].

We point out that, in contrast to [Lud18] and [JL23] this is a purely local p-adic
phenomenon. Moreover, the theorem implies that the usual invariants (i.e. the Hecke
action, respectively the p-adic Hodge theoretic information of the associated Galois rep-
resentation) can not distinguished between classical and non-classical forms. We like to
refer to the non-classical forms in such eigensystems as undercover automorphic forms.

The main result, and in particular the occurrence of the dualizing sheaf ωXtri therein,
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is inspired by the categorical point of view in the p-adic Langlands program, see [EGH23].
The space of overconvergent p-adic automorphic forms of finite slope S†(Kp)fs can be
viewed as the topological dual of the global sections of a coherent sheaf (that we simply
refer to as the sheaf of p-adic automorphic forms) on the rigid analytic generic fiber of
the universal deformation space of Galois representations (more precisely, on the product
of this space with the space of continuous characters of a maximal torus T (Qp) ⊂ G(Qp)
at p). The support of this sheaf is, by definition, the corresponding eigenvariety. The
local-global-compatibility conjectures [EGH23, Conj. 9.6.8 and Conj. 9.6.16] give a pre-
cise description of this sheaf in terms of the geometry of moduli stacks of (φ,Γ)-modules
(that are closely related to the trianguline variety). More precisely, the categorical ap-
proach to the p-adic Langlands program asks for a functor from certain (locally analytic)
representations of G(Qp) to sheaves on stacks of (φ,Γ)-modules, and the sheaf of p-adic
automorphic forms is the globalization of the evaluation of this functor on a specific
representation. One of the punchlines of [EGH23] (see section 1.6 therein for a more
detailed discussion) is that avatars of the envisioned functor have been around in number
theory during the past decades in the context of the Taylor–Wiles patching method, in
particular patching functors as used for example in [EGS15] (or also in [BHS19, 5.]) A
crucial point in the proof of the main theorem is the identification of such a patching
functor with an explicit local functor, see Theorem 1.4 below. This partially confirms
expectations in the categorical picture, see [EGH23, Expectation 6.2.27].

Note that the multiplicity result in Theorem 1.2 has some striking consequence for
the p-adic Langlands Program for GL3(Qp). It implies that the locally analytic repre-
sentation of GL3(Qp) on the Hecke eigenspace of overconvergent p-adic modular forms
over G corresponding to a Galois representation ρ as in Theorem 1.2 contains locally
algebraic vectors which are not in the socle of the representation (see Remark 7.31).
After finishing this works, the authors learned that Ding also proved examples of this
penomena for generic Galois representations (see [Din]).

We now describe our results in more detail. Let F be a totally real number field
and let E/F be a CM (imaginary) quadratic extension in which every place v|p in F
splits in E. Let U be a unitary group (over Q) in n variables for the quadratic extension
E/F which is compact at infinity. By the hypothesis on p the group UQp is a product
of general linear groups over finite extensions of Qp and we denote T a maximal torus
of UQp . We also fix a finite extension L/Qp which is big enough to split E. Let OL ⊂ L
be its ring of integers, πL a uniformizer and kL its residue field.

For any continuous character δ : T (Qp) −→ L×, we can define a weight κ (which is
given by the derivative of δ at 1) and a character of the Atkin–Lehner ring A(p) (the ring
of Hecke-operators at p, see Definition 5.4) that we still denote by δ. We will assume that
δ|T 0 is algebraic where T 0 ⊂ T (Qp) is the maximal compact subgroup. Let Kp ⊂ U(Ap)
be a tame level and let S be a finite set, containing places above p, away from which Kp

is hyperspecial. We write TS for the unramified Hecke algebra at places not in S and
T = TS ⊗Z A(p). Associated to these data we consider the spaces S†

κ(Kp) and Scl
κ (Kp),

see Definition 5.7 for the precise definition, which come equipped with an action of TS

5



and A(p).
Given a character χS : TS → L let χ = χS⊗δ and consider the eigenspaces S†

κ(Kp)[χ]
and Scl

κ (Kp)[χ]. We note that the classical subspace Scl
κ (Kp)[χ] is zero unless κ is domi-

nant algebraic. To an eigenvector f ∈ S†
κ(Kp)[χ] we can associate a Galois representation

ρ = ρf = ρχ : GalE := Gal(E/E) −→ GLn(Qp). For the precise form of the main result
we introduce the following (strong) Taylor–Wiles hypothesis. Let ρ : GalE −→ GLn(kL)
be the semisimplification of the reduction modulo the maximal ideal of OL of ρ. We
assume that (see Hypothesis 5.10 in the text)

• p > 2,
• E/F is unramified and ζp /∈ E,
• U is quasi-split at all finite places of F,
• if a place v of F is inert in E, then Kv is hyperspecial,
• ρ is absolutely irreducible and ρ(GalE(ζp)) is adequate.

(1)

For simplicity of the exposition we assume now that p is totally split in F (in the
core of the paper we work in the general case). If the representation ρ is crystalline at
v|p, ρv can be described by its associated filtered isocrystal which is a finite dimensional
L-vector space Dcris(ρv) endowed with a linear automorphism φ ∈ GL(Dcris(ρv)) and a
complete flag D•, called the Hodge–Tate filtration (in our case, this is a complete flag as
we will assume that ρv has regular Hodge–Tate weights). We say that ρv is φ-generic if
the ratio of two of its eigenvalues is not in {1, p}. In this case the character δ determines
an order of the eigenvalues of φ (that is called a refinement of ρv) which in turn (using
the fact that the φ-eigenvalues are pairwise distinct) defines another complete flag F• on
Dcris(ρv) which is φ-stable. We denote wρ,δ,v ∈ Sn the relative position of the flags F•
and D• in the flag variety of Dcris(ρv). When wρ,δ,v = w0 is the longest element of Sn,
i.e. when the two flags D• and F• are in generic position, we say that f is non-critical at
v. The “most critical case” is the case where wρ,δ,v = 1, i.e. when the two flags coincide.
In this case we say that f is very critical at v.

Theorem 1.2. Assume n = 3. Let δ : T (Qp) → L× be a continuous character of
weight κ dominant algebraic. Let χS : TS → L be a character and let χ = χS ⊗ δ. We
assume that the eigenspace S†

κ(Kp)[χ] is non-zero and that for any v|p the local Galois
representation ρv = ρχ|GalEv

: GalEv −→ GL3(Qp) is crystalline with distinct Hodge-
Tate weights and is φ-generic. Assume moreover that the Taylor–Wiles hypothesis (1)
is satisfied. Let r be the number of places v|p in F such that wρχ,δ,v = 1. Then

dimS†
κ(Kp)[χ] = 2r dimScl

κ (Kp)[χ].

We refer to Corollary 7.28 for a more general statement where p is not necessarily
totally split in F .

Theorem 1.2 would be vacuous without proving the existence of characters χ and δ
(and a group U and a tame level Kp) such that the corresponding eigenspace Scl

κ (Kp)[χ]
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is non-zero and consists of very critical forms. As there exist only countably many
classical automorphic forms, but uncountably many flags it doesn’t seem very easy to
construct an f with wρf ,δ = 1. This is Corollary 8.13, the main result of section 8, which
uses global automorphic methods that are rather disjoint from the methods of the other
parts of the paper. The Galois representation corresponding to the constructed Hecke
character is induced from a degree 3 extension of E.

We finally discuss the relation of these results with patching functors and the cate-
gorical approach to a p-adic Langlands correspondence. Assume that δ = δλδ

sm
R is the

product of a dominant algebraic character δλ and a smooth unramified character δsm
R

(which is in fact implied by the assumption that ρv is crystalline). As the notation
suggests, the character δsm

R corresponds to the choice of a refinement R of ρp := (ρv)v|p.
Let Xρp = Spec(Rρp) be the scheme associated to the universal deformation ring of ρp.
Using results of [BHS19], we can construct a subscheme

X qtri
ρp,R = Spec(Rqtri

ρp,R) ⊂ Xρp

of “quasi-trianguline” deformations of ρp associated to the refinement R. By loc. cit. this
scheme has a local model modeled on the Steinberg variety (or rather its “Grothendieck–
Springer” variant) and its irreducible components X qtri,w

ρ,R are labeled by the Weyl group
W of ∏v|p GL3. It is known that these irreducible components are normal and Cohen–
Macaulay.

Let’s denote λ = δ|T 0(= δλ|T 0), this is a dominant algebraic character. Using hypoth-
esis (1) the Taylor–Wiles method, as extended to the setting of completed cohomology
in [CEG+16], can be used ([BHS19, 5.]) to construct coherent sheaves M∞(L(λ)) and
M∞(M(w · λ)) for w ∈ W over X qtri

∞,ρ,R = Spec(Rqtri
ρp,R[[x1, . . . , xg]]) for some g ⩾ 0,

that “patch” the duals of the spaces of classical, respectively p-adic, automorphic forms.
More precisely

M∞(L(λ))⊗ k(ρp) = HomL(Scl
λ (Kp)[χ], L),

M∞(M(w · λ))⊗ k(ρp) = HomL(S†
w·λ(Kp)[χ], L).

These coherent sheaves are in a certain precise sense associated to the U(g)-modules
L(λ) (the algebraic representation of highest weight λ) respectively the Verma modules
M(w · λ), where g is the Lie algebra of UL

∼=
∏

v|p GL3. The results of [BHS19] show
that the coherent sheaves M∞(M(w · λ)) have generic rank (when nonzero) equal to
dimL S

cl
λ (Kp)[χ]. Denote X qtri,w

∞,ρ,R := X qtri
∞,ρ,R ×X qtri

ρ,R
X qtri,w

ρ,R . The key to the proof of
Theorem 1.2 is the following result:

Theorem 1.3. Under the assumptions of Theorem 1.2, let m = dimL S
cl
λ [χ]. For any

w ∈W , there is an isomorphism

M∞(M(w · λ)) ∼= ω⊕m

X qtri,ww0
∞,ρ,R

.

Here ωX qtri,ww0
∞,ρR

is the dualizing sheaf of a complete intersection X qtri,ww0
∞,ρ,R ⊂ X qtri,ww0

∞,ρ,R .
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In order to prove Theorem 1.3, we extend M∞ to a functor on the whole category
Oλ, the block of the BGG category O containing L(λ). This is the patching functor
alluded to above. More precisely, assuming that ρp is crystalline with regular Hodge-
Tate weights, and δ is φ-generic, we construct an exact functor

M∞ : Oλ −→ Coh(X qtri
∞,ρ,R),

such that, for every M ∈ Oλ the sheaf M∞(M) is Cohen–Macaulay of the expected
dimension.

In spirit of the categorical approach to the p-adic Langlands correspondence the
functor M∞ should be a “local” functor, that is (up to multiplicities coming from con-
tributions at the places away from p) the functor M∞ should be the pullback, denoted
B∞, of a functor

Bp : Oλ −→ Coh(X qtri
ρp,R).

This functor Bp can be written down explicitly using the local model for X qtri
ρp,R and a

functor constructed by Bezrukavnikov [Bez16], see 7.2 for details. Our main local result
compares M∞ and Bp (see Corollary 7.17 for the general version):

Theorem 1.4. Under the assumptions of Theorem 1.2, let m = dimL S
cl
λ [χ]. Then there

is an isomorphism of functors M∞ ≃ B⊕m
∞ . As a consequence, we have

1) for all w ∈W , M∞(M(w · λ)∨) ≃ O⊕m

X qtri,ww0
∞,ρ,R

;

2) for all w ∈W , M∞(M(w · λ)) ≃ ω⊕m

X qtri,ww0
∞,ρ,R

;

3) for all M ∈ O, we have M∞(M∨) ≃ M∞(M)∨ where (·)∨ denote both the dual
in Oλ and the Serre dual in the category of coherent sheaves.

Remark 1.5. We can only prove Theorem 1.4 in the three dimensional case. However,
we expect an isomorphism M∞ ∼= B⊕m

∞ for higher dimensional definite unitary groups
as well.

In fact Bp should factor through the category of locally analytic representations, and
is expected to extend to a functor with values in coherent sheaves on the stack of all
(φ,Γ)-modules (compare [EGH23, Conjecture 6.2.4 and Expectation 6.2.27]). Theorem
1.4 should be viewed as some partial evidence for these expectations. In fact, in view of
the conjectures in [EGH23] we can formulate an expectation how Theorem 1.2 (and its
technical key input Theorem 1.3) should generalize beyond the case of GL3, respectively
a unitary group in three variables.

Conjecture 1.6. Assume the situation of Theorem 1.3 but drop the assumption that
n = 3. Then, for any w ∈W , there is an isomorphism

M∞(M(w · λ)) ∼= ω⊕m

X qtri,ww0
∞,ρ,R

,
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where m = dimL S
cl
λ [χ]. In particular, in the situation of Theorem 1.2 (but dropping

the assumption n = 3) the dimension of the eigenspace χ-eigenspace in the space of
overconvergent automorphic forms S†

κ(Kp) of weight κ and level Kp can be computed as

dimS†
κ(Kp)[χ] =

(
dimωX qtri,w0

ρ,R
⊗ k(ρp,R)

)(
dimScl

κ (Kp)[χ]
)
.

Let us return to the three dimensional case and indicate how to prove our main
results. The key to proving Theorem 1.4 is to extend the functor M∞ to a larger
category O∞

alg and to a deformation Õalg as introduced in [Soe92], which we think of as
a deformed version of Oalg. We would like to emphasize that we first prove 1) and we
deduce the isomorphism M∞ ≃ B⊕m

∞ from this in a second time . The proof of 1) is
based on a dévissage whose roots can be found in the paper [EGS15]. We first prove the
result in the case where X qtri,w

∞,R is smooth and then proceed inductively. Note that the
existence of Bezrukavnikov’s functor B∞ plays a key role in this induction. The second
main input into this induction is the computation ofM∞(MI(w ·λ)) where MI(w ·λ) is a
generalized Verma module (corresponding to some parabolic PI). These sheaves, that are
related to sheaves of p-adic automorphic forms on the partial eigenvarieties constructed
by Wu [Wu], are supported on “partially de Rham quasi-trianguline” deformation spaces
X I−qtri

ρp,R which have been studied by Breuil and Ding in [BD].

We finally note that the component X qtri,w0
∞,ρ,R is not Gorenstein and its dualizing sheaf

has a 2r-dimensional fiber at ρp, which is the reason for the factor 2r in Theorem 1.2.
Note that, while many constructions in the body of the paper work for arbitrary

dimension n, there are severe difficulties in generalizing our proof to a full proof of
Conjecture 1.6: one of the main inputs in the proof of Theorem 1.4 is that we know that
X qtri,w

∞,R is smooth unless w = (wv)v|p ∈ W = ∏
v|p S3 has the property that wv ∈ S3 is

the longest element for at least one v|p.
We now describe the content of the article. In section 2 we introduce the cate-

gory Oalg and its deformed versions. Section 3 studies Emerton’s Jacquet functor and
gives the abstract framework to construct patching functors. In section 4, we recall the
quasi-trianguline deformation spaces of [BHS19], their local models, and their parabolic
version ([BD, Wu]). Section 5 recalls the definitions of the global objects like completed
cohomology, overconvergent automorphic forms and their patched versions. Section 6 is
devoted to the further study of the functor M∞ and its factorization through X qtri

∞,ρ,R,
the (global) quasi-trianguline deformation space. In section 7, we study the supports of
the sheaves M∞(M) for specific objects of Oalg (and their deformed version), and we
recall results on Bezrukavnikov’s functor before deducing Theorem 1.4 (in the three di-
mensional case). Finally, in section 8 we explain how to explicitly construct very critical
forms satisfying the assumptions in Theorem 1.2 for n = 3.
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Notations

We fix p a prime number. When K is a field, we fix Ksep a separable closure of K we
write GalK = Gal(Ksep/K). We fix L a finite extension of Qp which will be chosen
sufficiently large in the text.

If h is a Lie algebra we note hss its derived Lie algebra.

2 Variants of the BGG-category O

In this section, we fix L to be a field of characteristic 0. Let G be a split reductive
group over L. Let B be a Borel subgroup, T a maximal split torus of G contained in B
and N the radical of B. We use the notation g, b, t, n... for the Lie algebras of G, B,
T , N ... We denote by X∗(T ) the finite free abelian group Hom(T ,Gm,L) of characters
of T . This abelian group can be identified with a Z-lattice in t∗ := HomL(t, L). For
λ ∈ X∗(T ), we also write λ for the character of t induced by λ. Let Φ be the set of roots
of the pair (G,T ), Φ+ ⊂ Φ the subset of positive roots with respect to B and ∆ ⊂ Φ+

the subset of simple roots. If α ∈ Φ, we denote gα the α-eigenspace in g. We write
δG ∈ X∗(T )⊗ZQ for the half sum of positive roots. Let W be the Weyl group of (G,T ).
For w ∈ W , we write λ 7→ w · λ for the dot action of W on X∗(T ) (with respect to B,
that is w · λ := w(λ + δG) − δG). We equip W with the Bruhat order corresponding to
the choice of B and we denote w0 ∈W the longest element for this order.

If I ⊂ ∆ is a subset of simple roots, we denote by ΦI ⊂ Φ the subset of roots which
are sums of elements of I, P I ⊃ B the standard parabolic subgroup of G such that
pI = b+∑α∈ΦI

gα and N I its unipotent radical. Let LI be the standard Levi subgroup
of P I and ZI be the center of LI . We say that a character λ ∈ X∗(T ) is dominant with
respect to P I if ⟨λ, α∨⟩ ⩾ 0 for α ∈ I and we denote X∗(T )+

I the set of such characters.
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When I = ∆, we have P∆ = G and we write X∗(T )+ = X∗(T )+
∆. We define an order

relation on X∗(T ), by saying that λ ⩾ µ if and only if λ− µ ∈∑α∈Φ+ Nα.
We write WI for the Weyl group of (LI , T ); it is the subgroup of W generated by

the simple reflections sα for α ∈ I. Given w ∈ W , we denote wmin (resp. wmax) the
unique minimal (resp. maximal) element for the Bruhat order having the same class as
w in WI\W . This definition depends on I (and on the fact that the quotient is on the
left) but we hope our notation will cause no confusion. We have (ww0)min = wmaxw0
and (ww0)max = wminw0 for any w ∈ W . Finally, we write IW for the set of minimal
length representatives of WI\W in W , i.e. IW = {wmin | w ∈W}.

2.1 Recollections

For I ⊂ ∆, we consider the full subcategory OI,∞ of the category U(g)-mod of U(g)-
modules whose objects are all finitely generated U(g)-modules M such that

• for any m ∈M , the L-vector space U(pI)m is finite dimensional;

• for any h ∈ t and any h-stable finite dimensional L-vector subspace V ⊂ M , the
characteristic polynomial of h|V is split in L[X].

This is the category OpI ,∞ in [AS22, §3.1].
For M in OI,∞ and µ ∈ HomL(t, L), we write Mµ ⊂ M for the L-subspace of those

v ∈M such that, for any h ∈ t, (h− µ(h))n · v = 0 for some n ⩾ 1. We have

M =
⊕

µ∈HomL(t,L)
Mµ.

We write OI,∞
alg for the full subcategory of OI,∞ whose objects M satisfy Mµ = 0 for

µ /∈ X∗(T ).
Moreover, we write OI

alg ⊂ O
I,∞
alg for the full subcategory whose objects are direct

sums of finitely generated semisimple U(lI)-modules (when seen as U(lI)-modules). This
coincides with the usual parabolic (algebraic) category O, which is denoted OpI

alg in
[OS15]). When I = ∅ we simply use the notations O∞

alg and Oalg for O∅,∞
alg and O∅

alg.
Note that OI,∞

alg ⊂ O∞
alg for any I ⊂ ∆. As these categories depend on the choices of

g and b we write Og,b (with additional decorations) instead of O, when the context is
unclear.

These categories are stable by subobject and quotients in the category of U(g)-
modules. Moreover the category OI,∞

alg is stable under extensions.

For any character λ ∈ X∗(T )+
I , we write LI(λ) for the simple U(lI)-module of highest

weight λ. This is a finite dimensional L-vector space and we define the generalized Verma
module of highest weight λ as

MI(λ) := U(g)⊗U(pI) LI(λ).
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The generalized Verma module is an object of OI
alg and has a unique simple quotient

which is isomorphic to L(λ) = L∆(λ). When I = ∅, we simply write M(λ) = M∅(λ)
and say that M(λ) is a Verma module. We also denote by P (λ) the projective cover
of the simple module L(λ). If λ is dominant with respect to B, we call P (w0 · λ) the
antidominant projective (with respect to λ).

2.2 Nilpotent action of U(t)

Given I ⊂ ∆ we denote by mI the augmentation ideal of U(zI) and set

AI := U(zI)mI

A := A∅ := U(t)m.

The canonical Lie algebra decomposition lI = zI ⊕ lssI defines a canonical morphism of
Lie algebras pI : lI ↠ zI which extends to a morphism U(lI) ↠ U(zI) of L-algebras also
denoted by pI . This morphism induces a surjective morphism A↠ AI of AI -algebras.

We show that the category OI,∞ naturally embeds into the category U(g)AI
-mod,

where U(g)AI
:= U(g)⊗L AI .

Let M be an object of the category OI,∞. Let h ∈ t. For v ∈M the element h defines
an L-linear endomorphism of the finite dimensional L-vector space U(t)v and we write
h = Dh,v + Nh,v for its Jordan decomposition with semisimple part Dh,v and nilpotent
part Nh,v. As M is locally U(t)-finite, uniqueness of the Jordan decomposition implies
that these endomorphisms “glue” into an endomorphism Dh and a locally nilpotent
endomorphism Nh of M such that Dh,v (resp. Nh,v) is the restriction of Dh (resp. Nh)
to U(t)v for any v ∈M .

Lemma 2.1. The endomorphism Nh is U(g)-equivariant.

Proof. By construction Nh and Dh commute with the action of t and stabilize each Mµ.
Let α ∈ Φ and x ∈ gα. For v ∈Mµ, we have x · v ∈Mµ+α and [h, x] = α(h)x so that

Dhx · v +Nhx · v = xDh · v + xNh · v + α(h)xv.

By definition of Mµ, we have Dh · v = µ(h)v for any v ∈ Mµ. This implies Dhx · v =
(µ(h) + α(h))x · v and xDh · v = µ(h)x · v. Therefore Nhx · v = xNh · v. We conclude
that Nh commutes with the endomorphism of M induced by x. Therefore Nh is U(g)-
equivariant.

Given M ∈ OI,∞ Lemma 2.1 implies that we can define an U(t)-module structure on
M by letting h ∈ t ⊂ U(t) act via Nh. As the action of each h on M is locally nilpotent,
this action extends to an A-module structure.

Lemma 2.2. Let M be an object of OI,∞, then the A-action on M factors through AI .
Moreover, this AI-module structure makes OI,∞ into a full subcategory of U(g)AI

-mod.
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Proof. In order to prove that the A-action factors through A→ AI it is enough to prove
that for h ∈ t ∩ lssI the endomorphism Nh is zero. This is a direct consequence of the
fact that lssI is a semi-simple Lie algebra and that the L-vector space U(lssI )v is finite
dimensional for any v ∈ M (by definition of OI,∞). As the U(g)-action commutes with
the A-action by Lemma 2.1 the module M is an U(g)AI

-module. Finally we note that,
given h ∈ t, the construction of Nh is functorial in M .

Remark 2.3. Let M ∈ OI,∞ and µ ∈ HomL(t, L) then the above construction implies
that

Mµ = {v ∈M | hv = (µ(h)v) + pI(h))v ∀h ∈ t}.

Let M ∈ O∞
alg. Lemma 2.1 also implies that we can define another structure of U(g)-

module on M where an element h ∈ t acts through the semisimple part Dh and the action
of an element x ∈ gα for α ∈ Φ is not modified. We denote this U(g)-module structure
by M ss. Then M ss is an object of Oalg and [OS15, Lemm. 3.2] implies that there is a
unique structure of algebraic B-module on M lifting the structure of U(b)-module on
M ss. The compatibility of this B-action with the original U(g)-module structure on M
is made explicit in the following Lemma.

Lemma 2.4. Let M be an object of O∞
alg endowed with the B-module structure defined

above. Then
b · (X · (b−1 · v)) = (Ad(b)X) · v

for any b ∈ B(L), X ∈ g and v ∈M .

Proof. It is sufficient to prove the formula for b ∈ N(L) and for b ∈ T (L). If b ∈ N(L),
then b = exp(n) for some n ∈ n. It follows that Ad(b)X is equal to the finite sum∑

k⩾0
1
k!ad(n)kX and that the action of b on M is given by the series ∑k⩾0

1
k!n

k (which
is locally finite). Therefore we have,

b · (X · (b−1 · v)) =
∑

k⩾0,ℓ⩾0
(−1)ℓ 1

k!ℓ!n
kXnℓ · v

=
∑
m⩾0

1
m!

∑
k+ℓ=m

(−1)k−m

(
m

k

)
nkXnℓ · v

=
∑
m⩾0

1
m! (ad(n)mX) · v = Ad(b)X · v.

If b ∈ T (L), then if α ∈ Φ ∪ {0} and X ∈ gα, and if v ∈Mµ, we have

b · (X · (b−1 · v)) = b · (X · (µ(b−1)v)) = (µ+ α)(b)µ(b−1)X · v
= α(b)X · v = Ad(b)X · v

as Ad(b)X = α(b)X.

For later use, we note that we can resolve objects in O∞
alg as follows:
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Lemma 2.5. Let M be an object of O∞
alg. Then there exist finite dimensional U(b)-

modules V0 and V1 such that for any h ∈ t, the characteristic polynomials of h|V0 and
h|V1 are split in L[X], and an exact sequence of U(g)-modules

U(g)⊗U(b) V1 −→ U(g)⊗U(b) V0 −→M −→ 0. (2)

Moreover U(g)⊗U(b) Vi is in O∞ for i ∈ {0, 1} and this exact sequence is B-equivariant
for the B-actions (on each of the three terms) defined just before Lemma 2.4.

Proof. The existence of a finite dimensional U(b)-module V0 and a surjective map
U(g) ⊗U(b) V0 ↠ M is a consequence of the fact that M is a finitely generated U(g)-
module and locally finite as a U(b)-module (it also comes from Proposition 2.14 below).
The existence of V1 and of the map U(g)⊗U(b) V1 → U(g)⊗U(b) V0 follows the fact that
U(g) is noetherian and U(g) ⊗U(b) V0 is locally U(b)-finite. The B-equivariance is a
direct consequence of the definition of the algebraic action of B-action on each term of
the sequence (2).

2.3 Deformations of the category O

Fix I ⊂ ∆ and let M be some U(g)AI
-module. For µ ∈ X∗(T ), we define the AI -

submodule
Mµ := {v ∈M | ∀h ∈ t, h · v = (pI(h) + µ(h))v}.

We note that for M ∈ OI,∞ this coincides with the generalized eigenspace for µ by
Remark 2.3. Inspired by the construction of [Soe92, §3.1], we define ÕI

alg as the category
of U(g)AI

-modules M such that

• M is finitely generated over U(g)AI
;

• M = ⊕
µ∈X∗(T )M

µ and each Mµ is a finite free AI -module ;

• for any m ∈M the AI -submodule (U(pI)⊗L AI)m is finitely generated.

Lemma 2.6. Let M be an object of ÕI
alg. Then for any n ⩾ 0, the U(g)-module M/mn

IM

is an object of OI,∞
alg and M/mIM is in OI

alg.

Proof. This is a direct consequence of the definitions.

For λ ∈ X∗(T )+
I we define the deformed generalized Verma module of weight λ as

M̃I(λ) := U(g)⊗U(pI) (LI(λ)⊗L AI)

where U(pI) acts on AI via the composition U(pI) → U(lI) pI−→ U(zI) → AI . The
module M̃I(λ) is an object of ÕI

alg and we have an isomorphism of U(g)AI
-modules

M̃I(λ)⊗AI
(AI/mI) = MI(λ).
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2.3.1 Duality

Recall that there exists an internal duality functor M 7→ M∨ on the category Oalg (see
[Hum08, §3.2]). We will define an analogue on Õalg. Let M be an object of the category
ÕI

alg. We define an action of U(g) on M∗ := HomAI
(M,AI) by x · f(m) = f(τ(x)m)

where τ is the anti-involution of U(g) defined in [Hum08, §0.5]. We then define M∨ to
be the sub-U(g)-module of M∗ given by

M∨ :=
⊕

µ∈X∗(T )
(M∗)µ.

Lemma 2.7. If M is an object of the category ÕI
alg, then so is M∨ and there is a

canonical isomorphism of U(g)-modules M∨/mIM
∨ ≃ (M/mIM)∨. Consequently is in

the category OI
alg. Moreover there is a canonical isomorphism M

∼−→ (M∨)∨ of U(g)AI
-

modules.

Proof. We have a canonical isomorphism of AI -modules

M∗ ≃
∏

µ∈X∗(T )
HomAI

(Mµ, AI)

and we easily check that (M∗)µ = HomAI
(Mµ, AI) for µ ∈ X∗(T ). As any Mµ is a finite

free AI -module, so is (M∗)µ = (M∨)µ. By definition, we have M∨ = ⊕
µ∈X∗(T )M

∨,µ and
M∨/mIM

∨ = ⊕
µ∈X∗(T )M

∨,µ/mIM
∨,µ. Therefore we haveM∨,µ/mIM

∨,µ ⊂ (M∨/mIM
∨)µ.

As the eigenspaces (M∨/mIM
∨)µ are in direct sum, we must have, for any µ ∈ X∗(T ),

M∨,µ/mIM
∨,µ = (M∨/mIM

∨)µ.

The reduction modulo mI induces a sequence of morphisms of U(g)-modules

M∨/mIM
∨ →M∗/mIM

∗ = HomAI
(M,AI)/mI → HomAI

(M,AI/mI)
= Hom(M/mIM,L).

We claim that the composite of these maps induces an isomorphism from M∨/mIM
∨

onto (M/mIM)∨. In order to see this it is sufficient to check that, for any µ ∈ X∗(T ),
it maps M∨,µ/mIM

∨,µ onto HomL(Mµ/mIM
µ, L) ≃ (M/mIM)∨,µ. This comes from

the fact that, as the AI -module Mµ is finite free, all maps in the following sequence are
isomorphisms

M∨,µ/mIM
∨,µ ∼−→ HomAI

(Mµ, AI/mI) ∼−→ HomL(Mµ/mIM
µ, L).

Let n−
I := ⊕

α∈−Φ+\ΦI
gα denote the nilpotent radical of the parabolic Lie subalgebra

opposite to pI . Note that a U(g)AI
-module M such that M = ⊕

µM
µ with Mµ finite

free over AI is in ÕI
alg if and only if we can write M = U(n−

I ) ·
(⊕

µ∈S M
µ
)

for some
finite set S ⊂ X∗(T ). By Lemma 2.6, the object M/mIM lies in the category OI

alg and it
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follows from [Hum08, §9.3] that (M/mIM)∨ lies in OI
alg. This implies that there exists

a finite set S ⊂ X∗(T ) such that

(M/mIM)∨ = U(n−
I ) ·

(⊕
µ∈S

(M/mIM)∨,µ).
It follows that for any µ such that (M/mIM)∨,µ ̸= 0, the map⊕

ν∈
∑

α∈−Φ\ΦI
Nα

µ′∈S
µ′+ν=µ

(M/mIM)∨,µ′ −→ (M/mIM)∨,µ

given by the action of the corresponding element of U(n−
I ) on each summand, is surjec-

tive. As Mµ is a finite free AI -module and AI is a local ring, we deduce from Nakayama’s
Lemma that the map ⊕

ν∈
∑

α∈−Φ\ΦI
Nα

µ′∈S
µ′+ν=µ

M∨,µ′ −→M∨,µ

is surjective and thus that M∨ = U(n−
I ) ·

(⊕
µ′∈S M

∨,µ′
)
. This implies that M∨ is

a finitely generated U(g)AI
-module and we also deduce from this equality that M∨ is

locally U(pI)AI
-finite.

In order to prove that M ∼−→ (M∨)∨ we note that the natural map M −→ (M∨)∗ of
U(g)AI

-modules factors through (M∨)∨ and respects the weight decomposition. More-
over as Mµ is free over AI for all µ, the induced bi-duality Mµ ∼−→ (Mµ,∗)∗ morphism
is an isomorphism.

2.3.2 Blocks

Let Z(g) denote the center of U(g) and let χ : Z(g)→ L be a character of Z(g). Let Oχ

be the subcategory of objects M of Oalg such that z − χ(z) acts nilpotently on M for
any z ∈ Z(g). For I ⊂ ∆, we denote by OI

χ the full subcategory of objects of OI
alg which

are also in Oχ. We deduce from [Hum08, Prop. 1.12] that there is a decomposition into
blocks

OI
alg =

⊕
χ

OI
χ.

We write ÕI
χ for the subcategory of objects M of ÕI

alg such that M/mIM lies in OI
χ,

and similarly OI,∞
χ .

Remark 2.8. For λ ∈ X∗(T ), let χ be the character χλ defined in [Hum08, §1.7]. Then
loc. cit. implies that M̃I(λ) is in ÕI

χλ
. Note that χλ = χµ if, and only if, there is w ∈W

such that w · λ = µ.

Lemma 2.9. We have decompositions ÕI
alg = ⊕

χ ÕI
χ and OI,∞

alg = ⊕
χOI,∞

χ .
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Proof. Let M be an object of ÕI
alg. For a character χ : Z(g) → L and µ ∈ X∗(T ), let

Mµ,χ denote the subset of elements x ∈Mµ such that (z− χ(z))nx→ 0 for the mI -adic
topology on the finite free AI -module Mµ. We easily check that Mχ := ⊕

µ∈X∗(T )M
µ,χ

is an U(g)AI
-submodule of M which lies in ÕI

χ and that M = ⊕
χM

χ. The case of OI,∞
alg

is similar.

Lemma 2.10. Let λ1, λ2 ∈ X∗(T ). Assume that M̃I(λ1) and M̃I(λ2) are in the same
block ÕI

χ for a character χ : Z(g)→ L. Then there exists w ∈W such that w · λ1 = λ2.

Proof. By Remark 2.8, the claim follows from the same claim in the category OI
χ. As

MI(λ1) and MI(λ2) are quotients of M(λ1) and M(λ2), this is a consequence of [Hum08,
Thm. 1.10].

When λ is a character of t, we often write by abuse of notation Oλ (resp. OI,∞
λ , ÕI

λ)
for the block Oχλ

(resp. OI,∞
χλ

, ÕI
χλ

) where χλ is the character defined in Remark 2.8.

Corollary 2.11. Let λ ∈ X∗(T ) be a dominant weight and let χλ be the associated
character of Z(g). If M is an object of ÕI

χλ
(resp. OI,∞

χλ
), then Mλ = (Mλ)n.

Proof. Assume that this is false. Then there exists α ∈ Φ+ and x ∈ gα such that
xMλ ̸= 0. Thus there exists µ > λ such that Mµ ̸= 0. As M lies in the category ÕI

alg
(resp. OI,∞

χ ), we can choose µ to be maximal which then implies nMµ = 0. As Mµ ̸= 0
Nakayama’s lemma implies that there exists v ∈ Mµ which is non zero in Mµ/mMµ.
Then v defines a map M̃(µ) → M with µ > λ, which is non-zero after reduction by m.
Thus it induces a non-zero map M(µ) −→ M/mM ∈ Oχλ

. It follows that µ = w · λ
which is a contradiction.

2.3.3 Deformed Verma modules

Let λ ∈ X∗(T ) and let V be a finite dimensional U(g)-module. Then we have an
isomorphism of U(g)A-modules

M̃(λ)⊗L V ≃ U(g)A ⊗U(b)A
(V|b ⊗L A(λ)).

Indeed there is a canonical map from the left to the right, which then is easily checked
to be an isomorphism. As V|b is a successive extension of one dimensional U(b)-modules,
and as U(g)A ⊗U(b)A

(−) is an exact functor (as follows from the PBW Theorem), we
have a filtration (Fili) of M̃(λ)⊗LV such that each subquotient Fili /Fili−1 is isomorphic
to M̃(λ + νi) for νi a weight of V . Moreover the family (νi) is the family of weights of
V (counted with multiplicity).

17



Proposition 2.12. Let K denote the fraction field of A. Then the filtration (Fili⊗AK)
of (M̃(λ) ⊗L V ) ⊗A K splits in the category of U(g)K-modules, i.e. there exists an iso-
morphism of U(g)K-modules

(M̃(λ)⊗L V )⊗A K ≃
⊕

i

(M̃(λ+ νi)⊗A K)

compatible with the filtration (Fili⊗AK).

Proof. This is a consequence of the paragraph preceding [Soe92, Thm. 8].

Lemma 2.13. Let λ ∈ X∗(T )+
I be a dominant weight (with respect to P I) and let V be

a finite dimensional U(g)-module. Let M be an object of OI,∞
alg . Then the map

HomU(g)AI
(M̃I(λ)⊗L V,M)→ HomU(g)(MI(λ)⊗L V,M/mIM)

given by reduction modulo mI is surjective.

Proof. The L-vector space HomL(V,L) has the structure of an U(g)-module induced by
g-action defined by x ·ϕ = −ϕ(x·) for x ∈ g and ϕ ∈ HomL(V,L). For any U(g)-modules
M1 and M2, the adjunction isomorphism HomL(M1 ⊗L V,M2) ≃ HomL(M1,M2 ⊗L

HomL(V,L)) is g-equivariant and hence induces an isomorphism,

HomU(g)(M1 ⊗L V,M2) ≃ HomU(g)(M1,M2 ⊗L HomL(V,L)).

Thus, as M ⊗L HomL(V,L) lies in OI,∞
alg , we can assume that V = L. Using Lemma 2.9,

we can assume that M is in OI,∞
χ for some character χ and by Remark 2.8, it is sufficient

to consider the case where χ = χλ. By construction of the deformed generalized Verma
modules we have HomU(g)AI

(M̃I(λ),M) = (Mλ)nI and HomU(g)(MI(λ),M/mIM) =
((M/mIM)λ)nI . However it follows from Corollary 2.11 that (Mλ)nI = Mλ and ((M/mIM)λ)nI =
(M/mI)λ. It is thus sufficient to prove that the map Mλ → (M/mIM)λ is surjective,
which is obvious.

Proposition 2.14. Let M be an object of the category OI,∞
alg . Then there exist weights

λ1, . . . , λr ∈ X∗(T )+
I and finite dimensional U(g)-modules W1, . . . ,Wr and a surjective

map of U(g)AI
-modules

(M̃I(λ1)⊗L W1)⊕ · · · ⊕ (M̃I(λr)⊗L Wr) ↠M. (3)

In particular M is a quotient of an object of the category ÕI
alg. Moreover there exists an

integer N ⩾ 0 such that the map (3) factors through(
(M̃I(λ1)⊗L W1)⊕ · · · ⊕ (M̃I(λr)⊗L Wr)

)
⊗AI

(AI/m
N
I ).
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Proof. By [Hum08, Thm. 9.8] (and its proof), there exist dominant weights λ1, . . . , λr,
finite dimensional U(g)-modules W1, . . . ,Wr and a surjective map

(MI(λ1)⊗L W1)⊕ · · · ⊕ (MI(λr)⊗L Wr) ↠M/mIM.

By Lemma 2.13, this map can be lifted into a U(g)AI
-equivariant map

M̃I(λ1)⊗L W1 ⊕ · · · M̃I(λr)⊗L Wr ↠M

which is surjective by Nakayama’s Lemma. The last assertion is a consequence of the
fact that M is finitely generated as a U(g)-module and all its elements are killed by some
power of mI so that M is killed by mN

I for some N ⩾ 0.

2.4 Bimodule structure

Let ξ : Z(g) → U(t) be the Harish-Chandra map. Recall that it is defined as follows:
for x ∈ Z(g) there exists a unique element ξ(x) ∈ U(t) such that x ∈ ξ(x) + U(g)n (see
[Kna01, Lem. 8.17]). For any ν ∈ X∗(T ) we denote by tν the unique endomorphism of
U(t) such that tν(x) = x + ν(x) for x ∈ t. Note that t−δG

◦ ξ induces an isomorphism
from Z(g) on to U(t)W (see [Kna01, Thm. 6.18]). For a dominant weight λ ∈ X∗(T ) we
define a map

hλ : A⊗L Z(g) Id⊗ξ−−−→ A⊗L U(t) Id⊗tλ−−−→ A⊗AW A

following [Soe92, §3.2], It follows from [Soe92, Thm. 9] that hλ is surjective (note that
Wλ in loc. cit. is trivial in our situation). If I ⊂ ∆ is a finite subset, tensorization on
the left with pI : A↠ AI yields a map hλ : AI ⊗L Z(g)→ AI ⊗AW A.

For w ∈W , let Iw ⊂ AI ⊗L Z(g) denote the kernel of the map

hλ,w : AI ⊗L Z(g) Id⊗hλ−−−−→ AI ⊗AW A
x⊗y 7→(xpI(Ad(w)y))−−−−−−−−−−−−−→ AI .

It is not hard to see that this kernel only depends on the choice of w ∈WI\W .

Proposition 2.15. For w ∈ IW , the AI ⊗LZ(g)-modules M̃I(w ·λ) and M̃I(w ·λ)∨ are
annihilated by Iw.

Proof. The result for M̃I(w · λ)∨ follows from the result for M̃I(w · λ) and the inclusion

M̃I(w · λ)∨ ⊂ HomA(M̃I(w · λ), A).

Hence it is enough to check that the action of AI ⊗L Z(g) on M̃I(w · λ) factors through
hλ,w. As this action is central and M̃I(w · λ) is generated by M̃I(w · λ)w·λ as an U(g)AI

-
module, it is sufficient to check that the action AI ⊗L Z(g) on M̃I(w · λ)w·λ factors
through hλ,w. Using the fact that n acts trivially on M̃I(w · λ)w·λ, an element x ∈ Z(g)
acts on this space via ξ. For the clarity of the computation let us write εν : U(t)→ AI
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for the L-algebra homomorphism associated to an L-linear map ν : t → AI and let
ι : t ↪→ A↠ AI . Then for x ∈ Z(g) and v ∈ M̃I(w · λ), we have

εw·λ+ι(ξ(x)) = εw(λ+δG+w−1(ι))(t−δG
(ξ(x))) = ελ+δG+w−1(ι)(t−δG

(ξ(x)))
= εw−1(ι)(hλ(x)) = pI(Ad(w)(hλ(x)))

(where we use that the image of t−δG
◦ ξ lies in U(t)W ). As an element y ∈ U(t) acts

by multiplication by εw·λ+ι(y) on M̃I(w · λ)w·λ, we conclude that an element x ⊗ z ∈
AI ⊗L Z(g) acts by multiplication by xpI(Ad(w)(hλ(x))) on M̃I(w · λ)w·λ, which is the
desired formula.

Remark 2.16. The ring U(t) (resp. U(zI)) is the affine coordinate ring of the (affine)
L-scheme associated to the dual t∗ of t (resp. to the dual z∗

I of zI) so that A (resp.
AI) is the stalk of the structure sheaf of t∗ (resp. of z∗

I) at the origin. The ideal Iw is
the ideal defining the irreducible component TI,w of (z∗

I ×t∗/W t∗)(0,0) consisting of pairs
(λ, µ) ∈ z∗

I × t∗ of characters such that µ = w(λ).
Later in the paper we will view the L-scheme t∗ as the Lie algebra t∨ of the dual torus

T∨
L of the Langlands dual group G∨

L, that we consider as an algebraic group over L. As
we will later specialize to the case where G is isomorphic to a product of r copies of GLn

the reductive group G is self dual and we will identify t∗ = t∨ with t in order to avoid
the additional (−)∨ in the notation. In particular we will consider U(t) as the affine
coordinate ring of t. The inclusion z∗

I ↪→ l∗I induced by the projection pI : lI → zI is then
identified with the inclusion z∨

I ↪→ l∨I of the center of the Lie algebra of the Langlands
dual group of L and again we use self duality (in the case of products of copies of
GLn) to identify this map with zI ↪→ lI . Hence we obtain a canonical map zI ↪→ t of
L-schemes corresponding to the morphism U(t) → U(zI). With this identification the
ideal Iw defines the irreducible component TI,w of (zI ×t/W t)(0,0) whose points are the
pairs (x, y) ∈ t2 such that y = w−1(x).

We finally recall the following result of Soergel (Endomorphismensatz 7 [Soe90]).

Proposition 2.17. The action of Z(g) on P (w0 · λ) factors through the map tλ ◦ ξ :
Z(g) ↠ L⊗AW A and induces an isomorphism L⊗AW A ≃ EndO(P (w0 · λ)).

3 The Emerton–Jacquet functor

Let G be a quasi-split reductive group defined over Qp. Let B be a Borel subgroup
and T be a maximal torus of G contained in B. We set G := G(Qp), B := B(Qp),
T := T (Qp). We also fix L a finite extension of Qp which will be the coefficient field of
our representations. We assume that L is big enough so that the torus T ×Qp L is split
(and then G×Qp L is split). We denote g, b etc. the Lie algebras of G×Qp L, B ×Qp L

etc. For a Qp-analytic Lie group H, we consider the category Repla
L H of locally analytic
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representations of H on locally convex L-vector spaces of compact type. In [Eme06a,
Def. 3.4.5] Emerton constructs a functor

JB : Repla
L G→ Repla

L T

that we refer to as the Emerton–Jacquet functor. We briefly recall its definition. Let
N0 be a compact open subgroup of N and let T+ := {t ∈ T | tN0t

−1 ⊂ N0}. If V is a
L-linear representation of B, we endow the L-vector space V N0 with the action of the
monoid T+ defined by

[t]v := 1
[N0 : tN0t−1]

∑
u∈N0/tN0t−1

ut(v).

Then JB(V ) is the finite slope space (see [Eme06a, Def. 3.2.1]) (V N0)fs of V N0 with
respect to the action of T+ on which the T+-action extends to a locally analytic repre-
sentation of T . Of course this construction does not depend on the choice of N0.

3.1 Families of locally analytic representations of the Borel subgroup

Let s ∈ Z⩾0 be an integer and let Π be an object of Repla
K(Zs

p × B). We consider the
following hypothesis on Π.
Hypothesis 3.1. There exists a locally analytic representation of N0 on a locally convex
L-vector space of compact type V such that

Π|Zs
p×N0 ≃ C

la(Zs
p, L)⊗̂LV.

Given s, we set S := OL[[Zs
p]] and write Spf(S)rig for the rigid analytic generic fiber

of Spf(S). This space is a rigid analytic open polydisc and we write

Srig = Γ(Spf(S)rig,OSpf Srig)

for its ring of rigid analytic functions, which is a Fréchet L-algebra (when endowed with
its natural topology). We note that a finitely generated projective Srig-module C defines
a vector bundle on Spf(S)rig. As every vector bundle on a rigid analytic polydisc over
L is free (see [Gru68, §V]), it follows that C is free as well, i.e. every finitely generated
projective Srig-module is finite free. Moreover the following lemma implies that finite
dimensional quotients of Srig admit resolutions by a perfect complexes.
Lemma 3.2. Let a ⊂ Srig be a closed strict ideal such that dimL S

rig/a < ∞. Then
there exists a perfect complex C• of Srig-modules which is a resolution of Srig/a and such
that C0 = Srig.

Proof. As S[1/p] is dense in Srig, its image in Srig/a is a dense L-vector subspace and, as
Srig/a is finite dimensional, is in fact equal to Srig/a. Setting a0 := a ∩ S[1/p], we have
S[1/p]/a0 ≃ Srig/a. As Srig is a flat S[1/p]-module, it is sufficient to prove that S[1/p]/a0
has a finite resolution by finite projective S[1/p]-modules, which is a consequence of the
fact that S[1/p] is a regular noetherian ring.
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Let C• be a complex of finite free Srig-modules. If V is an object of Repla
L (Zs

p), a
choice of Srig-basis of Cn induces an isomorphism of HomSrig(Cn, V ) with a direct sum of
copies of V . We endow HomSrig(Cn, V ) with the product topology which does no depend
on the choice of the basis of Cn. With this topology the differentials in the complex
HomSrig(Cn, V ) are continuous. The complex Π• := HomSrig(C•,Π) is then a complex
of locally analytic L-representations of Zs

p × B. We also set ΠN0,• := HomSrig(C•,ΠN0)
and JB(Π)• := HomSrig(C•, JB(Π)).

Lemma 3.3. Let 0 → U → V → W → 0 be a short exact sequence of topological L-
vector spaces of compact type (resp. nuclear Fréchet spaces) and let X be a topological
L-vector space of compact type (resp. nuclear Fréchet space). Then the following sequence
is exact

0→ U⊗̂LX → V ⊗̂LX →W ⊗̂LX → 0.

Proof. The claim follows from [Sch11, Lemm. 4.13], [ST02, Cor. 1.4] and from [Eme17,
Prop. 1.1.32].

Lemma 3.4. Let Π be a locally analytic representation of Zs
p ×B satisfying Hypothesis

3.1. Then the two complexes Π• and ΠN0,• are complexes of L-vector spaces of compact
type with strict continuous transition maps. Moreover for any integer n ⩾ 0, we have
an isomorphism of topological T+- modules

Hn(ΠN0,•) ≃ Hn(Π•)N0 .

Proof. Fix an isomorphism Π|Zs
p×N0 ≃ Cla(Zs

p, L)⊗̂LV whose existence comes from hy-
pothesis 3.1. As any Cm is a finite free Srig-module and as the completed tensor product
−⊗̂L− commutes with finite direct sums ([Koh07, Lem. 1.2.13]), we have an isomorphism
of complexes of topological representations of Zs

p ×N0:

Π• ≃ HomSrig(C•, Cla(Zs
p, L))⊗̂LV.

The terms of the complex HomSrig(C•, Cla(Zs
p, L)) are locally analytic representations

of Zs
p isomorphic to finite direct products of copies of Cla(Zs

p, L) (with Zs
p acting by

translation on the left or the right, which is equivalent as it is a commutative group) and
transition maps which are continuous and Zs

p-equivariant. As Cla(Zs
p, L) is an admissible

locally analytic representation of Zs
p, it follows from [ST03, Prop. 6.4] that the transition

maps of the complex HomSrig(C•, Cla(Zs
p, L)) are strict with closed images. We deduce

from this fact and from Lemma 3.3 that the complex Π• has strict transition maps and
that we have topological isomorphisms Hn(Π•) ≃ Hn(HomSrig(C•, Cla(Zs

p, L)))⊗̂LV for
any n ⩾ 0. The commutation of ⊗̂L with finite direct sum implies that we have a
topological isomorphism of L-vector spaces for any m ⩾ 0:

HomSrig(Cm,ΠN0) ≃ HomSrig(Cm, Cla(Zs
p, L))⊗̂LV

N0 .
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We deduce as before that the complex Π•,N0 has strict transition maps and that we have
isomorphisms

Hn(ΠN0,•) ≃ Hn(Π•)N0

for any n ⩾ 0.

Proposition 3.5. For any integer n ⩾ 0, there is an isomorphism

Hn(JB(Π)•) ≃ JB(Hn(Π•))

of locally analytic L-representations of Zs
p × T .

Proof. It follows from [Eme06a, Prop. 3.2.4.(ii)] that there is a natural continuous T+-
equivariant map of complexes (ΠN0,•)fs → ΠN0,• inducing a continuous T+-equivariant
morphism Hn(ΠN0,•

fs ) → Hn(ΠN0,•). By loc. cit., the universal property of the functor
(−)fs provides a T -equivariant map Hn(ΠN0,•

fs ) → Hn(ΠN0,•)fs. It follows from Lemma
3.4 that it is sufficient to prove that this map is a topological isomorphism.

We now deduce from [Eme06a, Prop. 3.2.27] and [Fu, Thm. 4.5] that given an exact
sequence 0 → U → V → W → 0 of spaces of compact type with continuous action of
T+, then 0→ Ufs → Vfs →Wfs → 0 is exact, the image of Ufs is closed in Vfs and the map
Vfs → Wfs is strict. The open mapping theorem then implies that the sequence is strict
exact. As the complex ΠN0,• has strict transition maps by Lemma 3.4, we conclude that
the map Hn(ΠN0,•

fs )→ Hn(ΠN0,•)fs is a topological isomorphism.

Proposition 3.6. Let Π be a locally analytic L-representation of Zs
p ×B satisfying the

hypothesis 3.1. Let a be a closed strict ideal of Srig such that dimL S
rig/a < +∞. Then

the map
a⊗Srig JB(Π)′ −→ JB(Π)′

is injective.

Proof. By Lemma 3.2, there exists a perfect complex C• of Srig-modules such that, C0 =
Srig, H0(C•) ≃ Srig/a and Hi(C•) = 0 for i > 0. By Hypothesis 3.1, we have Π|Zs

p×N0 ≃
Cla(Zs

p, L)⊗̂LV for some topological L-vector space of compact type V . As C• has strict
transition maps, it follows from Lemma 3.3 that the complex C•⊗Srig Π′ ≃ C•⊗̂LV

′ is a
resolution of (Srig/a)⊗̂LV

′. We then deduce from HomSrig(Ci,Π)′ ≃ Ci ⊗Srig Π′ for any
i ⩾ 0, that H i(HomSrig(C•,Π)) = 0 for i > 0. Therefore Proposition 3.5 implies that
H i(HomSrig(C•, JB(Π))) = 0 for i > 0. We denote by (−)′ the duality between spaces
of compact type and Fréchet spaces. This duality implies that Hi(C• ⊗Srig JB(Π)′) = 0
for i > 0. As a = Coker(C2 → C1), we deduce that

a⊗Srig JB(Π)′ = Coker(C2 ⊗Srig JB(Π)′ → C1 ⊗Srig JB(Π)′)
⊂ C0 ⊗Srig JB(Π)′ = JB(Π)′.
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3.2 Families of locally analytic representations of G

Let Π be an admissible locally analytic L-representation of Zs
p × G. The aim of this

section is to use Π in order to construct a functor

M 7→ HomU(g)(M,Π)

from the category O∞
alg to the category of locally analytic Zs

p × B-representations, and
then, by composing with JB, to locally analytic Zs

p×T -representations. We will usually
assume that Π satisfies the following hypothesis.

Hypothesis 3.7. There exists a uniform open pro-p-subgroup H of G, an integer m ⩾ 0
and a topological Zs

p ×H-equivariant isomorphism

Π|Zs
p×H ≃ Cla(Zs

p ×H,L)m.

Recall from section 2.2 that if M is an object of O∞
alg, there is a unique algebraic

action of B(L) on M which lifts the structure of U(b)-module on M ss. We endow M
with the action of B = B(Qp) obtained by restriction to B.

Let M be an object of O∞
alg with its semi-simplified B-action. We define an action of

B on HomL(M,Π) by
b · f = bf(b−1−)

for f ∈ HomL(M,Π) and b ∈ B. It follows from Lemma 2.4 that this action preserves
the subspace HomU(g)(M,Π). We moreover endow HomU(g)(M,Π) with the left Zs

p-
action inherited from the one on Π. While the definition of the B-action using the
semi-simplified action on M might not seem very natural at a first glance, the following
lemma says that this definition applied to deformed Verma modules allows us to compute
generalized eigenspaces. Given an U(t)-module X we write

X[(t− λ)k] = {x ∈ X | ∀t ∈ t, (t− λ(t))kx = 0}.

With this notation we have the following result:

Lemma 3.8. Let λ ∈ X∗(T )+
I and M = M̃I(λ)⊗AI

(AI/m
k
I ). Then there is an isomor-

phism
HomU(g)(M,Π) ≃ (ΠnI ⊗L LI(λ)′)U(lss

I )[mk
I ]

of B-representations, where (−)′ denote the dual (algebraic) representation. In particu-
lar, when I = ∅,

HomU(g)(M̃(λ)⊗A (A/mk),Π) ≃ (Πn(λ−1))[mk] ≃ (Πn[(t− λ)k])(λ−1)

where the symbol (µ) denotes the twist by the algebraic character µ of T seen as a quotient
of B.
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Proof. We compute using the U(g)-structure

HomU(g)(M,Π) = HomU(g)(U(g)⊗U(pI) (LI(λ)⊗L AI/m
k
I ),Π)

= HomU(lI)(LI(λ)⊗L AI/m
k
I ,ΠnI )

= HomU(lI)(AI/m
k
I ,ΠnI ⊗ LI(λ)′)

= (ΠnI ⊗ LI(λ)′)U(lss
I )[mk

I ].

Moreover each equality is compatible with the semi-simplified B-actions.

Lemma 3.9. Let Π be a locally analytic representation of Zs
p×G and let M be an object

of O∞
alg. Then the Zs

p ×B-representation HomU(g)(M,Π) is locally analytic.

Proof. Let U(g) ⊗U(b) V1 → U(g) ⊗U(b) V0 → M → 0 be a resolution as in Lemma 2.5.
Then HomU(g)(M,Π) is the kernel of the map

HomU(g)(U(g)⊗U(b) V0,Π) ≃ (V ′
0 ⊗L Π)b −→ HomU(g)(U(g)⊗U(b) V1,Π) ≃ (V ′

1 ⊗L Π)b

which is continuous and B-equivariant. Therefore HomU(g)(M,Π) is isomorphic to a
closed B-stable subspace of V ′

0⊗L Π. As V0 is an algebraic finite dimensional representa-
tion of B, the representation V ′

0 ⊗L Π is locally analytic and hence so is HomU(g)(M,Π).

As HomU(g)(M,Π) is a locally analytic representation of B this action may be derived
and induces the structure of an U(b)-module on HomU(g)(M,Π). Via restriction to
U(t) ⊂ U(b) we may view HomU(g)(M,Π) as an U(t)-module.

Lemma 3.10. Let Π be a locally analytic representation of Zs
p×G and let M be an object

of O∞
alg. Then the U(t) action on HomU(g)(M,Π) factors through a finite dimensional

quotient.

Proof. By Proposition 2.14 there exist dominant weights λ1, . . . , λr, finite dimensional
g-modules V1, . . . , Vr and a surjective map

M̃(λ1)⊗L V1 ⊕ · · · ⊕ M̃(λr)⊗L Vr ↠M.

Moreover by the same Lemma, there exists k ⩾ 1 such that this map factors through
mk (recall that A is the localization of U(t) at its augmentation ideal m). Therefore we
have an inclusion of U(t)-modules

HomU(g)(M,Π) ↪→
r⊕

i=1
HomU(g)(M̃(λi)⊗A A/m

k ⊗L Vi,Π).

By Lemma 3.8, HomU(g)(M̃(λi)/mk⊗LVi,Π) = (Π⊗Vi(λi)′)n[mk]. Let µ1, . . . , µs be the
finitely many characters which appears in the restriction to U(t) of V1(λ1), . . . , Vr(λr).
Then the action of U(t) on HomU(g)(M,Π) factors through the quotient of U(t) by the
intersection of the k-th powers of the kernels of the µi.
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Lemma 3.11. Assume that Π is an admissible locally analytic L-representation of Zs
p×G

satisfying Hypothesis 3.7 and M ∈ O∞
alg. Then HomU(g)(M,Π) satisfies Hypothesis 3.1

Proof. We can assume that N0 ⊂ H. As we assume Hypothesis 3.7, there is an isomor-
phism Π ∼= Cla(Zs

p ×H,L)m ≃ Cla(Zs
p, L)⊗̂LC(H,L)m of Zs

p ×H-representation.
Let [U(g) ⊗U(b) V1 → U(g) ⊗U(b) V0] be a resolution of M as in Lemma 2.5. Then

HomU(g)(M, Cla(H,L)m) is the kernel of the map

(V ′
0 ⊗L Cla(H,L)m)b → (V ′

1 ⊗L Cla(H,L)m)b. (4)

We claim that this is a strict map, then the lemma follows, as exactness of the func-
tor Cla(Zs

p, L)⊗̂L(−) implies that we have an isomorphism of locally analytic Zs
p × N0-

representation

HomU(g)(M,Π) ≃ Cla(Zs
p, L)⊗̂L HomU(g)(M, Cla(H,L))m.

In order to prove that (4) is strict, we use an additional H-action. We let H act on
Cla(H,L) by right translation and extend this to V ′

i ⊗L Cla(H,L) by acting trivially on
V ′

i . This action commutes with the (diagonal) action of U(b), as the U(b) action on
Cla(H,L) is induced by left translations. It follows that (V ′

i ⊗L Cla(H,L)m)b is a closed
H-stable subspace of an admissible locally analytic H-representation, and hence an
admissible locally analytic H-representation itself. Hence (4) is an H-equivariant map
between admissible locally analytic H-representations and hence a strict map which
proves the claim.

Proposition 3.12. Let Π be an admissible locally analytic representation of Zs
p × G

satisfying the hypothesis 3.7 and let M be an object of O∞
alg. Then the locally analytic

representation JB(HomU(g)(M,Π)) of Zs
p × T is essentially admissible.

Proof. Using twice Proposition 2.14 there exists a resolution

M1 −→M0 −→M −→ 0

of M in the category O∞
alg where each Mi, i ∈ {0, 1}, is of the form

(M̃(λ1)⊗L V1 ⊕ · · · ⊕ M̃(λr)⊗L Vr)⊗ (A/mk)

for some dominant weights λ1, . . . , λr, finite dimensional g-modules V1, . . . , Vr and k ⩾ 1.
Then we have an exact sequence

0 −→ HomU(g)(M,Π) −→ HomU(g)(M0,Π) −→ HomU(g)(M1,Π)

of locally analytic representations of Zs
p ×B (see Lemma 3.9). As the functor JB is left

exact ([Eme06a, Lem. 3.4.7.(iii)]), this induces a short exact sequence

0 −→ JB(HomU(g)(M,Π)) −→ JB(HomU(g)(M0,Π)) −→ JB(HomU(g)(M1,Π))
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of locally analytic representations of Zs
p×T . As the kernel of a morphism between essen-

tially admissible representations is essentially admissible and the category of essentially
admissible representations is stable under finite direct product([Eme06a, Thm. 3.1.3]),
it is sufficient to prove that JB(HomU(g)(M,Π)) is essentially admissible when M is of
the form V ⊗L (M̃(λ))⊗ (A/mk) for some finite dimensional algebraic representation V
of G, some dominant weight λ and some integer k ⩾ 1. From now let’s assume that M
is of this form. By Lemma 3.8, we have an isomorphism of B representations

HomU(g)(M,Π) ≃ ((V ′ ⊗L Π)n[(t− λ)k])(λ−1).

The representation V ′⊗LΠ satifies Hypothesis 3.7 so that, by [BHS17b, Prop. 3.4] (whose
proof follows [Eme06a, Thm. 0.5]), the locally analytic representation JB(V ′ ⊗L Π) of
Zs

p×T is essentially admissible. As (V ′⊗L Π)n[(t−λ)k] is closed in V ′⊗L Π, we conclude
from [Eme06a, Lem. 3.4.7.(iii)] and [Eme17, Prop. 6.4.11] that JB((V ′ ⊗L Π)n[(t− λ)k])
is essentially admissible and so is

JB(HomU(g)(M,Π)) ≃ JB((V ′⊗LΠ)n[(t−λ)k](λ)−1) ≃ JB((V ′⊗LΠ)n[(t−λ)k])(λ−1).

Lemma 3.13. Let Π be a locally analytic representation of Zs
p×G satisfying Hypothesis

3.7.

(i) The functor M 7→ HomU(g)(M,Π) from O∞
alg to the category of locally analytic

representations of Zs
p ×B is exact.

(ii) The functor M 7→ HomU(g)(M,Π)N0from O∞
alg to the category of locally convex

L-vector spaces sends short exact sequences on short exact sequences with strict maps.

Proof. The assertion (i) is [BHS19, Lem. 5.2.5]. We recall the proof as we will need
notation for the proof of (ii). Let M be an object of the category O∞

alg. Let H ⊂ G be
a uniform compact open pro-p-subgroup. Recall (see for example the proof of [ST03,
Prop. 6.5]) that Π|Zs

p×H = lim−→
r<1

Πr with

Πr = Homcont
L (Dr(Zs

p ×H)⊗D(Zs
p×G,L) Π′, L).

As M is a finitely presented U(g)-module, we have

HomU(g)(M,Π) ≃ lim−→
r<1

HomU(g)(M,Πr) = lim−→
r

HomUr(g)(Mr,Πr)

with Mr := Ur(g) ⊗U(g) M . Note that there exists an integer m ⩾ 0 such that Πr ≃
Homcont

L (Dr(Zs
p ×H), L)m. Therefore we have

HomDr(H)(Dr(H)⊗U(g) M,Πr)
≃ Homcont

L (Dr(H)⊗Ur(g) Mr,Homcont
L (Dr(Zs

p, L), L))m,
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for r < 1. As the functor M 7→ Mr is exact and Dr(H) is a finite free Ur(g)-module,
this proves (i).

Now we prove (ii). As N0 is a compact group and L is of characteristic 0, it is
equivalent to prove (ii) after replacing N0 by an open subgroup. Therefore we can
assume that N0 = H ∩ N and that H = (N ∩ H)(T ∩ H)(N ∩ H) where N is the
group of Qp-points of the unipotent subgroup of G opposite to N . Let r < 1. The
space HomU(g)(M,Πr)N0 is the space of maps from M to Πr that are equivariant for the
actions of N0 and U(g). Therefore we have

HomU(g)(M,Πr)N0 = HomUr(g)⊗Ur(n)Dr(N0)(Mr,Πr)
≃ Homcont

L (Dr(H)⊗(Ur(g)⊗Ur(n)Dr(N0)) Mr,Homcont
L (Dr(Zs

p, L), L))m.

As Dr(H) is a finite free right Ur(g)⊗Ur(n) Dr(N0)-module (see [Koh07, Thm 1.4]), this
proves the claim.

Theorem 3.14. The functor M 7→ JB(HomU(g)(M,Π)) from the category O∞
alg to the

category of essentially admissible representations of T is exact.

Proof. This is essentially a consequence of Lemma 3.13 (ii) and we conclude as at the
end of the proof Proposition 3.5.

3.3 The case of Banach representations with coefficients

Let R be a complete local noetherian OL-algebra. As above we will write Rrig for the
ring of rigid analytic functions on (Spf R)rig. Let Π be an R-admissible R-Banach repre-
sentation of the group G (see [BHS17b, Def. 3.1]). We assume that our representations
satisfies the following property.

Hypothesis 3.15. there exists an integer s ⩾ 0, a local morphism of OL-algebras
S := OL[[Zs

p]] → R such that, for some (resp. any) open pro-p-subgroup G0 ⊂ G,
the S[[G0]][1/p]-module Π′ := Homcont

L (Π, L) is finite free (as a consequence Π is also
S-admissible).

Using the hypothesis, one shows that theR-analytic vectors ΠR−an and the S-analytic
vectors ΠS−an of Π coincide and they also coincides with the subspace of Zs

p×G-locally
analytic vectors in Π (see [BHS17b, Prop. 3.8]). We will simply denote this subspace by
Πla in what follows. This is a locally analytic representation of Zs

p × G with an action
of Rrig commuting with G. Moreover if we forget the Rrig-action, the representation Πla

satisfies Hypothesis 3.7.
In the following we will write T̂ for the rigid analytic space of continuous characters

of T and T̂0 for the space of continuous characters of the maximal compact subgroup
T0 ⊂ T . We recall that the ring of rigid analytic functions on T̂0 is identified with the
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algebra D(T0, L) of L-valued distributions on T0. Restriction to T0 defines a canonical
projection T̂ → T̂0. Moreover, the derivative of a character at 1 defines a weight map

wt : T̂0 → t∗, (5)

where by abuse of notation we write t∗ for the rigid analytic space associated to the
L-vector space t∗. The map wt is étale and locally finite. Moreover, étaleness implies
that for any character δ0 : T0 → L× we can identify the tangent space of T̂0 at δ0 with
the L-vector space t∗.

Lemma 3.16. For any object M in O∞
alg, the dual JB(HomU(g)(M,Πla))′ of the Emerton-

Jacquet module JB(HomU(g)(M,Πla)) is coadmissible as an Rrig⊗̂LO(T̂ )-module.

Proof. This is essentially the same proof than for Proposition 3.12 using the fact that
JB(Πla) is essentially admissible as a representation of Zs′

p × T for any s′ and surjection
OL[[Zs′

p ]] ↠ R by [BHS17b, Prop. 3.4].

Let M be an object of O∞
alg. It follows from Lemma 3.16 that there exists a unique

up to unique isomorphism coherent sheaf MΠ(M) on Spf(R)rig × T̂ such that

Γ(Spf(R)rig × T̂ ,MΠ(M)) = JB(HomU(g)(M,Πla))′.

In particular we obtain a functor from O∞
alg to the category of coherent sheaves on

Spf(R)rig × T̂ .

Theorem 3.17. The coherent sheafMΠ(M) on Spf(R)rig×T̂ is, locally on Spf(R)rig×T̂ ,
finite free over Spf(S)rig. In particular, if nonzero, it is Cohen–Macaulay of dimension
s.

Proof. Let T0 be the maximal compact subgroup of T and let T̂0 be the rigid analytic
space of characters of T0 over L. Set N := JB(HomU(g)(M,Πla))′. It follows from the
proof of [BHS17b, Prop. 3.11] that there exists a family I of pairs (U, V ) where U is a
rational open subset of Spf(R)rig × T̂ and V is a rational open subset of Spf(S)rig × T̂0
such that V is the image of U and such that Supp(MΠ(M)) ⊂ ⋃(U,V )∈I U . Moreover,
we may assume that Γ(U,MΠ(M)) is a finite projective O(V )-module that is a direct
factor of O(V )⊗̂Srig⊗̂LD(T0,L)N .

After shrinking each U and V if necessary, we may even assume (by the construction
of the family I) that for each (U, V ) ∈ I, the rational open V is of the form V1 × V2
with V1 rational open in Spf(S)rig and V2 rational open in T̂0. It is sufficient to prove
that, for any pair (U, V1 × V2) ∈ I, the O(V1)-module Γ(U,M(M)) is finitely generated
and flat.

The map V2 → t∗ has finite fibers (as the weight map is locally finite), and hence
there are only finitely many points of V2 lying over a given character of U(t). It thus
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follows from Lemma 3.10 that the action of L[T0] on Γ(U,M(M)) factors through a finite
dimensional quotient. It follows that Γ(U,M(M)) is finitely generated over O(V1).

Let m ⊂ O(V1) be a maximal ideal. As O(V1) is an affinoid L-algebra, m is closed in
O(V1) and O(V1)/m is a finite extension of L. As the image of Srig in O(V1) is dense,
we have Srig/(Srig ∩m) ≃ O(V1)/m. The ideal a := Srig ∩m of Srig is finitely generated
by Lemma 3.2, so that the sheaf a⊗Srig MΠ(M) is coherent and

Γ(Spf(R)rig × T̂ , a⊗Srig MΠ(M)) ≃ a⊗Srig Γ(Spf(R)rig × T̂ ,MΠ(M)).

As the functor M 7→ Γ(U,MΠ) is exact on the category of coherent sheaves, we have
an isomorphism

Γ(U, a⊗Srig MΠ(M)) ≃ a⊗Srig Γ(U,MΠ(M)) ≃ m⊗O(V1) Γ(U,MΠ(M)).

Therefore we deduce from Proposition 3.6 that the map

m⊗O(V1) ⊗Γ(U,MΠ(M)) −→ Γ(U,M(M))

is injective. This implies that Γ(U,MΠ(M)) is a flat O(V1)-module.

Corollary 3.18. Assume that the representation Π satisfies Hypothesis 3.15. Then the
functor M 7→ MΠ(M) is an exact functor from the category O∞

alg to the category of
Cohen–Macaulay sheaves on Spf(R)rig× T̂ . Moreover if MΠ(M) is nonzero, its support
is s-dimensional, where s is as in Hypothesis 3.15.

3.4 Comparison with the parabolic Jacquet functor

Let Π be an R-admissible Banach representation of G satisfying hypothesis 3.15. We
end this section by computing the evaluation of MΠ on generalized (deformed) Verma
modules in terms of Emerton’s parabolic Jacquet-module.

Let I ⊂ ∆ be a subset of simple roots. Let λ ∈ X∗(T )+
I be an algebraic charac-

ter dominant with respect to pI . Recall that, by [Eme06a, §3.4], the L-representation
JPI

(Πla) of LI is locally analytic. Following [Wu, §5.2], we define

JPI
(Πla)λ := HomU(lss

I )(LI(λ), JPI
(Πla))⊗L LI(λ)

JI,λ(Πla) := JB∩LI
(JPI

(Πla)λ).

Similarly to Lemma 3.16 we have the following finiteness result:

Proposition 3.19. The Rrig⊗̂LO(T̂ )-module JI,λ(Πla)′ is coadmissible.

Proof. This is a consequence of [Wu, Lemm. 5.1 & 5.2].
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By the above proposition there is a coherent sheaf MI,λ
Π on Spf(R)rig × T̂ such that

Γ(Spf(R)rig × T̂ ,MI,λ
Π ) = JI,λ(Πla)′.

For k ⩾ 1, let T̂ sm
k be the k-th infinitesimal neighborhood of the closed subspace T̂ sm of

smooth characters in T̂ and let ik be the closed immersion of T̂ sm
k in T̂ . Moreover, for

λ ∈ X∗(T ) ⊂ T̂ , we write tλ : T̂ −→ T̂ for the map defined by tλ(δ) = δλ.

Proposition 3.20. Let λ ∈ X∗(T )+
I be an algebraic character of T dominant with

respect to P I and let M = M̃I(λ)⊗AI
AI/m

k
I ∈ O∞

alg. Then there is an isomorphism of
coherent sheaves on Spf(R)rig × T̂ :

MΠ(M) ≃ ik,∗i
∗
kt

∗
λM

I,λ
Π .

Proof. Using Lemma 3.8 and the left exactness of JPI
, there are Rrig-equivariant iso-

morphisms of locally analytic representations of LI :

JPI
((ΠnI ⊗L LI(λ)′)U(lss

I )[mk
I ]) ≃ (JPI

(ΠnI )⊗L LI(λ)′)U(lss
I )[mk

I ]
≃ HomU(lI)(LI(λ)⊗L AI/m

k
I , JPI

(Πla)).

Note that as nI acts trivially on (ΠnI ⊗L LI(λ)′)U(lss
I )[mk

I ]), this is a PI -representation.
Therefore

HomU(t)(λ⊗L AI/m
k
I , JB∩LI

(JPI
(Πla)λ))

≃ JB∩LI
(HomU(t)(AI/m

k
I ,HomU(lss

I )(LI(λ), JPI
(Πla))))

= JB∩LI
(HomU(lI)(LI(λ)⊗L AI/m

k
I , JPI

(Πla)))
≃ JB∩LI

(JPI
((ΠnI ⊗L LI(λ)′)U(lss

I )[mk
I ]))

≃ JB((ΠnI ⊗L LI(λ)′)U(lss
I )[mk

I ])
≃ JB(HomU(g)(M̃I(λ)⊗AI

AI/m
k
I ,Πla))

where the first isomorphism comes from [Wu, Lemm. 5.3]. The claim now follows form
the fact that the source of this chain of isomorphisms is the dual (of the global sections)
of ik,∗i

∗
kt

∗
λM

I,λ
Π and the target is the dual of MΠ(M).

4 Quasi-trianguline local deformation rings

Let F be a finite extension of Q. We keep the notation of section 3 but we specialize
ourselves to the case G = Res(F ⊗QQp)/Qp

(GLn,F ⊗QQp) ≃ ∏v|p ResFv/Qp
GLn,Fv . We fix B

the upper triangular Borel subgroup and T the diagonal torus. It is therefore sufficient
to choose L a finite extension of Qp splitting all the Fv. We point out that, though the
field L of coefficients is the same as in the preceding section, the group G in this section
should be considered as the Langlands dual group of the group in section 3.
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Let ΣF be the set of embeddings of F in L. This set can be decomposed as ΣF =∐
v|p ΣFv , where ΣFv is the set of Qp-linear embeddings of Fv into L and where the index

set is the set of places v of F that divide p. We have a decomposition

g ≃ (
⊕

τ∈ΣF

Lie(G)⊗F ⊗QQp,τ L) ≃
⊕

τ∈ΣF

Lie(GLn,L).

Let ∆ be the set of simple roots of GL with respect to BL. Then

∆ =
∐

τ∈ΣF

∆τ , ∆τ = {α1,τ , . . . , αn−1,τ}

where α1,τ , . . . , αn−1,τ are the simple roots of the copy of Lie(GLn,L) corresponding to
τ . For I ⊂ ∆ we denote P I the standard parabolic subgroup of GL corresponding to I.

4.1 Local models

Let g̃ := GL×BL b be the Grothendieck–Springer resolution of g (which is considered as
a scheme over L not just as a vector space in this section). We have a closed embedding
g̃ ↪→ GL/B × g given by (gB,X) 7→ (bB,Ad(g)X) and set

X := g̃×g g̃ ⊂ GL/BL × g×GL/BL.

More generally if I ⊂ ∆, we set

g̃0
pI

:= GL ×P I (zI ⊕ nI)

where we recall that P I is the parabolic subgroup of G associated to ∆ and pI is its Lie
algebra. Moreover, we write zI for the center of pI and nI for its unipotent radical. Again
we consider all these L-vector spaces as L-schemes. We have also a closed embedding
g̃0
pI
↪→ GL/P I × g given by (gP I , X) 7→ (gP I ,Ad(g)X) and we set

XpI
:= g̃0

pI
×g g̃ ↪→ GL/P I × g×GL/BL.

In particular we have Xb = X. The scheme XpI decomposes into irreducible components
as follows:

XpI =
⋃

w∈WI\W

XpI ,w ⊂ GL/P I × g×GL/B.

Here XpI ,w is the closure of on open subset VpI ,w ⊂ XpI , which is by definition the
preimage of the G-orbit of G ·(1, w̃) ⊂ G/P I×G/B, where w̃ ∈W is a lift of w ∈WI\W
(see [BD, Cor. 5.2.2] for details). In this paper we need to control the singularities of
XpI . Even though, for our purpose, the result of [BHS19, Rk. 4.1.6] would be sufficient,
we mention the following more general result.

Proposition 4.1. Let w ∈ W . Then Xw is smooth if, and only if, w is a product of
distinct simple reflections.
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Proof. We note that the natural action

t · (gB, hB,N) = (gB, hB, tN)

of Gm on X by scaling on the g-factor extends to an action of the monoid A1. This
action obviously preserves each Xw. As the singular locus is closed and stable under the
action of Gm, the singular locus, if non-empty, contains a point of the form (gB, hB, 0).
Namely let x ∈ Xw(L′) be a point of the singular locus with coefficient in a finite
extension L′ of L. The Gm-action on Xw induces a map Gm,L′ → Xw,L′ . The composite
Gm,L′ → Xw,L′ → (GL′/BL′)2 extends to a map A1

L′ → (GL′/BL′)2 by the valuative
criterion of properness and the composite Gm,L′ → Xw,L′ → gL′ extends to a map
A1

L′ → gL′ by the L′-linear structure on gL′ . As Xw is closed in (GL/BL)2 × g, the map
Gm,L′ → Xw,L′ extends uniquely to A1

L′ and the image of 0 gives us an L′-point of the
singular locus of Xw of the desired form. We will thus prove the previous proposition
using [BHS19] Proposition 2.5.3 (ii).

We first assume that w is a product of distinct simple reflections. In this case it is
enough to prove that

a) Uw is smooth in GL/B ×GL/B;

b) tww′−1 has codimension lg(w) − lg(w′) in t for all w′ ⩽ w for Bruhat ordering
(with lg the Bruhat length).

By Fan’s Theorem [BL00, Theorem 7.2.14], if w is a product of distinct simples reflec-
tions, then Uw is smooth and a) is true. Thus we only need to prove b). For w ∈ W ,
let us introduce

ℓ(w) := min{k ⩾ 0 | w = r1 . . . rk, rk ∈W a reflection}

(we recall that reflection is an element of the form sα where α ∈ Φ is a root, but not
necessarily a simple root). By [Car72, Lemma 2] and [BHS17a, Lemma 2.7] we have
ℓ(w) = dimL t− dimL tw = dw (in the notations of [BHS17a]).
Claim 4.2. If w is a product of distinct simple reflections, we have

ℓ(ww′−1) = ℓ(w)− ℓ(w′) = lg(w)− lg(w′)

for all w′ ⩽ w.

If Claim 4.2 is true, we have ℓ(ww′−1) = dim t − dim tww′−1 = lg(w) − lg(w′) thus
Proposition 2.5.3 of [BHS19] applies and Xw is smooth. We now prove the claim. The
second equality of the claim is a consequence of [Car72, Lemma 3] as w and w′ are
products of pairwise distinct simple reflections. Indeed, a product of pairwise distinct
simple reflections s1 . . . sk is always a composition of reflections si along vectors vi such
that v1, . . . , vk are linearly independent. Thus [Car72, Lemma 3] implies ℓ(w) = lg(w)
and ℓ(w′) = lg(w′).
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We write w′ = si1 . . . sik
and w = t1 . . . tb as reduced expressions of pairwise distinct

simple roots such that there exists a1 ⩽ . . . ⩽ ak satisfying taj = sij . For at ⩽ j < at+1
let rj denote the reflection rj := si1 . . . sittjsit . . . si1 . We then have

ww′−1 =t1 . . . tbsik
. . . si1

=t1 . . . ta1−1[si1ta1+1si1︸ ︷︷ ︸
ra1+1

] . . . [si1ta2−1si1︸ ︷︷ ︸
ra2−1

][si1si2ta2+1si2si1︸ ︷︷ ︸
ra2+1

]

. . . [si1 . . . sik
tak+1sik

. . . si1 ] . . . [si1 . . . sik
tbsik

. . . si1︸ ︷︷ ︸
rb

]

=t1 . . . ta1−1ra1+1 . . . ra2−1ra2+1 . . . . . . rb.

In particular, ℓ(ww′−1) ⩽ lg(w)− lg(w′) = ℓ(w)− ℓ(w′). Now Claim 4.2 follows from
Claim 4.3. Let w ∈ W and w′ be a product of distinct simple reflections. Then
ℓ(ww′−1) ⩾ ℓ(w)− ℓ(w′) = ℓ(w)− lg(w′).

We now prove Claim 4.3. By induction on the number of simple reflections appearing
in w′, it is enough to prove ℓ(ws) ⩾ ℓ(w) − 1 when w′ = s is a simple reflection. Note
that for any w we have dimL tws∩ ts ⩾ dimL tws−1 as ts is a hyperplane in t. Moreover,
tws∩ ts = tw ∩ ts ⊂ tw. Thus dim tw ⩾ dim tws−1. Using ℓ(w) = dim t−dim tw we hence
find

ℓ(w) ⩽ ℓ(ws) + 1.
Thus ℓ(ws) ⩾ ℓ(w)− 1, which proves Claim 4.3.

We now prove the converse, i.e. that Xw is singular, if w is not a product of distinct
simple reflections. We hence assume that w is not a product of distinct simple reflections.

It is enough (but actually equivalent) to prove that Xw is singular at (B,B, 0). We
will use Mowlavi’s results [Mow23]. The pair (1, w) is a good pair ([Mow23]), and thus
[Mow23, Theorem 6] applies. Hence [Mow23, Proposition 3.2.2] gives an exact formula
for the tangent space at x = (B,B, 0) ∈ (Xw ∩ V1)(L). This can be rewritten as

dimL TxXw = dimL Tπ(x)Uw − dw + dimL t + lg(w0)
> dimB + lg(w)− lg(w) + dimL t + lg(w0),

as w is not a product of distinct simples so lg(w) > dw ([BHS17a] Lemma 2.7), and
where we use the notation 1 dw = dimL t− dimL tw. Thus

dimL TxXw > 2 dimB + dimL t = dimGL = dimXw,

i.e. Xw is not smooth at x.

We write XI for the inverse image of XpI under the canonical projection GL/BL ×
g×GL/BL → GL/P I × g×GL/BL. This scheme can also be defined as

XI := (GL ×BL (zI ⊕ nI))×g g̃,

1see [BHS19] just before Proposition 4.1.5
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in particular X∅ = X. The map XI → XpI is a P I/BL-torsor and thus is projective and
smooth. We deduce that we have a decomposition in irreducible components

XI =
⋃

w∈WI\W

XI,w,

where each XI,w → XpI ,w is projective and smooth. Moreover, we have a closed em-
bedding XI ↪→ X induced by the closed embedding zI ⊕ nI ↪→ b, and this induces
a closed embedding XI,w ↪→ Xwmax , as each fiber of XI −→ XpI over a point in
VpI ,w contains a (dense) open subset consisting of points that lie in the Schubert cell
GL(1, wmax) ⊂ G/B ×G/B.

Lemma 4.4. The schemes XI and XpI are generically reduced.

Proof. As XI is smooth over XpI , it suffices to prove the claim for XpI . For w ∈ W ,
let Uw = GL(1, w) ⊂ GL/P I × GL/B and let Vw ⊂ XpI be the inverse image of Uw. It
follows from [BD, Prop. 5.2.1] that the Vw are smooth L-schemes, and they all have the
same dimension. As they also cover XpI , their generic points are the generic points of
the irreducible components of XpI . This shows that XpI is generically reduced.

Recall that we have two maps κ1, κ2 : X → t (see [BHS19, §2.3]) defined by
κi(g1B,N, g2B) = g−1

i Ngi(mod n). By construction, the image of κ1|XI
lands in zI

and the map κ1|XI
factors through XpI . This provides a commutative diagram

XI XpI

zI ×t/W t

ΘI
ΘpI

where ΘI is the restriction of the map (κ1, κ2) to XI .
The following result is the analogue of [BHS19, Lem. 2.5.1] in our context, with

analogous proof.

Lemma 4.5. The irreducible components of zI ×t/W t are the (TI,w)w∈WI\W where

TI,w = {(z,Ad(w−1)(z)) | z ∈ zI}.

Moreover, the irreducible component XI,w (resp. XpI ,w) is the unique component of XI

(resp. XpI ) whose image under ΘI (resp. ΘpI ) dominates TI,w.

Remark 4.6. For future use, we make the following notational convention: When F = Q,
we have GL = GLn,L, we will use the notations Xn, Xn,I , Xn,I,w etc. for the schemes X,
XI , XI,w etc.
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4.2 Partially de Rham deformation rings

For each place v|p of F , we fix rv : GalFv → GLn(L) a framed φ-generic Hodge–Tate
regular crystalline representation, that we assume that the (φ,Γ)-module Drig(rv) asso-
ciated to rv is crystalline φ-generic with regular Hodge–Tate type in the sense of [HMS,
§3.3&§3.4]. We also fix a refinement Rv = (φ1, . . . , φn) ∈ Ln of rv (see loc. cit.). We will
use the notation r = (rv)v|p and R = (Rv)v|p and say that r is φ-generic Hodge–Tate
regular and that R is a refinement of r.

Let CL be the category of local artinian L-algebras. Fix v|p a place of F . Let X□
rv

be the groupoid over CL of deformations of rv. It is represented by a formal scheme
over L that we also denote by X□

rv
by abuse of notation. We recall from [BHS19, 3.6]

that, given the refinement Rv, the groupoid of trianguline deformations of M•,v is rep-
resentable by a closed formal subscheme X qtri

rv ,Rv
⊂ X□

rv
. Here M•,v the (φ,Γ)-module

over RK,L[1/t] obtained from Drig(rv) by inverting t which is equipped with the unique
triangulation corresponding to the refinement Rv. We set Wv = WdR(Drig(rv)[1/t]) and
W•,v = WdR(M•,v) and let XWv ,W•,v denote the groupoid of deformations of (Wv,W•,v)
as defined in [BHS19, §3.3].

Fix a finite subset Iv ⊂ ∆v. For an object A of CL, we define XP Iv
Wv ,W•,v

(A) to be the
subset of all (WA,WA,•) ∈ XWv ,W•v

(A) such that for any τ ∈ ΣFv and αi,τ ∈ ∆τ ∖ Iv,
the B+

dR-representation WA,i ⊗K,τ L/WA,j+1 ⊗K,τ L is de Rham, where j is the largest
integer < i such that ατ,j /∈ I (and j = 0 if i is the smallest integer such that αi,τ /∈ I).
It is obvious from the definition that XP I

Wv ,W•,v
is a subgroupoid of XWv ,W•,v .

For an object A of CL and rA ∈ Xqtri
rv ,Rv

(A), we denote by MA,• the unique triangu-
lation of Drig(rA) lifting M•,v. We say that rA is P I-de Rham if

(WdR(rA),WdR(MA,•)) ∈ XP Iv
Wv ,W•,v

(A)

(see [Wu, Def. 3.10 ]). It now follows from [Wu, Lemm. 3.11] that this functor is repre-
sentable by a closed formal subscheme of X qtri

rv ,Rv
that we denote X Iv−qtri

rv ,Rv
. More precisely,

we have an isomorphism of groupoids

X Iv−qtri
rv ,Rv

≃ X qtri
rv ,Rv

×XWv,W•,v
X

PIv
Wv ,W•,v

.

Fix an L⊗Qp Fv-basis αv of WGalK
v and let X□

Wv
be the groupoid of deformations of

the pair (Wv, αv). We set

X□
Wv ,W•,v

= X□
Wv
×XWv

XWv ,W•,v

X Iv−qtri,□
rv ,Rv

= X Iv−qtri
rv ,Rv

×XWv
X□

Wv
.

As the map X qtri
rv ,Rv

→ XW +
v
×XWv

XWv ,W•,v is formally smooth by [BHS19, Cor. 3.5.6],
we deduce that the map X Iv−qtri,□

rv ,Rv
→ XW +

v
×XWv

X
PIv ,□
Wv ,W•,v

is formally smooth as well.
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If I = ∐
v|p Iv ⊂ ∆ and if α = (αv)v|p is fixed, we set X I−qtri

r,R := ∏
v|pX

Iv−qtri
rv ,Rv

and
X I−qtri,□

r,R := ∏
v|pX

Iv−qtri,□
rv ,Rv

.
We consider the point

xpdR := (gBL, 0, hBL) ∈ XI(L) ⊂ (GL/BL × g×GL/BL)(L), (6)

where g ∈ G(L) (resp. h) is the matrix sending the standard flag (corresponding to
our fixed basis α) of ∏v|pW

GalK
v to the complete flag ∏v|pWdR(M•,v)GalK (resp. to

the Hodge flag). We deduce the following result (see [BD, §6.3] in a slightly different
context):

Theorem 4.7. There exists a diagram of formal L-schemes with formally smooth maps

X I−qtri
r,R X I−qtri,□

r,R X̂I,xpdR
g f

Proof. Let I = ∐
v∈Sp

Iv, with Iv ⊂ ∆v for v ∈ Sp. Note that we have a decomposition
XI ≃

∏
v∈Sp

XIv where XIv is the L-scheme defined in the same way as XI but for the
group ResFv/Qp

GLn,Fv . We also write xpdR = (xpdR,v)v∈Sp where xpdR,v is the image of
xpdR in XIv . We just have to check that the groupoid

XW +
v
×XWv

X
P Iv
Wv ,W•,v

×XWv
X□

Wv

is represented by the completion of XIv at xpdR,v. This can be checked easily as in the
proof of [Wu, Lemm. 3.11] using [BHS19, Cor. 3.1.9 &Thm. 3.2.5].

We finally note that the map κ1 from above induces a map of formal schemes κ1 :
X̂I,xpdR → ẑI , where ẑI is the completion of zI at 0, and thus a map

X I−qtri,□
r,R → ẑI .

This maps factors into a map of formal schemes κ1 : X I−qtri
r,R −→ ẑI .

For w ∈ W such that xpdR ∈ XI,w(L), we denote by X I−qtri,w
r,R the schematic image

of
X I−qtri,□

r,R ×
X̂I,xpdR

X̂I,w,xpdR → X
I−qtri
r,R

and by X qtri
r,R (resp. X I−qtri,w

r,R ) the schematic inverse image of {0} under κ1 in X I−qtri
r,R

(resp. X I−qtri,w
r,R ).

The schemes X I−qtri
r,R and X I−qtri,w

r,R are formal spectra of complete local noetherian
rings that we denote by RI−qtri

r,R and RI−qtri,w
r,R . It follows from the constructions that

moreover RI−qtri,w
r,R is an integral local ring.
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5 Global construction

Let F be a totally real number field and let E/F be a totally imaginary CM extension
of number fields, in particular [E : F ] = 2. We assume that all places of F dividing p
are unramified and split in E/F and denote by Sp the set of places above p in F . We
fix a set Σ of places of E dividing p such that, for each place v ∈ Sp, there is exactly one
place of Σ above v. Let U be a unitary group in n variables for E/F that we regard, via
Weil restriction, as an algebraic group over Q. We assume that U(R) is compact and
and that UQp is quasi-split. This implies in particular that there exists an isomorphism
UQp ≃

∏
v∈Sp

ResFv/Qp
GLn,Fv that we fix from now on. From now we note G = UQp

identified with ∏v∈Sp
ResFv/Qp

GLn,Fv via this fixed isomorphism and we use notations
of section 3, i.e. L is the choice of a field of coefficients that is assumed to be big enough
so that all embeddings of E (equivalently of F ) in Qp factor through L. Moreover,
B ⊂ GL is the Borel subgroup of upper triangular matrices, T ⊂ B is the maximal torus
of diagonal matrices, N is the unipotent radical of B etc.

5.1 Classical and p-adic automorphic forms

We write T = T (Qp) ≃
(∏

v∈Sp
F×

v

)n
and let T0 ≃

(∏
v∈Sp

O×
Fv

)n
⊂ T denote its

maximal compact subgroup. We denote by T̂ (resp. T̂0) the rigid analytic spaces over L
parametrizing the continuous characters of T (resp. of T0) and recall from 5 that there
is a weight map

wt : T̂0 → t∗

with values in the dual Lie algebra t∗ of T (considered as a rigid space over L). We will
often, by abuse of notation, also write wt for the composition of wt with the canonical
projection T̂ → T̂0. Recall that we had identified X∗(T ) with a Z-lattice in t∗. Often we
will identify X∗(T ) with Zn[F :Q].

Definition 5.1. Let δ ∈ T̂ (resp. ∈ T̂0) be a character.
(i) The weight of δ is the image wt(δ) under the weight map.
(ii) The character δ is called of algebraic weight if wt(δ) ∈ X∗(T ) ⊂ t∗.
(iii) The character δ is called algebraic if it is of the form

δk : (z1 ⊗ 1, . . . , zn ⊗ 1) 7−→
∏
τ

(
τ(z1)kτ

1 · · · τ(zn)kτ
n

)
for some k = (kτ

1 , . . . , k
τ
n)τ :F ↪→L ∈ Zn[F :Q]. It is called dominant algebraic if k ∈ X∗(T )+,

i.e. if kτ
1 ⩾ . . . ⩾ kτ

n for all τ .

Note that k 7→ δk defines a section of the weight map over the algebraic weights, and
we use this map to identify X∗(T ) with a subset of T̂ (resp. T̂0).

Let Kp ⊂ U(A∞,p) be a compact open subgroup, called a tame level that we assume
to be of the form ∏

ℓ̸=pKℓ where Kℓ is a compact open subgroup of U(Qℓ). Let Ip be
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the Iwahori subgroup of G = G(Qp) = U(Qp) with respect to our choice of B. For any
compact open Kp ⊂ U(Qp) we consider the Shimura set

ShKpKp
:= U(Q)\U(A∞)/KpKp.

As U(R) is compact, this is indeed a finite set of points.

Definition 5.2. The completed cohomology of the tower (ShKpKp)Kp⊂U(Qp) of Shimura
sets is:

Π := Π◦ ⊗OL
L, with Π◦ := lim←−

n

lim−→
Kp

H0(ShKpKp ,OL/π
n
L),

see [Eme06b].

The completed cohomology is an L-Banach space endowed with a continuous action
of U(Qp). This space is naturally identified with the space of continuous functions

f : U(Q)\U(A∞)/Kp −→ L. (7)

We denote Πla the subspace of locally analytic vectors in Π for U(Qp). This is the
subspace of functions in (7) which are locally analytic. As Πla is a locally analytic
representation, there is a natural U(g)-action on Πla obtained by deriving the G =
G(Qp)-action. Here, as above, we write g for the Lie algebra of G, and b, t, n for the Lie
algebras of the Borel B, of the torus T and of the unipotent radical N of B.

Definition 5.3. The space of overconvergent p-adic automorphic forms of tame weight
Kp is the space

S†(Kp) = (Πla)n = lim−→
N0⊂N(Qp)

(Πla)N0 ,

where N0 varies among the compact open subgroups of N(Qp). Given a weight κ ∈ t∗,
the space of overconvergent p-adic automorphic forms of tame weight Kp and weight κ
is the eigenspace

S†
κ(Kp) ⊂ S†(Kp)

of eigenvalue κ for the U(t)-action.

Denote by T(Kp) := Z[Kp\U(A∞,p)/Kp] the Hecke algebra of Hecke operators over
Z of tame level Kp. Then T(Kp) acts by convolution on S†(Kp) and S†

κ(Kp). Let S be
a finite set of prime numbers containing p and all the ℓ such that Kℓ is not hyperspecial.
The subalgebra TS := ⊗

ℓ/∈S Tℓ ⊂ T(Kp) is commutative.

Definition 5.4. Let

T (Qp)+ := {diag(av
1, . . . , a

v
n)v ∈ T (Qp) | v(av

1) ⩾ . . . ⩾ v(av
n), ∀v ∈ Sp}.

The Atkin–Lehner ring A(p) is the sub-algebra of Z[T (Qp)] generated by the elements
t ∈ T (Qp)+.
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Let δ : T → L× be a continuous character. Then we can extend δ to a character
A(p) → L whose restriction to T+ is given by δ. By abuse of notation we still write δ
for this character of A(p).

Note that there is a cofinal system of compact open subgroups N0 ⊂ N = N(Qp)
such that tN0t

−1 ⊂ N0 for all t ∈ T+. We hence can define a Hecke action of A(p) on
S†(Kp) = (Πla)n by letting t ∈ T (Qp)+ act on f ∈ (Πla)N0 via

[t]f :=

x 7→ 1
[N0 : tN0t−1]

∑
n∈N0/tN0t−1

f(xnt)

 ,
where N0 is a sufficiently small compact open subgroup of N such that f ∈ (Πla)N0 and
such that tN0t

−1 ⊂ N0.
Let T be the commutative algebra TS ⊗Z A(p). Definition 5.4 provides a structure

of T-module on S†(Kp) and S†
κ(Kp).

Definition 5.5. An overconvergent p-adic automorphic form f ∈ S†(Kp) = (Πla)n is
called a finite slope eigenvector for the A(p)-action if, for any t ∈ T (Qp)+, there exists
at ∈ L× such that

[t]f = atf.

More generally f is of finite slope for the A(p)-action if for all t ∈ T (Qp)+, there exists
a polynomial P ∈ L[X] such that P (0) ̸= 0 and P ([t])f = 0.

Given a continuous character δ : T → L×, we write S†(Kp)[δ] for the eigenspace
with respect to the A(p)-action of eigensystem δ : A(p) → L. Note, that by definition
this eigensystem is automatically of finite slope and of weight κ = wt(δ). Moreover, the
A(p)-action on S†(Kp)[δ] uniquely extends to an action of Z[T (Qp)].
Remark 5.6. An overconvergent automorphic form of tame level Kp with eigenvalue
δ : T → L× for the Hecke-action at p (i.e. for the action of the Atkin–Lehner ring) is
thus the same as a locally analytic function

f : U(Q)\U(A∞)/Kp −→ L,

such that there exists a compact open subgroup N0 ⊂ N(Qp) so that, for all g ∈
U(A∞), t ∈ T0, n ∈ N0,

f(gtn) = δ(t)f(g),

and such that moreover, for all t ∈ T (Qp)+, [t]f = δ(t)f .

Definition 5.7. The space of classical automorphic forms of tame level Kp is the sub-
space Scl(Kp) = (Πcl)n of S†(Kp) = (Πla)n of elements which are Kp-finite for some
(resp. any) compact open Kp ⊂ U(Qp).

We note that this subspace is stable under the action of T.
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For any character χS : TS −→ L, we let Π[χS ] (resp. S†(Kp)[χS ], resp. Scl(Kp)[χS ])
denote the subspace of χS-eigenvectors for TS in Π (resp. S†(Kp), resp. Scl(Kp)). If
δ : T → L is a character of T (defining a character of A(p)) and if χ = χS ⊗ δ is the
corresponding character of T = TS⊗ZA(p), we write S†(Kp)[χ] etc. for the corresponding
eigenspace.

Let m be a maximal ideal in TS . We then define

Πm := Π◦
m ⊗OL

L, where Π◦
m := lim←−

n

(Π◦/πn
LΠ◦)m.

As there are only finitely many maximal ideals m of TS such that (Π◦/πLΠ◦)m is nonzero,
the space Πm is a topological direct summand of Π stable under the actions of U(Qp)
and T.

Recall that if m is a maximal ideal (whose residue field is assumed to equal kL)
such that Πm is non zero, then we may associate to m a continuous representation
ρ : GalE −→ GLn(kL) which is conjugate autodual, and unramified away from S. Such
representations ρ are called modular (see for example [BHS17b, §2.4]).

5.2 Patching the completed cohomology

We fix a maximal ideal m ⊂ TS such that Πm ̸= 0 is non-zero and denote by ρ : GalE −→
GLn(kL) the corresponding modular Galois representation. For each place v of F which
splits in E we write

ρv := ρ| GalEṽ
,

for a choice of ṽ|v of E. From now on we assume that, for v ∈ S, the place v splits
in E/F , we make a fixed choice ṽ|v as before such that ṽ ∈ Σ if v| p, and denote
S̃ = {ṽ|v ∈ S} so that S̃ is in bijection with S and contains Σ. For v ∈ S we write R□

ρv

for the universal lifting (i.e. framed deformation) ring of ρv and define

R□
ρv

↠ R
□
ρv

to be the maximal reduced Zp-flat quotient.

Remark 5.8. If v|p we have in fact, by the main results of [BIP23], R□
ρv

= R□
ρv

. Using the
main result of [DHKM24] we find that the same applies to places v ∤ p, as the deformation
rings R□

ρv
may be identified with versal rings to the moduli space of L-parameters. We

still keep the notations introduced above in order to be consistent with the notations
from the references for the patching construction below.

We denote by Rρ,S the quotient of Rρ corresponding to the deformation problem

S = (E/F, S, S̃,OL, ρ, ε
1−nδn

E/F , {R
□
ρv
}v∈S)
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in the notations of [CHT08, §2.3], where δE/F : GalF −→ {±1} is the quadratic character
associated to E/F , and

Rloc :=
⊗̂
v∈S

R
□
ρv
.

There is an action of Rρ,S on Πm by continuous TS-linear endomorphisms (see
[BHS17b, §2.4]). If χS : TS

m → L is a character such that Π[χS ] ̸= 0, then the ac-
tion of Rρ,S on Π[χS ] factors through the character Rρ,S → L corresponding the unique
lift ρ : GalE → GLn(L) of ρ which is said to be associated to χS .
Remark 5.9. If π is an automorphic representation of U(AF ) such that πKp ̸= 0. Let
ψS : TS → C be the character of TS on πKp . If we fix an isomorphism ι : C ≃ Qp and if
L is big enough so that χS = ι◦ψS takes values in L and Ker(χS) ⊂ m, then Πcl

m[χS ] ̸= 0
and ρ is the Galois representation associated to π and ι.

We assume the following (strong) Taylor–Wiles hypothesis on p, E/F , U , Kp and ρ.

Hypothesis 5.10. 1. p > 2 ;

2. the extension E/F is unramified and E does not contain a (non-trivial) p-th root
ζp of 1 ;

3. the group U is quasi-split at all finite places of Q ;

4. the level Kp is chosen such that Kv is hyperspecial whenever the finite place v of
F is inert in E ;

5. the representation ρ| GalE(ζp)
is adequate.

By [CEG+16] sections 2.7,2.8, (see also [BHS17b, Théorème 3.5]), we have the fol-
lowing data.

Proposition 5.11. There exist

1. an integer g ⩾ 1 ;

2. a continuous, admissible, unitary R∞-representation Π∞ of U(Qp) over L, where

R∞ := Rloc[[x1, . . . , xg]];

3. a local map of local rings S∞ := OL[[y1, . . . , yt]] −→ R∞ with

t = g + dimRloc − [F+ : Q]n(n+ 1)
2

such that
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(i) there exists an OL-lattice Π0
∞ ⊂ Π∞ stable by U(Qp) and R∞ such that

(Π0
∞)′ = HomOL

(Π0
∞,OL),

is a projective S∞[[Kp]]-module of finite type (via S∞ −→ R∞) for some (equivalently
all) compact open subgroup Kp ⊂ U(Qp) ;

(ii) there exists a surjective map of local Rloc-algebras R∞/aR∞ ↠ Rρ,S and an
isomorphism of continuous admissible unitary R∞/aR∞-representations of U(Qp) on L

Π∞[a] ≃ Πm,

where a = (y1, . . . , yt) denotes the augmentation ideal of S∞,

It is a direct consequence of this proposition that the R∞-representation Π∞ of
U(Qp) satisfies Hypothesis 3.15. We note that the same applies to a slightly more
general context:

Lemma 5.12. Let V be a finite dimensional algebraic representation of U(Qp) over L.
Then the R∞-Banach representation Π∞ ⊗L V satisfies Hypothesis 3.15.

Proof. As Π∞ satisfies Hypothesis 3.15, for any open pro-p-subgroup H of U(Qp) there
exists an isomorphism of Zt

p × H-representations Π∞|Zt
p×H ≃ C(Zt

p × H,L)m for some
m ⩾ 1. But then

(Π∞ ⊗L V )|Zt
p×H ≃ C(Zt

p ×H,V )m ≃ C(Zt
p ×H,L)m dimL V .

In the reminder of this paper we will use the following notations: we set

X p := Spf(
⊗̂

v∈S\Sp
R

□
ρv

)rig ≃
∏

v∈S\Sp

Spf(R□
ρv

)rig,

where Ug := Spf(OL[[x1, . . . , xg]])rig is an open polydisc. Moreover, we set

Xρp
:= Spf(

⊗̂
v∈Sp

R□
ρv

)rig,

X∞ := Spf(R∞)rig ≃ X p ×Xρp
× Ug.

By construction the space X∞ contains Xρ,S = (Spf Rρ,S)rig as a closed subspace. For
a point x = (xp, xp, z) ∈ X∞(L) and a place v of F dividing p, we denote by ρx,v the
framed representation GalFv → GLn(L) associated to x. Finally we write ρx,p for the
the family of representations (ρx,v)v|p.
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6 Patching functors

In this section, we keep notations and conventions of section 5. In particular, we have
G ≃

∏
v∈Sp

(L×Qp ResFv/Qp
GLn,Fv ) which is an algebraic group over L and we consider

the associated categories O,O∞
alg and Õalg as in section 2 (for the choice of the upper

triangular Borel subgroup B).
We fix once and for all a point x ∈ X∞(L) such that x maps to the origin in

(Spf S∞)rig (i.e. the point defined by the augmentation ideal of S∞) and we denote
by R̂∞,x the completed local ring of X∞ at x.

6.1 Locally analytic patching functors

We fix a smooth and unramified character ε : T (Qp)→ L× and consider ε as a point of
T̂ .

By Lemma 5.12, we can apply Corollary 3.18 to the admissible locally analytic rep-
resentation Πla

∞, and obtain a functor

O∞
alg → Coh(X∞ × T̂ )
M 7→ MΠ∞(M).

Definition 6.1. For M ∈ O∞
alg we define

M∞,x,ε(M) :=MΠ∞(M)x,ε

to be the stalk of MΠ∞(M) at (x, ε).

It follows from Proposition 3.17 thatM∞,x,ε(M) is a Cohen–Macaulay R̂∞,x-module
and it follows from Theorem 3.14 that the functor M 7→ M∞,x,ε(M) is exact.
Remark 6.2. We also have the following description:

M∞,x,ε(M) ≃
(
HomU(g)(M,Πla

∞[m∞
x ])N0 [m∞

ε ]
)′

where mε is the maximal ideal of A(p) ⊗Zp Qp = Qp[T (Qp)+] corresponding to the
character ε and mx is the maximal ideal of R∞[1/p] corresponding to x.
Remark 6.3. Note that we have two U(t)-module structures on M∞,x,ε(M): The first
one comes from the nilpotent U(t)-module structure on M as in section 2.2. The second
one comes from the action of U(t) induced from the locally analytic T -structure on Πla

∞.
It is a tautological consequence of the construction, but we point out that these two
actions coincide.

Definition 6.4. Let I ⊂ ∆ be a finite subset of simple roots and let M be an object of
ÕI

alg. Then we define
M∞,x,ε(M) := lim←−

n

M∞,x,ε(M/mn
I ).
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Proposition 6.5. The functor M 7→ M∞,x,ε(M) is exact on ÕI
alg and for each M ∈ ÕI

alg
the R̂∞,x-module M∞,x,ε(M) is finitely generated and Cohen–Macaulay of dimension
t+ dimK zI . Moreover M∞,x,ε(M) is flat over U(zI).

Proof. Let Ŝ∞ be the completion of S∞[1/p] along the maximal ideal generated by the
augmentation ideal a of S∞. Moreover, we write ÛI for the completion of U(zI) at the
maximal ideal mI .

By exactness of the functor M∞,x,ε, we have

M∞,x,ε(M/mn+1
I )/mn

I ≃M∞,x,ε(M/mn
I )

for any n ⩾ 1. It follows from Theorem 3.17 that M∞,x,ε(M/mI) is a finite projective
Ŝ∞-module. We denote its rank by r ⩾ 0. The exactness of M∞,x,ε implies that
M∞,x,ε(M/mn

I ) is a finite projective Ŝ∞ ⊗L U(zI)/mn
I -module of rank r and it follows

that M∞,x,ε(M) is a finite projective Ŝ∞⊗̂LÛI -module of rank r. As the action of
Ŝ∞⊗̂LÛI factors through R̂∞,x we deduce the result. The exactness of the functor
M∞,x,ε is a consequence of the exactness ofM∞,x,ε restricted to O∞

alg and the fact that
each system (M∞,x,ε(M/mn

I ))n satisfies the Mittag-Leffler condition.
Let t = (t1, . . . , tm) be a regular sequence generating the maximal ideal of U(zI)mI .

This is also a regular sequence generating the maximal ideal of the completion ÛI . By
exactness of the functor Ŝ∞ ⊗L − on strict exact sequences of Fréchet L-algebras, the
sequence t is Ŝ∞⊗̂LÛI -regular. As M∞,x,ε(M) is a finite free Ŝ∞⊗̂LÛI -module, the
sequence t is M∞,x,ε(M)-regular. This is equivalent to flatness over U(zI)mI .

6.2 A factorization property

We use the spaces and notations introduced in section 4. A point x ∈ X∞(L) is said to
be crystalline φ-generic and Hodge–Tate regular if for all v|p the representation ρx,v is
crystalline φ-generic and Hodge–Tate regular. Let x = (ρp, ρp, z) ∈ X∞(L) be such a
φ-generic Hodge–Tate regular point. We fix a refinement R of ρp.

Recall that G ≃ ∏v∈Sp
(L ×Qp ResFv/Qp

GLn,Fv ). If I is a set of simple roots of G,
we set

X I−qtri
∞,x,R := X̂ p

ρp ×X I−qtri
ρp,R × Ûg,

X I−qtri
∞,x,R := X̂ p

ρp ×X I−qtri
ρp,R × Ûg.

This is a closed subscheme of (X̂∞)x and we write R̂∞,x ↠ RI−qtri
∞,x,R the corresponding

quotient map. Moreover, for w ∈W , we set

X I−qtri,w
∞,x,R := X̂ p

ρp ×X I−qtri,w
ρp,R × Ûg,

X I−qtri,w
∞,x,R := X̂ p

ρp ×X I−qtri,w
ρp,R × Ûg.
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If R = (φ1,v, . . . , φn,v)v|p ∈
∏

v|p(L×)n, we define δR to be the smooth unramified
character of T defined by

(x1,v, . . . , xn,v)v|p 7→
∏
v|p

∏
i

(φvFv (xi,v)
i,v qi−n

v )

where qn denotes the cardinality of the residue field of Fv. We use the notationM∞,x,R :=
M∞,x,δR . The goal of this section is to prove the following result.

Theorem 6.6. Let x ∈ X∞(L) be a φ-generic Hodge–Tate regular crystalline point and
let R be a refinement of x. Then, for any M ∈ OI,∞

alg , the R̂∞,x-module M∞,x,R(M) is
killed by the kernel of the map R̂∞,x ↠ RI−qtri

∞,x,R. Equivalently its support is contained in
X I−qtri

∞,x,R .

Proof. This is a consequence of Proposition 3.20, Proposition 2.14 and Corollary 6.11
which will be proved below.

We will prove the auxiliary statements in (the proof of) this theorem by making use
of variants of the construction of eigenvarieties. More precisely, for a subset I ⊂ ∆, a
character λ ∈ X∗(T )+

I (dominant with respect to P I) and an algebraic representation
V of G we will consider the scheme-theoretic supports

EI
∞(λ) = supp(MI,λ

Π∞
) ⊂ X∞ × T̂

EI
∞(λ, V ) = supp(MI,λ,V

Π∞
) ⊂ X∞ × T̂ ,

where MI,λ
Π∞

respectively MI,λ,V
Π∞

are the coherent sheaves associated to JI,λ(Πla
∞)′ re-

spectively to JI,λ((Π∞ ⊗L V )la)′ (see section 3.4 for the notation). We will link the
completions of EI

∞(λ) resp. EI
∞(λ, V ) at points (x, δ) ∈ X∞ × T̂ to the quasi-trianguline

deformation rings of section 4. This is done in two steps: we first show that the set-
theoretic support of MI,λ

Π∞
resp. of MI,λ,V

Π∞
is contained in the (quasi-)trianguline locus

(see the proof of Proposition 6.7). We then prove that EI
∞(λ) resp. EI

∞(λ, V ) is reduced
(see the proof of Proposition 6.9). The proof of the latter statement follows the usual
argument in the case of eigenvarieties, see e.g. [BHS17b, Corollaire 3.12 and Corollaire
3.20]: the general properties of eigenvarieties (deduced from the fact that the sheaves
MI,λ

Π∞
resp. MI,λ,V

Π∞
are locally finite projective over (Spf S∞)rig × T̂0 imply that EI

∞(λ)
resp. EI

∞(λ, V ) have no embedded components. Hence it is enough to produce on each
of their irreducible components a point y such that EI

∞(λ) resp. EI
∞(λ, V ) are reduced

in a neighborhood of y. By the same projectivity argument as above, the point y can
be chosen so that the weight map to T̂0 is smooth at this point. Reducedness then
boils down to checking that the Hecke operators (that generate the local ring of EI

∞(λ)
resp. EI

∞(λ, V ) at y) act semi-simply on the fiber of MI,λ
Π∞

resp. MI,λ,V
Π∞

over T̂0 which
in turn follows from the fact that Hecke-operators act semi-simply on spaces of classical
automorphic forms. We now give the details of these arguments.
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Let δ = (δ1,v, . . . , δn,v)v|p ∈ T̂ (L) be a parameter for a quasi-triangulation of x at
p, i.e. the trianguline filtration of the (φ,Γ)-module D†

rig(ρv)[1/t] over RK,L[1/t] has
graded pieces RK,L(δi,v)[1/t]. As x is Hodge–Tate regular, there is a natural map

ωδ : X qtri
∞,x,R −→ T̂∧

δ ,

mapping a deformation at p of the (φ,Γ)-module D†
rig(ρv)[1/t], equipped with its trian-

guline filtration, to its parameter (see e.g. [BHS19, eq (3.15)]). If δ is locally algebraic
of the form δ = λδR for λ ∈ X∗(T ) and some smooth character δR ∈ T̂ (L), we shift the
previous map to get

ω = t−λωδ : X qtri
∞,x,R −→ T̂∧

δR

which only depends on the chosen refinement. This induces a map

i× ω : X qtri
∞,x,R −→ X̂∞,x × T̂∧

δR ,

or equivalently, a homomorphism R̂∞,x ⊗O∧
T̂ ,δR

−→ RI−qtri
∞,x,R.

Proposition 6.7. Let λ ∈ X∗(T )+
I be a weight dominant with respect to P I . The R̂∞,x-

module M∞,x,R(M̃I(λ)) is annihilated by the kernel of R̂∞,x → RI−qtri
∞,x,R. More precisely,

M∞,x,R(M̃I(λ)) is an R̂∞,x ⊗O∧
T̂ ,δR

-module and annihilated by the kernel of

R̂∞,x ⊗O∧
T̂ ,δR

−→ RI−qtri
∞,x,R.

Proof. It follows from Proposition 3.20 and the definition of M∞,x,R(M̃I(λ)) that

M∞,x,R(M̃I(λ)) = (t∗λM
I,λ
Π∞

)∧
(x,δR)

as an R̂∞,x ⊗O∧
T̂ ,δR

-module. It is thus enough to show that the completion of MI,λ
Π∞

at
the point (x, λδR) ∈ X∞(L)× T̂ (L) is supported at the closed subspace

i× wδ : X I−qtri
∞,x,R −→ X̂∞,x × T̂∧

δλδR .

We closely follow the proof of [Wu, Prop. 5.13]. Let us write E∞ ⊂ X × T̂ for the
scheme-theoretic support of the coherent sheaf defined by JB(Πla

∞)′. By [Wu, 5.4] this
contains EI

∞(λ) as a closed subspace. As in the proof of [Wu, Prop. 5.13] we consider
a proper birational map f : E ′

∞ → E∞ such that the universal (φ,Γ)-module over E ′
∞

has a quasi-triangulation, and write E ′′
∞ for the preimage of EI

∞(λ) in E ′
∞. Let Y ⊂ E ′′

∞
be the Zariski closed reduced subspace of E ′′

∞ whose points are exactly the points of E ′′
∞

where the universal filtered (φ,Γ)-module over R[1/t] is PI -de Rham. As in [Wu], the
existence of Y is a consequence of [Wu, Prop. A.10]. It follows that for any y ∈ Y lying
above (x, δR) the map

Ŷy → X∞ × T̂
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factors through X I−qtri
∞,y,Ry

. Let U ⊂ EI
∞(λ) be an affinoid open subset containing x and a

Zariski dense subset of points which are de Rham (and in particular PI -de Rham) and
trianguline with parameter given by EI

∞(λ) −→ T̂ . Such a neighborhood exists by [Wu,
Prop. 5.11 & 5.12]. We deduce that f(Y ) ⊃ U and hence f−1(U) ⊂ Y and we conclude
as in the proof of [BHS19, Prop. 3.7.2] (see the erratum in [BD]) that the map

Ûx,λδR → X∞ × T̂

factors through X I−qtri
∞,x,R .

Corollary 6.8. Let V be an algebraic representation of G, then

M =M∞,x,R(M̃I(λ)⊗L V )

is annihilated by some power of the kernel of R̂∞,x ⊗O∧
T̂ ,δR

−→ RI−qtri
∞,x,R.

Proof. We recall that

M̃I(λ)⊗L V = U(g)⊗U(pI) (LI(λ)⊗L AI)⊗L V ∼= U(g)⊗U(pI) (LI(λ)⊗ V|PI
⊗AI)

and that V|PI
is an extension of algebraic irreducible representations of LI . Exactness

of M∞,x,R (see Proposition 6.5) implies that the R̂∞,x-module M is an extension of
R̂∞,x,R-module of the form M∞,x,R(M̃I(µ)) for µ ∈ X∗(T )+

I . We deduce the result
from Proposition 6.7.

Proposition 6.9. Let V be an algebraic representation of G. Then the schematic sup-
port EI

∞(λ, V ) of the coherent sheaf associated to JI,λ((Π∞ ⊗L V )la)′ is reduced.

Proof. We follow closely the proof of [BHS17b, Cor. 3.20] replacing, where it is nedeed,
some arguments by results of [Wu]. To simplify notations we just write E = EI

∞(λ, V )
and M =MI,λ,V

Π∞
for the reminder of this proof.

Let N be the radical ideal of OE . Assume that N ≠ 0 and let x ∈ E be a point in
the support of N . Let T̂ ◦

λ be the preimage of λ|t∩lss
I
∈ (t ∩ lssI )∗ under the map

T̂ → t∗ → (t ∩ lssI )∗,

where the first map is the weight map (5). According to [Wu, §5.4] there exists an open
affinoid neighborhood U of x and an open affinoid subset W ⊂ T̂ ◦

λ×Spf(S∞)rig such that
Γ(U,M) is a finite free O(W )-module (such a data exists according to the results of [Wu,
§5.4]). Then Γ(U,N ) is the radical ideal of O(U). Moreover, as O(U) = Γ(U,OE) is a
sub-O(W )-module of End(Γ(U,M)) (by the same argument as in the proof of Theorem
3.17 respectively of [BHS17b, Prop. 3.11]), the same is true for Γ(U,N ). Therefore
Γ(U,N ) is a torsion free O(W )-module and its support has the same dimension as W
and hence contains an irreducible component U0 of U . As a consequence the support of
N contains an admissible open subset of E . As the support of N is also a closed analytic
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subset of E , it follows from [Con99, Lemm. 2.2.3] that the support of N contains an
irreducible component of E . It hence suffices to produce on each irreducible component
of E a point y such that E is reduced in a neighborhood of y.

By [Wu, Prop. 5.11] every irreducible component of E contains a point with algebraic
weight.

Therefore we fix a point x ∈ E(L) with integral weight λ′ ∈ T̂ ◦
λ . Let U be an open

affinoid neighborhood of x and W ⊂ T̂ ◦
λ × Spf(S∞)rig an open affinoid open subset such

that M = Γ(U,M) is a direct factor of O(W )⊗̂LJBI
(JPI

(Πla
∞ ⊗L V )λ)′. Let A = O(W )

and B = O(U). Then M is a finitely generated B-module and a finite projective A-
module. Let C > 0 and C ′ > 0 as in the proof of [Wu, Prop. 5.11]. We set Z ⊂W be the
subset of algebraic character δλ′ such that, for any simple root α /∈ I, ⟨λ′ +ν, α⟩ > C ′ for
any ν weight of V ∨. This is a Zariski dense subset of W . Then for z = δλ′δsm with δsm a
smooth character, using Proposition 3.20, we see that the B-module Mz = M ⊗k(z) is a
direct factor of JB(Hom(MI(λ′),Πla

∞⊗L V ))′. Let (x, δ) ∈ U be a point above z, i.e. δ =
δλ′δsm, then arguing as in loc. cit., we have HomG(FG

B
(N ⊗L V

∨, δsmδ
−1
B ),Πla

∞[px]) = 0
for any subquotient N of MI(λ′) different from L(λ′). This implies that Mz is actually a
quotient of JB(HomU(g)(L(λ′)⊗L V

∨,Πla
∞)) which is isomorphic to a finite direct sum of

JB(HomU(g)(L(µ),Πla
∞)) with µ dominant. The proof of [BHS17b, Cor. 3.20] shows that

the global sections of the coherent sheaf associated to each JB(HomU(g)(L(µ),Πla
∞))′ on

U ∩ κ−1({δλ′}) is a semisimple B-module. This concludes the proof.

Corollary 6.10. The rigid analytic space EI
∞(λ) is reduced.

Proof. This is Proposition 6.9 with V the trivial representation.

Corollary 6.11. Let V be an irreducible algebraic representation of G. Then the R̂∞,x⊗
O

T̂ ∧
δR

-module M∞,x,R(M̃I(λ)⊗L V ) is killed by the kernel of the map

R̂∞,x ⊗OT̂ ∧
δR
→ RI−qtri

∞,x,R.

Proof. By Proposition 6.9, the support of the module M∞,x,R(M̃I(λ)⊗L V ) is reduced
for any λ ∈ X∗(T ) dominant with respect to P I and any algebraic representation V of
G. Therefore the result follows from Corollary 6.8.

6.3 Bi-module structure on the patched functor

Let M be an object of O∞
alg or ÕI

alg for some I ⊂ ∆. As seen in section 2.2, there
is a natural structure of A = U(t)m-module on M which provides, by functoriality, the
structure of an A-module onM∞,x,R(M). This A-module structure extends to an action
of the completion Â of A with respect to the maximal ideal m. We recall from Remark
6.3 that this action coincides with the structure of an Â-module onM∞,x,R(M) induced
from the T -action on Π∞.
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On the other hand, the ring Rqtri
∞,x,R also carries a structure of an Â-module induced

from the map κ1 defined in section 4.1. This gives a further structure of an Â-module on
the Rqtri

∞,x,R-module M∞,x,R(M). We will show that these Â-module structures agree.

For a ∈ Â, we denote by a (resp. ã) the endomorphism of M∞,x,R(M) defined by
the first (resp. second) action. Note that if M is an object of Õalg, thenM∞,x,R(M) is a
finite free Â⊗̂LŜ∞-module for the first Â-module structure by the proof of Proposition
6.5. Thus it is A-torsion free (since Â is domain).

Lemma 6.12. For any a ∈ Â and any M in O∞
alg or ÕI

alg, there is an equality

a = ã ∈ End(M∞,x,R(M)).

Proof. If M = M̃(µ) ⊗U(t) U(t)/mn for some µ ∈ X∗(T ), this is a consequence of
[BHS17b, Thm. 3.21], the commutative diagram [BHS19, (3.30)] and Remark 6.3. This
implies that for any µ ∈ X∗(T ), we have a = ã on M∞,x,R(M̃(µ)).

Now we consider the general case. By definition ofM∞,x,R(M), it is enough to treat
the case of M ∈ O∞

alg. It follows from Proposition 2.14 that it is sufficient to prove
the equality ã = a when M = M̃(µ) ⊗L V for µ ∈ X∗(T ) dominant and V a finite
dimensional U(g)-module. Let (Fili) be an increasing filtration of M̃(µ)⊗L V such that
Fili /Fili−1 ≃ M̃(µi) where µ1, . . . , µd ∈ X∗(T ) and d = dimL V (such a filtration exists
by [Soe92, Lem. 8]. Let K denote the fraction field of A. It follows from Proposition
2.12 that we have a decomposition of U(g)K-modules

(M̃(µ)⊗L V )⊗A K ≃
d⊕

i=1
M̃(µi)K

splitting the filtration (Fili⊗AK). Let pi ∈ EndU(g)K
((M̃(µ) ⊗L V ) ⊗A K) be the

projector on M̃(µi)K . As

EndU(g)K
((M̃(µ)⊗L V )⊗A K) ≃ EndU(g)((M̃(µ)⊗L V ))⊗A K

by [Soe92, Thm. 5], there exists, for each 1 ⩽ i ⩽ d, a nonzero element qi ∈ A such
that qipi actually restricts to an endomorphism of M̃(µ)⊗L V . We set q = q1 · · · qr and
αi = qpi. Then the αi are endomorphisms of M̃(µ) ⊗L V that stabilize the filtration
Fil•. As each Fili /Fili−1 is a free A-module, the endomorphisms αi induce the zero
endomorphism of Fili−1 and M̃(µ)⊗LV/Fili and the multiplication by q on Fili /Fili−1.

In order to simplify notations we set

M∞ =M∞,x,R(M̃(µ)⊗L V ),
FiliM∞ =M∞,x,R(Fili).

By construction, for each i the endomorphism αi induces an R∞,x-linear endomorphisms
of Filj M∞ for all j. By exactness of M∞,x,R, the family (FiliM∞) is a filtration of
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M∞ and FiliM∞/Fili−1M∞ ≃ M∞,x,R(M̃(µi)) for any i, so that a and ã induces
the same endomorphism of FiliM∞/Fili−1M∞. Finally, for 1 ⩽ i ⩽ d, we denote by
M

(i)
∞ = αi(FiliM∞) the image of the i-th filtration step under αi. It follows from the

properties of αi that

• M
(i)
∞ ⊂ FiliM∞;

• the quotient FiliM∞/(Fili−1M∞ +M
(i)
∞ ) is killed by q;

• M
(i)
∞ is isomorphic to a quotient of FiliM∞/Fili−1M∞.

Therefore, we have ã = a on M
(i)
∞ for any a ∈ Â and the quotient of M∞ by the sum of

the M (i)
∞ is killed by qd. As M∞ is A-torsion free it follows that ã = a.

Let ξ : Z(g) → U(t) be the Harish-Chandra map as recalled in section 2.4. As in
loc.cit. we write tν for the unique endomorphism of U(t) mapping x ∈ t to tν(x) =
x+ ν(x).

Let h = (h1,τ,v < · · · < hn,τ,v)τ,v ∈ X∗(T ) be the weight corresponding to the
Hodge–Tate weights of ρx = (ρv)v|p and let δ′

G = (0,−1,−2, . . . , 1 − n)τ,v ∈ X∗(T ) be
fixed central shift of the half sum of the positive roots δG ∈ X∗(T )⊗Q. We have a map

κ2 : Â = Û(t)m → Rqtri
ρp,R

induced from the map κ2 of section 4.1 and we define the L-algebra homomorphism

α = κ2 ◦ th−δ′
G
◦ ξ : Z(g)→ Rqtri

ρp,R.

As in [DPS, Def. 4.23], we define, for any v|p, an L-algebra homomorphism

ζC
ρ̃C

v
: Z(Lie(ResFv/Qp

GLn)) −→ R□,rig
ρv

where ρ̃v is the universal family of Galois representations over R□,rig
ρv

. After completion
at ρv and taking the tensor product over all v|p, we obtain an L-algebra homomorphism

ζC : Z(g) =
⊗
v|p

Z(Lie(ResFv/Qp
GLn)) −→ R□

ρp
↠ Rqtri

ρp,R.

Note that the definition of ζC
ρ̃C

v
from ρv depends on a choice of a central shift of δG (see

the discussion ending [DPS, §4.7]). We choose it equal to δ′
G. More concretely ζC is

characterized by the following property. This is the unique continuous homomorphism
such that, for any local artinian L-algebra and any local homomorphism f : Rqtri

ρp,R → A,

corresponding to ρA = (ρA,v : GalFv → GLn(A))v|p, the composition map Z(g) ζC

−−→

Rqtri
ρp,R → A is Z(g) ξ−→ U(t)

tν−δ′
G−−−−→ A where

ν ∈ HomL(U(t)W , A) ≃ HomL(U(t∗)W , A) ≃ HomL(U(g∗)GL , A)
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is the map induced by the conjugacy class of the Sen operators

(ΘSen,ρA,v
)v|p ∈ (g⊗L A).

Proposition 6.13. The homomorphisms ζC and α defined above coincide.

Proof. It is sufficient to prove that for any local artinian L-algebra A and any map
f : Rqtri

ρp,R → A, we have f ◦ ζC = f ◦ α. Note that the map f gives rise to a family
(ρA,v)v|p of local Galois representations. It follows from [BHS19, Lem. 3.7.5] that, for any
embedding τ : Fv ↪→ L, the τ -part of the Sen polynomial of ρv is ∏n

i=1(X − (hi,τ + νi,τ ))
where (νi,τ ) ∈ HomL(t, A) corresponds to f ◦ κ2 : U(t)→ A. The result is then a direct
comparison of the definitions of α and ζC .

For each element M of the category OI,∞
alg or ÕI

alg, there is a natural homomorphism
of L-algebras Z(g)→ End(M). By functoriality of M∞,x,R, this gives a map

z : Z(g)→ End
R̂∞,x

(M∞,x,R(M)).

The following result tells us that this map factors through RI−qtri
∞,x,R.

Corollary 6.14. For any x ∈ Z(g), the element z(x) is the multiplication by α(x)⊗1 ∈
RI−qtri

∞,x,R.

Proof. This is a consequence of Proposition 6.13 and of [DPS, Thm. 9.27].

Remark 6.15. Recall that h = (h1,τ,v < · · · < hn,τ,v)τ,v denotes the weight corresponding
to the Hodge–Tate weights of ρ. Let λ := w0(h)− δ′

G ∈ X∗(T ), which is still a dominant
character. Recall that t−δG

◦ ξ has image contained in U(t)W . Hence we have

th−δ′
G
◦ ξ = th ◦Ad(w0) ◦ t−δ′

G
◦ ξ = Ad(w0) ◦ tw0(h) ◦ t−δ′

G
◦ ξ = Ad(w0) ◦ tλ ◦ ξ.

Therefore
Id⊗ α = (Id⊗Ad(w0)) ◦ hλ : A⊗L Z(g)→ A⊗AW A,

where hλ is the map defined in section 2.4.

6.4 Computation of a support

Now we can prove our main result of this section concerning the support of the patched
functor applied to a generalized Verma module respectively applied to its dual.

Theorem 6.16. Let x ∈ X∞(L) be a point whose associated Galois representation is
crystalline, φ-generic and Hodge–Tate regular. Let R be a refinement of x. Let h =
(h1,τ < · · · < hn,τ )τ :F ↪→L ∈ X∗(T ) be the character given by the Hodge–Tate weights of
ρx. Let δ′

G = det 1−n
2 δG = (0,−1, . . . , 1− n)τ :F ↪→L ∈ X∗(T ), where δG is the half sum of

the positive roots, and define λ := w0(h)− δ′
G ∈ X∗(T )+.
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Then, for I ⊂ ∆ and w ∈ W , the schematic supports of M∞,x,R(M̃I(wmin · λ)) and
M∞,x,R(M̃I(wmin · λ)∨) are either X I−qtri,wminw0

∞,x,R or empty.

Proof. Let M be M̃I(wmin · λ) or M̃I(wmin · λ)∨. As RI−qtri
∞,x,R is generically reduced and

equi-dimensional by Lemma 4.4 and as M∞,x,R(M) is Cohen–Macaulay of dimension
dimRI−qtri

∞,x,R, its schematic support is reduced and is a union of irreducible components
of SpecRI−qtri

∞,x,R, i.e. it is a union of SpecRI−qtri,w′

∞,x,R for some w′ ∈W .
By Proposition 2.15, the module M is annihilated by Iw ⊂ AI ⊗LZ(g). This implies

in particular that the action of AI ⊗L Z(g) on M factors through hλ. By functoriality,
this gives rise to a structure of an AI ⊗AW A-module on M∞,x,R(M). Note that the
map (κ1, κ2) of section 4.1 provides a morphism of L-algebras AI ⊗AW A → RI−qtri

∞,x,R
and, using Theorem 6.6, a second structure of an AI ⊗AW A-module onM∞,x,R(M). It
follows from Lemma 6.12, Corollary 6.14 and Remark 6.15 that this two actions coincide
up to composition with Id⊗Ad(w0). We deduce thatM∞,x,R(M) is killed by the ideal
of RI−qtri

∞,x,R defining the inverse image of TI,ww0 ⊂ zI ×t/W t. Therefore Lemma 4.5 (see
also Remark 2.16) implies that the action of RI−qtri

∞,x,R factors through RI−qtri,ww0
∞,x,R so that

the schematic support of M∞,x,R(M) is SpecRI−qtri,ww0
∞,x,R .

The following corollary is also a direct consequence of Theorem 6.6 and Lemma 6.12.

Corollary 6.17. Let x ∈ X∞(L) be a φ-generic Hodge–Tate regular crystalline point
and let R be a refinement of x. Then, for any M ∈ OI

alg, the schematic support of the
R̂∞,x-module M∞,x,R(M) is contained in X I−qtri

∞,x,R.

7 Main results

We keep the assumptions of section 5 and 6, in particular that Hypothesis 5.10 is satisfied.
In this section we assume that our point x = (ρp, ρ

p, z) ∈ X∞(L) fixed in section 6
corresponds to a classical automorphic form of tame level Kp. This means that x ∈
Xρ,S(L) ⊂ X∞(L) and that there exists an automorphic representation π of U(AQ) such
that Π[mx] = Π[χS ] where χS is the character of TS acting on ΠKp ⊗C,ι Qp for some
isomorphism ι : C ≃ Qp (see Remark 5.9). Let ρ : GalE → GLn(L) be the Galois
representation corresponding to x so that ρp = (ρ| GalFv

)v|p. Moreover, we assume that
(the Galois representation defined by) x is crystalline, Hodge–Tate regular and φ-generic
(see section 6.2) at p. In particular the automorphic representation π is unramified, and
thus finite slope, at p. It follows from the proof of [BHS17a, Cor. 3.12] that the image
ρp of x in Spf(⊗v∈S,p∤v R

□
ρv

)rig lies in the smooth locus.
We fix a refinement R = (φ1,v, . . . , φn,v)v of x. Let us denote the τ -Hodge–Tate

weights of ρx,v for v|p in F and τ : Fv ↪→ L by hv,τ := (h1,v,τ < · · · < h1,v,τ ). Given
this collection of Hodge–Tate weights we write h = (hv,τ )v,τ and hv = (hv,τ )τ . We then
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define Rcris,hv
ρv

to be the crystalline deformation ring of ρv of labelled Hodge–Tate weight
hv and set

Rcris,h
ρp

=
⊗̂

v|p
Rcris,hv

ρv
.

We further define
X cris,h

∞,x,R = X̂ p
ρp × (Spf Rcris,hv

ρv
)rig × Ûg.

Note that is follows from the definitions that X cris,h
∞,x,R embeds into X qtri,w0

∞,x,R for any choice
of a refinement R.

We set

µv,τ = (h1,v,τ , h2,v,τ + 1, . . . , hn,v,τ + (n− 1)) = hv,τ − δ′
G,v,τ ,

and µ = (µv,τ )v,τ , which is thus antidominant (for the upper Borel), and λ = w0(h) −
δ′

G = w0 · µ ∈ X∗(T )+. For all v|p in F , we denote by Wv the Weyl group of
GLn(Fv), which we identify with Sn and denote by s1,v, . . . , sn−1,v the simple reflec-
tions with respect to the choice of the upper Borel Bv ⊂ GLn,Fv . Moreover, w0,v =
sn−1,v . . . s2,vs1,vs2,v . . . sn−1,v will denote the longest element of Wv. We then write
W = ∏

v Wv the Weyl group of GQp
≃
∏

v|p GLn,Fv with respect to the Borel B =∏
v|pBv. Because of the product structure, we will sometimes abuse notations and sim-

ply write si for the simple reflections and w0 for the longest element.
For a scheme X of dimension d we write Z0(X) = Zd(X) for the free abelian group

on the irreducible components of X. Moreover, for d′ ⩽ d we write Zd′(X) for the
free abelian group on the irreducible and reduced closed subschemes of dimension d′.
We recall that a coherent sheaf F on X with d′-dimensional support defines a class
[F ] ∈ Zd′(X), see e.g. [BHS19, Equation (2.13)].

7.1 Sheaves and supports.

Let λ = w0 · µ ∈ X∗(T )+ dominant, integral. We moreover write

mx = dimM∞,x,R(L(λ))⊗ k(x). (8)

It follows from [BHS19, Thm. 5.1.3] that mx ⩾ 1 and that mx does not depend on the
choice of a refinement R. Indeed,

mx = dim HomU(g)(L(λ),Πla
∞[mρ])N0 [mδR ] = dim HomG(IndG

B
(δλδRδ

−1
B )lalg,Πla

∞[mρ]),

coincides with the multiplicity of the locally algebraic vectors associated to ρ in Πla and
those do not depend on the choice of R. We refer to the discussion before the Corollary
7.29 below for the notation and a justification of these facts. To x and R we associate
a permutation

wx,R = (wx,Rv )v∈Σ = (wx,Rv ,τ )v,τ ∈W
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defined as in [HMS, § 3.7]. We recall that these permutations encode the relative position
of the Hodge–Tate flag with respect to the full flag corresponding to the refinement R.
We recall that, for any object M of O∞

alg (resp. ÕI
alg), the sheaf M∞,x,R(M) is zero or

Cohen–Macaulay of dimension t = dimX qtri
∞,x,R (resp. t+ dimK zI = dimX I−qtri

∞,x,R).

Lemma 7.1. Let R be a Cohen–Macaulay noetherian local ring of dimension d′ and
let M and M ′ be two finitely generated Cohen–Macaulay modules. Let (t1, . . . , tm) be a
regular sequence of elements of the maximal ideal of R which is also M and M ′-regular.
Assume that [M ] = [M ′] in Zd′(SpecR). Then

[M/(t1, . . . , tm)M ] = [M ′/(t1, . . . , tm)M ′] ∈ Zd′−m(R).

Proof. By induction it is sufficient to prove the result when m = 1. Set t = t1. Let p be
a prime ideal of R which is a generic point of Supp(M) or Supp(M ′). It is sufficient to
prove that [Mp/tMp] = [M ′

p/tM
′
p] in Zd′−1(SpecRp/(t)), i.e. that Mp/tMp and M ′

p/tM
′
p

are two Rp/(t)-modules of the same length. This is a consequence of [Sta24, Lemma
02QG].

LetN ⊂ g be the nilpotent cone and let Ñ → N be the Springer resolution. Similarly
to the definition of the closed subschemes Xw ⊂ X in 4.1 we define

Zw ⊂ Ñ ×N Ñ ⊂ X

to be the Zariski closure of preimage under Ñ ×N Ñ → GL/B × GL/B of the orbit
GL(1, w) ⊂ GL/B ×GL/B. Set

Zw = g(f−1(Zw ∩ X̂I,w,xdR))× X̂ p
ρp × Ûg ⊂ X qtri

∞,x,R,

where f and g are the maps from Theorem 4.7.
In the following we will make use of the following abusive notation for (local) formal

schemes: Let Spf R be a (local) affine formal scheme. Then we will say that Spf R
is reduced, if R is reduced. Moreover, we will say that Spf R is irreducible if SpecR
is irreducible. More generally, for a given irreducible component SpecR/a ⊂ SpecR,
we will refer to the formal subscheme Spf R/a ⊂ Spf R as an irreducible component of
Spf R. Similarly, we will write Z0(Spf R) = Z0(SpecR) for the free abelian group on the
irreducible components of Spf R to which we also refer as the irreducible components of
Spf R, etc.

Proposition 7.2. Let w ∈W . Then the following properties hold:

1) For all I ⊂ ∆ and all w ∈ WI\W satisfying wminw0 ⩾ wx,R , the formal sub-
scheme X I−qtri,ww0

∞,x,R is reduced and irreducible and coincides with an irreducible compo-
nent of X I−qtri

∞,x,R .
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2) The schematic supports ofM∞,x,R(M(w·λ)) andM∞,x,R(M(w·λ)∨), for w ∈W ,
are contained in X qtri,ww0

∞,x,R if ww0 ⩾ wx,R, and this sheaf is zero otherwise. Moreover,

[M∞,x,R(M(w · λ))] = mx[X qtri,ww0
∞,x,R ] ∈ Z0(X qtri

∞,x,R)

[M∞,x,R(M(w · λ)∨)] = mx[X qtri,ww0
∞,x,R ] ∈ Z0(X qtri

∞,x,R)

for ww0 ⩾ wx,R, where mx is the integer defined by (8).

3) There is an equality

[M∞,x,R(L(ww0 · λ))] = mx

∑
w′⩽w

aw,w′ [Zw] ∈ Z0(X qtri
∞,x,R)

where the aw,w′ ∈ N are the integers defined in [BHS19, Thm. 2.4.7]. In particular
aw,w = 1.

4) For all I ⊂ ∆, the sheaves

M∞,x,R(MI(wmin · λ)) and M∞,x,R(MI(wmin · λ)∨)

are non zero if and only if wminw0 ⩾ wx,R.

5) For all I ⊂ ∆, the support of

M∞,x,R(M̃I(wmin · λ)) and M∞,x,R(M̃I(wmin · λ)∨),

for w ∈WI\W , is X I−qtri,wminw0
∞,x,R if wminw0 ⩾ wx,R and these sheaves are zero otherwise.

6) The module M∞,x,R(L(λ)) is free of rank mx over X cris,h
∞,x,R ⊂ X

qtri,w0
∞,x,R .

7) For any I ⊂ ∆ and any w ∈W , the sheaves

M∞,x,R(M̃I(wmin · λ)) and M∞,x,R(M̃I(wmin · λ)∨)

are generically free of rank mx over their support.

Proof. We first prove point 1)). As X p is smooth at ρp (as recalled in the begining of
this section), the formal completion X̂ p

ρp is formally smooth. As Ûg is also formally
smooth, the claim follows from the fact that

X Iv−qtri,□
rv ,Rv

−→ X Iv−qtri
rv ,Rv

and X Iv−qtri,□
rv ,Rv

−→ X̂I,xpdR

are formally smooth and that XI,w,xpdR is an irreducible component of X̂I,xpdR .
By Theorem 6.16, the schematic support of the Cohen-Macaulay sheaves

M∞,x,R(M̃I(w · λ)) and M∞,x,R(M̃I(w · λ)∨)
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is contained in X I−qtri,w
∞,x,R which is irreducible. By Proposition 6.5, as the sheaves are

Cohen–Macaulay of dimension t + dim zI = dimX I−qtri
∞,x,R (e.g. [BHS19, equation (5.8)]

and Proposition 3.20), we deduce that, if non empty, their schematic support is all
X I−qtri,w

∞,x,R .
By Remark 6.3 we deduce also that

supp
(
M∞,x,R(MI(w · λ))

)
⊂ X I−qtri,wminw0

∞,x,R

for w ∈ IW . Note that the Jordan–Hölder factors of MI(w ·λ) are among the the L(w′ ·λ)
with w′ ⩾ w and that L(w ·λ) is the cosocle of MI(w ·λ). ThereforeM∞,x,R(M̃I(w ·λ)) ̸=
0 if and only if M∞,x,R(MI(w · λ)) ̸= 0 if and only if M∞,x,R(L(w′ · λ)) ̸= 0 for some
w′ ⩾ w. Therefore the non nullity assertions in 4) and 5) follow from the exactness of
M∞,x,R (Proposition 6.5) and from [BHS19, Thm. 5.3.3] (and this theorem implies that
the non-vanishing is actually also equivalent to M∞,x,R(L(w · λ)) ̸= 0). This proves 4)
and 5)

We prove point 6). By [BHS19, Remark 4.3.1 and Proof of Theorem 5.3.3, Step 7],
the schematic support of M∞,x,R(L(λ)) is contained in the crystalline locus X cris,h

∞,x,R ⊂
X qtri

∞,x,R, which is smooth and irreducible of the same dimension as the support of
M∞,x,R(L(λ)). Thus these coincide and M∞,x,R(L(λ)) is free of rank mx over the
crystalline locus.

Now we prove point 2). The first assertion has already been proved with 4) and 5)
(together with Lemma 6.12), therefore it remains to prove the assertion on the cycle. Let
us fix w so that ww0 ⩾ wx,R. As M(w · λ) and M(w · λ)∨ have the same Jordan–Hölder
constituent (with multiplicity), it is sufficient to prove the result for M(w ·λ). We know
from point 5) that the schematic support ofM∞,x,R(M̃(w ·λ)) is X qtri,ww0

∞,x,R and it follows
from Step 9 (ii) in the proof of [BHS19, Thm. 5.3.3] thatM∞,x,R(M̃(w ·λ)) is generically
free of rank mx over X qtri,ww0

∞,x,R . Indeed, Proposition 3.20 identifiesM∞,x,R(M̃(w·λ)) with
the localisation of M∞ of loc.cit. at xR,ww0 , the point corresponding to x, refinement
R and Hodge-Tate weights determined by ww0 (see [BHS19, §5.3]). As X qtri,ww0

∞,x,R is
Cohen–Macaulay, the result is a consequence of point 5) and of Lemma 7.1 applied with

M = Omx

X qtri,ww0
∞,x,R

and M ′ =M∞,x,R(M̃(w · λ))

and to a regular sequence generating the maximal ideal of U(t)m. This sequence is
M ′-regular by Proposition 6.5.

We deduce 3) from 2) together with formulas (5.23) and (5.24) of [BHS19] and the
fact that the Verma modules form a basis of the Grothendieck group of the category
Oχλ

.

We prove point 7). As X I−qtri,w′

∞,x,R is generically smooth for any w′, the module
M∞,x,R(M) is generically free, say of rank r, over its support where

M ∈ {M∞,x,R(M̃I(wmin · λ)),M∞,x,R(M̃I(wmin · λ)∨)}.
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Now we claim that there exists an open an subset U in the regular locus of Spec(RI−qtri,wminw0
∞,x,R )

such that U intersects the support of M∞,x,R(L(wmin · λ)). The claim then implies
r = mx. Indeed, the restriction of M∞,x,R(M̃I(wmin · λ)) to U is locally free since U
is regular. Therefore M∞,x,R(MI(wmin · λ)) is locally free of rank r over its support
intersected with U . It follows from the point 3) thatM∞,x,R(L(w′ ·λ)) is not supported
at the generic point of Zwminw0 for w′ > wmin and that M∞,x,R(L(wmin · λ)) has length
mx at the generic point of Zwminw0 . As L(wmin · λ) appears with multiplicity one in
MI(wmin ·λ) and all other subquotient are of the form L(w′ ·λ) with w′ > wmin, we have
r = mx. We now construct an open subset U with the claimed properties. We set

U = g(f−1(Vwminw0 ∩ X̂I,wminw0,xdR))× X̂ p
ρp × Ûg,

where f and g are the maps of Theorem 4.7 and Vwminw0 is the preimage of the Schubert
cell GL(1, wminw0) ⊂ GL/B×GL/B in XI,wminw0 . This is an open and smooth subset of
XI,wminw0 : indeed, the maps f and g are formally smooth, the formal scheme X qtri

∞,x,R −→
X qtri

ρp,R is formally smooth and the point as ρp lies in the smooth locus of X p.

Remark 7.3. We would like to emphasize that Proposition 7.2 is the only place where
we need to work with deformed objects to study the patching functors. Moreover the
equalities in 2) and 3) where essentially proved in [BHS19] (in the proof of Thm. 5.3.3)
but only at points which are in the smooth locus of the support of M∞,x,R(M(w · λ)).

Proposition 7.4. Assume that xpdR is a smooth point of Xww0. Then

M∞,x,R(M(w · λ)) and M∞,x,R(M(w · λ)∨)

are finite free OX qtri,ww0
∞,x,R

-modules.

Proof. By Remark 6.3, the two U(t)-module structures on M∞,x,R(M̃(w · λ)) coming
from the U(t)-action on M̃(w · λ) and the one coming from the derivative of the locally
analytic action, coincide. Thus we have the equality betweenM∞,x,R(M(w ·λ)) and the
localisation

M∞,x,R(M(w · λ)) ≃ i∗i∗M∞,x,R(M̃(w · λ)),

where i : T̂ sm −→ T̂ denotes the inclusion of the closed subspace of smooth characters.
A similar remark applies to the dual Verma module. In particular, it is enough to show
that the OX qtri,ww0

∞,x,R
-modules

M∞,x,R(M̃(w · λ)) and M∞,x,R(M̃∨(w · λ))

are finite free. But these modules are Cohen-Macaulay with support the localization at
x of X qtri,ww0

∞,x,R , which is smooth.
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7.2 Recollection on Bezrukavnikov’s functor

The aim of this section (or even of the paper) is to identify the patching functor that
takes objects in Oalg (or more generally in O∞

alg) to Cohen-Macaulay modules on certain
Galois deformation rings with a functor constructed by Bezrukavnikov in geometric rep-
resentation theory (more precisely: with the pullback from our local models to the Galois
deformation rings). Before doing so, we will need to recall the result of Bezrukavnikov.

Recall that X = g̃×g g̃ where g is the Lie algebra of GL = ∏
v∈Σ(L×Qp ResFv/Qp

GLn)
as in section 4.1 and denote by X∧ the completion of X along the preimage of {(0, 0)} ∈
t ×t/W t in X. Moreover, we write X = X ×t {0}, where the fiber product is taken
with respect to the map κ1 : X −→ t of 4.1 that maps (gB, hB,N) to ad(g−1)(N)
(mod n) ∈ t. As in the preceding sections we fix the shift

δ′
G = det

1−n
2 δG ∈ X∗(T )

of the half sum of the positive roots δG. As GL is a product of (split) groups Gτ isomor-
phic to GLn,L, the Lie algebra g = ∏

τ ∈ΣF
gτ , X = ∏

τ∈ΣF
and t×t/W t splits accordingly.

In particular, this applies also the the category O. Let λ = (λτ )τ∈ΣF
∈ X∗(T ). The

category Oχλ
identifies canonically with the Deligne’s tensor product ⊠τ∈ΣF

Oχλτ
of

the categories Oχλτ
where Oχλτ

is the χλτ -block of the category Ogτ ,bτ

alg . Given an object
Mτ ∈ Oχλτ

for each τ ∈ ΣF , then the object ⊠τ∈ΣF
Mτ in the Deligne tensor products

identifies to the tensor product over L of the Mτ ’s viewed as a U(gL) = ⊗
L,τ∈ΣF

U(gτ )-
module.

Theorem 7.5 (Bezrukavnikov). Let λ ∈ X∗(T ) be a dominant character. There exists
an exact functor

B : Oχλ
−→ CohGL(X∧),

such that

1) for all M ∈ Oχλ
the sheaf B(M) is a Cohen-Macaulay sheaf,

2) for all w ∈W there is an isomorphism B(M(ww0 · λ)∨) ≃ OXw
,

3) for all w ∈W there is an isomorphism B(M(ww0 · λ)) ≃ ωXw
,

4) the image B(P (w0 · λ)) of the anti-dominant projective P (w0 · λ) is the structure
sheaf OX ,

5) the image B(L(λ)) of the algebraic representation L(λ) is the line bundle O(−δ′
G)⊠

O(−δ′
G) on GL/B ×GL/B which is viewed as a closed subscheme of X∧ via

(gB, hB) 7→ (gB, hB, 0).

6) For all M = ⊠τ∈ΣF
Mτ ∈ Oχλ

, we have

B(M) = ⊠τBτ (Mτ ),
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where Bτ : Oχλτ
−→ CohGτ (X∧

τ ) is Bezrukavnikov’s functor for the group Gτ and in-
finitesimal character χλτ . Here ⊠τ denotes the exterior tensor product for (equivariant)
coherent sheaves on each Xτ .

This result is (a small part of a result) due to Bezrukavnikov and his collaborators
whose proof is spread out through the papers [Bez16, BR12, BL23, BR22]). For the
convenience of the reader, we explain how to get the result in the previous form.

Proof. We actually construct directly B as a product satisfying 6) using [EGNO15,
Proposition 1.11.2] and each Bτ . The resulting functor is exact as each Bτ will be. As
each object in points 1)-5) is of the form ⊠τMτ , we can assume that we have fixed one
τ and G is one of the Gτ , which we do until the end of this proof.

By the main result of [Bez16], there are reverse equivalence of categories

Ψ : DI0,I0 ↔ Db(CohG
N (g̃×g g̃)) : ΦI0,I0 ,

whereN ⊂ g is the nilpotent cone and we have g̃×gg̃ = X. Up to use translation functors,
we can focus on the case λ = 0. By [Bez16, Corollary 42 ] the functor Ψ in fact takes
values in (G-equivariant) coherent sheaves on X, when restricted to perverse sheaves F ∈
PervN (G/B). Moreover, the Beillinson–Bernstein localization theorem, more precisely
by [BG99] Localization Theorem 2.2, and the Riemann–Hilbert correspondence provide
an exact fully faithfull embedding of categories

Oχ0 −→ PervN (G/B).

Composing the Beillinson–Bernstein equivalence with Bezrukavnikov’s functor (noting
that the blocks Oχ0 and Oχλ

are equivalent) we get the exact functor B.
The properties 2), 3) and 4) follow from [Bez16, Ex. 57]. Denote µ = w0 · λ denote

the antidominant weight in the dot-orbit of λ. Now the proof of [BL23, Proposition
5.8] implies that B(M(s · µ)∨) = OXs

for all simple reflection s and B(P (µ)) = OX .
Bezrukavnikov’s main result [Bez16, Theorem 1] implies that Ψ (hence B) intertwines
the convolutions on both sides. Here the convolution on the category Oχλ

≃ Oχ0 is
inherited from the convolution in PervN (G/N) (by pullback from PervN (G/B)) defined
as in [BR22, 7.]. We write w = s1 . . . sr and compute convolutions on both sides. By
[BR12, Theorem 2.2.1] we have

OXw
= OXs1

⋆ · · · ⋆OXsr
.

By [BR22, Lemma 7.7] we have M(w · µ)∨ = M(s1 · µ)∨ ⋆ · · · ⋆ M(sr · µ)∨ and hence
B(M(w ·µ)∨) = OXw

. Moreover, by [BR12, Theorem 2.2.1] again, the dualizing sheaf of
Xw is given by the convolution

ωXw
= ωXs1

⋆ · · · ⋆ ωXsr
.
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But [BR12, Proposition 1.10.3] implies that the inverse of OXs
for the convolution is

ωXs
, and as B is compatible with convolution, and as the inverse of M(s ·µ)∨ is M(s ·µ)

(again using [BR22, Lemma 7.7] for example), we deduce ωXs
= B(M(s ·µ)). The point

5) is a consequence of [BL23, Lemma 6.7] (with P = G).
Finally we prove 1). By points, 2), 3), [BHS19, Prop. 2.3.3](which follows from [BR12,
Thm. 2.2.1] and the fact that any injective object of Oλ is a successive extension of dual
Verma modules, we deduce that B(M) is Cohen-Macaulay of dimension dimX for M
injective. Each object of Oλ has a finite injective resolution. Therefore by exactness of
B we conclude that for any object M in Oλ, B(M) has a finite resolution by Cohen–
Macaulay coherent sheaves having all the same dimension. It is easy to check that a
coherent sheaf F on X having a finite resolution F [0] −→ R• by objects Rn, in degree
n ⩾ 0, which are all Cohen–Macaulay of the same dimension is also Cohen–Macaulay
of this dimension. Namely this is direct if the resolution has length 2 and we conclude
by induction on the length of the resolution by cohomological shifting.

Remark 7.6. Instead of constructing B as a product as above, we could also directly
apply the previous results of Bezrukavnikov directly to the split group GL. The resulting
functor, say B′, will satisfy exactly the same Theorem 7.5 (with the same proof) except
maybe point 6). Surely, B′ should also satisfy 6), and thus B = B′, but we couldn’t find
a reference for this fact and this is beyond the scope of the present article.

Recall that we have fixed a point x ∈ X∞ associated which we have defined the
positive integer mx in (8).

Corollary 7.7. The functor B induces an exact functor

Bx : Oχλ
−→ Coh(X qtri

∞,x,R)

such that, for all M ∈ Oχλ
the sheaf Bx(M) is a Cohen-Macaulay sheaf and such that

[M∞,x,R(M)] = mx[Bx(M)] ∈ Z0(X qtri
∞,x,R).

Proof. Let G1 be the completion of G at the unit element. As the representations (ρv)v|p
defined by the point x are crystalline and hence de Rham we may choose a basis α of
W (x) = ∏

v∈ΣWdR(Drig(ρx,v)[1/t]) and define a point xpdR associated to x (or rather
to the representations (ρv)v|p) as in (6). For all M ∈ Oχλ

, the sheaf B(M) is a GL-
equivariant sheaf on X∧ and hence gives rise to a G1-equivariant sheaf on X̂xpdR . Now
by [BHS19, Theorem 3.4.4. and Corollary 3.5.8], see also Theorem 4.7 above, we have a
diagram

X qtri,□
∞,x,R

X qtri
∞,x,R X∧

xpdR .

π W

61



More precisely, the map π forgets the deformation of the fixed basis α, and hence it
is a G1-torsor. Moreover, W formally smooth and G1-equivariant for the natural left
actions g ·α̃ := α̃◦g−1 on the source (acting only on the deformation of the isomorphisms
αv : L⊗Qp Fv

∼−→Wv) and g · (kB, hB,N) = (gkB, ghB, g−1Ng) on the target of W .

It follows that the pullback of B(M)∧
xpdR at X̂xpdR along W is a G1-equivariant sheaf

and hence descends to a coherent sheaf

Bx(M) ∈ Coh(X qtri
∞,x,R).

It follows from the construction that M 7→ Bx(M) and that Bx(M) is Cohen-Macaulay,
as B(M) is. Moreover, Bx is exact, as W is formally smooth and hence flat.

It remains to check the assertion on cycles. But as taking cycles is additive and Bx

is exact, we only need to check this equality on a generating set of the Grothendieck
group of Oχλ

, such as the Verma modules M(w · µ). Hence the desired equality follows
from the previous result on Bezrukavnikov’s functor together with Proposition 7.2.

7.3 A detailed study of local models when n = 3

From now on we assume n = 3 until the end of section 7, so that the group GL is

GL ≃ (ResF ⊗QQp/Qp
GL3)×Qp L ≃

∏
v∈Sp

(L×Qp ResFv/Qp
GL3,Fv ) ≃

∏
τ∈ΣF

GL3,L .

We identify the previous local Weyl group W with ∏τ Wτ and each Wτ with WGL3 ≃ S3
and denote s1,τ , s2,τ the two simple reflection corresponding to the choice of the upper
Borel, and w0,τ = s1,τs2,τs1,τ the longuest element in Wτ . If τ is understood, we often
omit it from the notation.

As in section 4.1 we denote by X the Steinberg variety for the group

G = ResF ⊗QQp/Qp
GL3,

over L. As L is assumed to contain all Galois conjugates of F we haveX ≃ ∏τ∈ΣF
X3 (see

Remark 4.6 for the notation X3). The Steinberg variety X (resp. X3) has dimension 9|ΣF |

(resp. 9) and 6|ΣF | (resp. 6) irreducible components Xw, w ∈ W (resp. X3,w, w ∈ S3),
see e.g. [BHS19, Proposition 2.2.5].
Proposition 7.8. For w = (wτ )τ∈ΣF

, let s = |{τ ∈ ΣF | wτ = w0}|. Then the
component Xw is smooth if and only if s = 0. Moreover, if s ̸= 0, then the component
Xw is Cohen–Macaulay but not Gorenstein. More precisely, let

xpdR = (gB, hB,N) = (gτBτ , Nτ , hτBτ ) ∈ Xw(L) =
∏

τ∈ΣF

X3,wτ (L),

and assume that Nτ = 0 when wτ = w0. Then

dimL ωXw ⊗ k(xpdR) = 2r,

where r := |{τ | wτ = w0, and gτBτ = hτBτ}|.
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Proof. The smoothness is a consequence of Proposition 4.1. As X = ∏
τ∈ΣF

X3, it is
enough to prove the analogous result for X3 only. Indeed, by base change and com-
position of upper shriek functors, the dualizing sheaf of X is a derived tensor product⊗L

τ p
∗
τωX3 , where pτ : X −→ X3 is projection to the τ -component. But as the product

X = ∏
τ X3 is a product over a field, we find

ωX =
⊗

τ

p∗
τωX3 .

Thus from now on we denote X3 simply by X.
It is thus enough to prove that the fiber of ωXw0

, is 2-dimensional at a point of the
form (gB, 0, gB). Let q : g̃ −→ g denote the Grothendieck resolution, then X ≃ GL ×B

q−1(b). Moreover, Y := q−1(b) decomposes into irreducible components Y = ⋃
w∈W Yw

such that Xw ≃ GL ×B Yw. Hence it is enough to prove that ωYw0
has fiber dimension

2 at the point ypdR = (B, 0). As Xw0 is Cohen-Macaulay and flat over t (cf [BHS19,
Proposition 2.2.3]), we have the base change formula ωXw0

⊗X X ≃ ωXw0
. We are thus

reduced to compute the dualizing sheaf ωYw0
of the irreducible component

Yw0 = Yw0 ×t {0}

of Y = q−1(n). This scheme now has dimension 3 and we can use explicit computations.
A point of Y (L) is of the form (gB,N) ∈ (G/B × g)(L). We use the embedding

G/B ↪→ P2
L × (P2

L)∨ that sents a full flag (0 ⊂ L ⊂ P ⊂ k3) to (L ⊂ k3,P ⊂ k3). In
homogeneous coordinates ([x0 : x1 : x2], [y0 : y1 : y2]) the condition L ⊂ P is given by
x0y0 + x1y1 + x2y2 = 0. Let Y 0 ⊂ Y denote the open subset defined by the condition
x0 = y2 = 1. It is enough to compute on this open subset, as this is a neighborhood of
the point ypdR = (B, 0) = ([1 : 0 : 0], [0 : 0 : 1]). On Y

0 we can thus remove y0 from our
equations. Let us write

N =

 0 u12 u13
0 u23

0


for the universal matrix over Y 0. The ideal defining

Y
0
w0 ⊂ Z := Spec(k[x1, x2, y1, u12, u23, u13])

is then given by

Iw0 = (u23x2, u12(x2 + x1y1), u12x1 + u13x2, u23y1 − u13(x2 + x1y1)).

We remark that we can replace u12(x2+x1y1) by u12x2−x13x2y1 using the third equation,
and that automatically y1u12u23 = 0 using our new equation and u23y1−u13(x2+x1y1) =
0. We then check (e.g. using Macaulay2) that

0 −→ O2
Z

A′
−→ O6

Z
A−→ O5

Z
A′′
−→ OZ
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is a resolution of OZ/Iw0 , where

A′ =



y1 y1u13 − u12
−x2 0
x1 u23
0 −u12u23
0 −x2u23
0 x1u12 + x2u12


, A′′ =


x1u12 + x2u13

x2u23
y1u12u23

x1y1u13 − y1u23 + x2u13
x2y1u13 − x2u12


t

A =


−x2u23 −y1u23 0 x2 −y1u13 0

x1u12 + x2u13 y1u13 −y1u12 −y1 0 −y1u13 + u12
0 x1 x2 0 1 0
0 0 0 −x2 u12 0
0 0 0 x1 u13 u23

 .

Let i : Y 0
w0 ↪→ Z denote the canonical closed embedding. Then the dualizing sheaf can

be computed as ω
Y

0
w0

= i∗Ext3
OZ

(O
Y 0

w0
,OZ) which is given by

ω
Y

0
w0
≃ O2

Z/ < (y1, y1u13 − u12), (x2, 0), (x1, u12), (0, u12u23) >,

as x2u23 = x2u12 + x2u12 = 0 on Y
0
w0 . It follows that the fiber of ω

Y
0
w0

at ypdR is
2-dimensional.

Lemma 7.9. Let J ⊂ ∆GL3.

1. For w ∈W (GL3) ≃ S3 the component X3,w is smooth if w ̸= w0.

2. If xpdR = (gB3, hB3, 0) ∈ X3,w0(L), with gB3 ̸= hB3, then xpdR is a smooth point
of X3,w0.

3. For ∅ ̸= J ⊂ ∆GL3 = {s1, s2} the component X3,J,w is smooth for any w ∈
WJ\WGL3.

Proof. Point 1 is Proposition 7.8. For the point 2, denote w′ the index of the Schubert
stratum in which xpdR lies. By [BHS19, Proposition 2.5.3(ii)] it is thus enough (as
Uw0 = GL3 /B3 ×GL3 /B3 is smooth) to prove that codimt(tw0w′−1) = lg(w0)− lg(w′).
But this codimension is what we have denoted ℓ(w0w

′−1) in the proof of Proposition 4.1.
As w′ ̸= 1 and n = 3, w0w

′−1 is a product of distinct simple reflections thus ℓ(w0w
′−1) =

lg(w0w
′−1) = lg(w0) − lg(w′). For point 3, as n = 3 we have that J = {s1}, {s2} or

J = {s1, s2}. Denote P = P J . In the case J = {s1, s2}, then P J = GL3 and X3,J = g̃
is smooth. It is sufficient to prove the case of J = {s1} (the other case is exactly the
same), where an explicite computation gives the smoothness (alternatively, when wmin

has length ⩽ 1, [BD, Corollary 5.3.4] also implies smoothness).
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Corollary 7.10. Let w = (wτ )τ ∈ W and let I = ∐
τ Iτ ⊂ ∆. Let xpdR = (xpdR,τ )τ =

(gτBτ , hτBτ , Nτ ) be a point such that Nτ = 0 whenever Iτ = ∅, wτ = 1. If

M∞,x,R(MI(wmin · λ)) (resp. M∞,x,R(MI(wmin · λ)∨)),

is not a finite free X I−qtri,wminw0
∞,x,R -module, then there exists an embedding τ such that

Iτ = ∅, wτ = 1 and wx,R,τ = 1.

Proof. Assume that there is no τ such that Iτ = ∅ and wτ = wx,R,τ = 1. Lemma 7.9,
then shows that the local model XI is smooth at xpdR. By 7.2 the support

X I−qtri,ww0
∞,x,R = supp M∞,x,R(M̃I(w · λ))

is smooth. Thus M∞,x,R(M̃I(w · λ)) is a free of rank mx over X I−qtri,ww0
∞,x,R . By Remark

6.3 its follows that M∞,x,R(MI(w · λ)) is a free of rank mx over X I−qtri,ww0
∞,x,R .

The same argument also applies to M∞,x,R(M̃I(w · λ)).

Proposition 7.11. For all w ∈W the sheaf Bx(L(w · λ)) is cyclic (we recall we are in
the case n = 3). Moreover, for all w ∈W such that ww0 ⩾ wx,R the sheafM∞(L(w ·λ))
is free of rank mx over its support.

Proof. Recall that, for w ∈ W , Zw is the closure in Ñ ×N Ñ of the preimage Vw of
the Bruhat Cell Uw = GL(1, w) ⊂ GL/B × GL/B. By [CG10, Prop. 3.3.4], Vw can be
identified with the conormal bundle of Uw in Ñ × Ñ ≃ T ∗(GL/B × GL/B). As g is
isomorphic to direct sum of copies of gl3, the closure Uw of Uw in GL/B × GL/B is
smooth, hence a local complete intersection. This proves that the conormal bundle of
Uw is a closed smooth subscheme of Ñ × Ñ containing Vw as an open dense subset so
that it coincides with Zw and Zw is smooth. This implies that Zw is a smooth. As
M∞,x,R(L(ww0 ·λ)) is Cohen–Macaulay, it follows from Proposition 7.2 3) and from the
fact that aw,w′ = 0 for w ̸= w′ (see [BHS19, Rk. 2.4.5]) that the sheafM∞,x,R(L(ww0·λ))
is locally free over its support. For the same reason, the support of the Cohen-Macaulay
sheaf Bx(L(w ·λ)) is Zw, which is smooth, and thus the sheaf Bx(L(w ·λ)) is free of rank
1 over its support (i.e. cyclic).

7.4 The case of dual Vermas

For later use, let us recall the following Lemma.

Lemma 7.12. Let R be a commutative local ring and let I ⊂ J two ideals of R. Let m ⩾
1 and π : (R/I)m −→ (R/J)m a surjective R-linear map. Then there exist isomorphisms

φ : (R/J)m −→ (R/J)m, ψ : (R/I)m −→ (R/I)m

such that φ ◦ π = π ◦ ψ = can⊕m where can : R/I −→ R/J is the quotient map.
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Proof. Let (e1, . . . , em) be the standard basis of (R/I)m as an (R/I)-module and (f1, . . . , fm)
the standard basis of (R/J)m. Then (π(e1), . . . , π(em)) is a generating family of (R/J)m.
As any generating family of cardinal m of a finite free module of rank m over a local ring
is a basis (see Cor. to Prop. 6 in [Bou, Ch. 2§3.]), we see that (π(e1), . . . , π(em)) is also
a basis of (R/J)m. Therefore we can define φ by the formula φ(π(ei)) = fi. Now, for
any 1 ⩽ i ⩽ m, let f ′

i ∈ (R/I)m such that π(f ′
i) = fi. By Nakayama Lemma the family

(f ′
1, . . . , f

′
m) generates (R/I)m and so is a basis of (R/I)m. We can therefore define ψ

by the formula ψ(ei) = f ′
i .

We will use the previous Corollary 7.10 to start a devissage which will be assured by
the following Lemma. Note that in Lemma 7.13 below, we don’t need to assume that
n = 3.

Lemma 7.13. Let M be an object of Oχλ
and let Q1, . . . , Qr be quotients of M . Let Q

be the smallest quotient of M dominating all the Qi, i.e. Q = M/(M1 ∩ · · · ∩Mr) where
Mi = Ker(M → Qi) for 1 ⩽ i ⩽ r. We assume that

(i) for any 1 ⩽ i ⩽ r, the sheaf M∞,x,R(Qi) is free of rank mx over it support;

(ii) for any 1 ⩽ i ⩽ r, the sheaf Bx(Qi) is cyclic (generated by one element);

(iii) for any 1 ⩽ i ⩽ r, SuppM∞,x,R(Qi) = SuppBx(Qi) ;

(iv) the sheaf Bx(Q) is cyclic.

Then the sheaf M∞,x,R(Q) is free of rank mx over its support and

Supp(Mx,∞,R(Q) = Supp(Bx(Q)).

Proof. To ease notation we note m = mx. Let’s prove the result when r = 2. Let
A = R

qtri
∞,x,R be the ring of global sections of X qtri

∞,x,R and let Ii = Ann(Bx(Qi)) for
i ∈ {1, 2}. Define Q0 the largest common quotient of Q1 and Q2, i.e. Q0 = M/(M1+M2).
Then we have a short exact sequence

0 −→ Q −→ Q1 ⊕Q2 −→ Q0 −→ 0,

where the map Q1 ⊕Q2 → Q0 is given by (x, y) 7→ x− y. By exactness of M∞,x,R, we
have a short exact sequence

0 −→M∞,x,R(Q) −→M∞,x,R(Q1)⊕M∞,x,R(Q2) −→M∞,x,R(Q0) −→ 0.

We fix isomorphisms (A/Ii)m ∼−→M∞,x,R(Qi) for i ∈ {1, 2}. As Q0 is a quotient of
both Q1 and Q2, we have surjective maps

(A/Ii)m −→M∞,x,R(Qi) −→M∞,x,R(Q0),
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whose composite factors through (A/(I1 + I2))m. Using Lemma 7.12 we can choose the
previous isomorphisms such that the following diagram commutes

(A/I1)m ⊕ (A/I2)m A/(I1 + I2)m 0

M∞,x,R(Q1)⊕M∞,x,R(Q2) M∞,x,R(Q0) 0.

(x,y) 7→x−y

≃ (9)

As the kernel of the upper horizontal map is isomorphic to (A/(I1 ∩ I2))m, we obtain a
commutative diagram

0 (A/(I1 ∩ I2))m (A/I1)m ⊕ (A/I2)m A/(I1 + I2)m 0

0 M∞,x,R(Q) M∞,x,R(Q1)⊕M∞,x,R(Q2) M∞,x,R(Q0) 0.

≃

(10)
As Ann(Bx(Q)) = I1 ∩ I2 and Bx(Q) is cyclic, there exists an isomorphism Bx(Q) ≃

A/(I1 ∩ I2). Moreover, by hypothesis, we have Supp(Bx(Qi)) = Spec(A/Ii) so that the
maps A/(I1 ∩ I2) ≃ Bx(Q) ↠ Bx(Qi) factors through isomorphisms A/Ii ≃ Bx(Qi).
Therefore, by exactness of Bx, we also have a commutatif diagram

0 (A/(I1 ∩ I2)) (A/I1)⊕ (A/I2)

0 Bx(Q) Bx(Q1)⊕ Bx(Q2) Bx(Q0) 0.

x 7→(x,x)

≃ ≃

This implies that we have an isomorphism A/(I1 + I2) ≃ Bx(Q0). As Bx(Q0) is Cohen–
Macaulay, so is A/(I1 + I2). As the ring A/(I1 + I2) is Cohen–Macaulay, the vertical
right arrow of diagram (9) is a surjective map (A/(I1 + I2))m ↠M∞,x,R(Q0) between
two Cohen–Macaulay modules with the same cycle by Corollary 7.7. It is therefore an
isomorphism and the Snake Lemma allows us to conclude that the left vertical arrow in
(10) is an isomorphism.

Assume that the result is proved for some integer r ⩾ 2. Let Q1, . . . , Qr+1 be
quotients of M satisfying the hypotheses of the Lemma. Let Q′ be the smallest quotient
of M dominating all the Qi for 1 ⩽ i ⩽ r. Note that Bx(Q′) is a quotient of Bx(Q)
and is therefore cyclic. By induction, M∞,x,R(Q′) is free of rank m over its support
and SuppM∞,x,R(Q′) = SuppBx(Q′). The quotient Q is now the smallest quotient of
M dominating Q′ and Qr+1. Therefore the case r = 2 implies that M∞,x,R(Q) is free
of rank m over its support and SuppM∞,x,R(Q) = SuppBx(Q), which concludes the
induction.

Proposition 7.14. The coherent sheaf M∞,x,R(M(λ)∨) is locally free of rank mx over
its support. We recall that the hypothesis n = 3 is in force in this statement.
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Proof. Recall that W = ∏
τ :F ↪→LWτ and write wx,R = (wx,τ ). Let J ⊂ Hom(F,L) be

the set embeddings such that wx,τ = 1. Let E be the set of elements w = (wv) ∈ W
such that wτ ∈ {s1, s2} if τ ∈ J and wτ = 1 if τ /∈ J . By Corollary 7.10 and Theorem
7.5 2), for w ∈ E, the module M∞,x,R(M(w · λ)∨) is free of rank mx over its support
and M∞,x,R(M(w · λ)∨) = Bx(M(w · λ)∨)mx . Let Q be the smallest quotient of M(λ)∨

dominating all the M(w ·λ)∨ for w ∈ E. Lemma 7.13 implies thatM∞,x,R(Q) is free of
rank mx over its support and M∞,x,R(Q) = Bx(Q)mx . Let N be the kernel of the map
M ↠ Q.

Let I of the form∐
τ∈J{siτ } where iτ ∈ {1, 2}. Then the image of the map MI(λ)∨ ↪→

M(λ)∨ ↠ Q is QI := ⊠τ∈J L(s3−iτ · λτ )⊠τ /∈J M(λτ )∨. By Corollary 7.10, the module
M∞,x,R(MI(λ)∨) is free of rank mx over its support. Thus M∞,x,R(QI) is generated
by mx elements, and the quotient

LI :=⊠
τ∈J

L(s3−iτ · λτ ) ⊠⊠
τ /∈J

M(wx,τw0 · λτ )∨,

of QI satisfies

M∞,x,R(LI) =M∞,x,R
(
⊠
τ∈J

L(s3−iτ · λτ ) ⊠⊠
τ /∈J

L(wx,τw0 · λτ )
)
.

by Proposition 7.2. Moreover, by Proposition 7.11, this module is free of rank mx over
its support so that its fiber at x has dimension mx. This implies that the following
surjective maps are all isomorphisms

k(x)mx ≃M∞,x,R(MI(λ)∨)⊗ k(x) ∼−→M∞,x,R(QI)⊗ k(x)
∼−→M∞,x,R(LI)⊗ k(x) ≃ k(x)mx .

As moreover Ker(MI(λ)∨ → QI) = N ∩MI(λ)∨, we see that the map

M∞,x,R(N ∩MI(λ)∨)⊗ k(x) −→M∞,x,R(M(λ)∨)⊗ k(x)

is zero. As M(λ)∨ is multiplicity-free, we have N = ∑
I(N ∩MI(λ)∨) and we conclude

that the map
M∞,x,R(N)⊗ k(x) −→M∞,x,R(M(λ)∨)⊗ k(x)

is zero. Therefore M∞,x,R(M(λ)∨) ⊗ k(x) ≃ M∞,x,R(Q) ⊗ k(x) ≃ k(x)mx . It follows
from Nakayama Lemma and the first part of Proposition 7.2 2) that we have a surjection

Omx

X qtri,w0
∞,x,R

↠M∞,x,R(M(λ)∨).

These modules are both Cohen–Macaulay of the same dimension with identical associ-
ated maximal cycle by the last assertion in Proposition 7.2 2). Therefore this map is an
isomorphism.
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7.5 The isomorphism between the two functors

We recall that we assumed that n = 3.

Theorem 7.15. There is an isomorphism of coherent sheaves Omx

X qtri
∞,x,R

≃M∞,x,R(P (w0·

λ)).

Proof. Recall that A = U(t)m and set D := L⊗AW A. By Proposition 2.17, the action of
Z(g) on P (w0 ·λ) induces a structure of D-module on P (w0 ·λ). As M(λ)∨ is an injective
object, it follows from [Soe90, Prop. 6], that M(λ)∨ ≃ P (w0 · λ)⊗D (D/mD), where mD

is the maximal ideal of D. We have also a local map of local algebras α : D → OX qtri
∞,x,R

defined in section 6.3. It follows from Corollary 6.14 that these define the same action
of D on M∞,x,R(P (w0 · λ)). As moreover the functor M∞,x,R is exact, we have an
isomorphismM∞,x,R(M(λ)∨) ≃M∞,x,R(P (w0 ·λ))⊗D (D/mD). As moreover the map
A⊗AWA→ OX qtri

∞,x,R
is a local map of local rings, we have an isomorphismM∞,x,R(P (w0·

λ)) ⊗ k(x) ∼−→ M∞,x,R(M(λ)∨) ⊗ k(x) and thus dimLM∞,x,R(P (w0 · λ)) ⊗ k(x) = mx

by Proposition 7.14.
It follows from Corollary 6.17 that we have a surjection

Omx

X qtri
∞,x,R

↠M∞,x,R(P (w0 · λ)∨).

These modules are both Cohen–Macaulay of the same dimension with identical associ-
ated maximal cycle by Corollary 7.7. Therefore this map is an isomorphism.

Recall that the map (κ1, κ2) of section 4.1 provides a map A ⊗AW A → Rqtri
∞,x,R

and thus a map C := L ⊗AW A → R
qtri
∞,x,R. We use this map to see Rqtri

∞,x,R as a local
C-algebra. Recall from Proposition 2.17 that the map

(Id⊗Ad(w0)) ◦ tλ ◦ ξ : Z(g) −→ L⊗U(t)W
m
U(t)m ≃ C

is surjective and that its kernel of ξ̃ coincides with the kernel of the natural map Z(g)→
End(P (w0 · λ)). For any object M of Oχλ

, this provides a structure of C-module on
V(M) := HomOalg(P (w0 · λ),M) (note that the twist by Ad(w0) compared to [Soe90]
comes from Remark 6.15).

Proposition 7.16. There is an isomorphism of functors Bmx
x ≃ M∞,x,R on the full

subcategory of Oχλ
whose objects are the injective objects of Oχλ

.

Proof. Let M be an injective object of the category Oχλ
. By [Soe90, Prop. 6], the

canonical map P (w0 · λ) ⊗Z(g) V(M) → M is an isomorphism. If F is M∞,x,R or Bx,
there is therefore an isomorphism of functors on the subcategory of injective objects of
Oχλ

, F(−) ≃ F(P (w0 ·λ))⊗C V(−). This follows from the exactness of F and Corollary
6.14 for F = M∞,x,R and from [Bez16, Prop. 23] for F = Bx. Therefore the result
follows from Theorem 7.15 and Theorem 7.5 4).
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Corollary 7.17. There exists an isomorphism of functors Bmx
x ≃M∞,x,R.

Proof. As the functors Bmx
x and M∞,x,R are both exact, this follows from Proposition

7.16 and [Gab62, Cor. 2 to Prop. 14].

Corollary 7.18. Let Q be a quotient of the anti-dominant projective P (w0 · λ) in the
category Oχλ

. If M∞,x,R(Q) ̸= 0, then it is finite free of rank mx over its support and
its support is Cohen–Macaulay.

Proof. As Bx(P (w0 · λ)) is generated by one element so is Bx(Q) which is thus free of
rank 1 over its support. It follows from Corollary 7.17, that M∞,x,R(Q) is free of rank
mx over its support.

Corollary 7.19. For all w ∈W , the coherent sheaf

M∞,x,R(P (w · λ)∨),

is free of rank mx over its support.

Proof. By Corollary 7.18, it is sufficient to prove that M∞,x,R(P (w · λ)∨) is non zero
and that there exists a surjective map

P (w0 · λ) −→ P (w · λ)∨.

As P (w0 · λ) is the projective envelope of L(w0 · λ), this is equivalent to showing
that the socle of P (w · λ) is isomorphic to L(w0 · λ). By [Str03, Thm. 8.1], the socle of
P (w · λ) is isomorphic to L(w0 · λ)m with m = [P (w · λ) : M(λ)] = [M(λ) : L(w · λ)]
by [Hum08, Thm. 3.9]. As g is isomorphic to a direct sum of copies of gl3,L, we have
[M(λ) : L(w · λ)] = 1 for any w ∈W .

Moreover, as [M(λ) : L(λ)] = 1, we have

[P (w · λ)∨ : L(λ)] = [P (w · λ) : L(λ)] = 1.

As M∞,x,R(L(λ)) ̸= 0, we have M∞,x,R(P (w · λ)∨) ̸= 0.

Theorem 7.20. For all w ∈ W , with ww0 ⩾ wx,R, the coherent sheaf M∞,x,R(M(w ·
λ)∨) is isomorphic to O⊕mx

X qtri,ww0
∞,x,R

. For all w ∈ W , with ww0 ⩾ wx,R, the coherent sheaf

M∞,x,R(M(w · λ)) is isomorphic to(
ωX qtri,ww0

∞,x,R

)⊕mx .

Proof. This is direct consequence of Corollary 7.17 and Theorem 7.5 2) and 3).
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7.6 Duality

We recall that we assumed that n = 3.
For a Cohen–Macaulay sheaf F on X qtri

∞,x,R of dimension dimX qtri
∞,x,R, we write

ω•
X qtri

∞,x,R
for the dualizing complex and the complex

D(F) := RHomX qtri
∞,x,R

(F , ω•
X qtri

∞,x,R
)[−dimX qtri

∞,x,R].

is concentrated in degree 0. We denote

F∨ = H0(D(F)) = HomX qtri
∞,x,R

(F , ωX qtri
∞,x,R

)

the degree 0 coherent sheaf to which we refer as the shifted Serre dual of F , where

ωX qtri
∞,x,R

:= H− dim X qtri
∞,x,R(ω•

X qtri
∞,x,R

) = O∨
X qtri

∞,x,R
.

Lemma 7.21. Let F be a maximal Cohen–Macaulay coherent sheaf over X qtri
∞,x,R. Then

[F∨] = [F ]. As a consequence if Y ⊂ X qtri
∞,x,R is a maximal Cohen–Macaulay closed

subscheme (i.e. a closed subscheme whose structure sheaf is a maximal Cohen–Macaulay
coherent sheaf), we have [ωY ] = [Y].

Proof. Let R be a local complete regular ring such that OX qtri
∞,x,R

is isomorphic to a
quotient of R. Then we can compute F∨ by the formula F∨ = Extd

R(F , R) where
d is the codimension of X qtri

∞,x,R in Spec(R). By definition, we have [F ] = ∑
z a(z)z

where the sum is over all maximal points in Supp(F) and a(z) is the length of the finite
length Rz-module Fz. Let z ∈ Spec(R) be a maximal point of the support of F . The
localization Rz of R at z is a local regular ring and we have F∨

z ≃ Extd
Rz

(Fz, Rz). As
Extd

Rz
(−, Rz) is a an exact functor on the subcategory of finite length Rz-modules and

dimk(z) Extd
Rz

(k(z), Rz) = 1, the length of the Rz-module Extd
Rz

(Fz, Rz) is a(z). So we
have proved the claim.

Proposition 7.22. Let M be a subobject of the anti-dominant projective P (w0 ·λ). As-
sume that M∞,x,R(M) ̸= 0 and let Y be the support of M∞,x,R(M). Then M∞,x,R(M)
is isomorphic to ωmx

Y and Y is Cohen–Macaulay.

Proof. Let Q be the quotient of P (w0 · λ) by M . If M∞,x,R(Q) = 0, then Theorem
7.15 implies the result. So we can assume that M∞,x,R(M) ̸= 0 and M∞,x,R(Q) ̸= 0.
By Corollary 7.18, M∞,x,R(Q) is isomorphic to Omx

Z for Z ⊂ X qtri
∞,x,R maximal Cohen–

Macaulay. Using Lemma 7.12, we can construct a commutative diagram

0 M∞,x,R(M) M∞,x,R(P (w0 · λ)) M∞,x,R(Q) 0

0 Ker Omx

X qtri
∞,x,R

Omx
Z 0.

≃ ≃ ≃

canmx
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Let I be the ideal defining Z so that Ker ≃ Imx , so we can assume mx = 1. As X qtri
∞,x,R

and Z are Cohen–Macaulay of the same dimension, then I is also Cohen-Macaulay of
the same dimension. In particular its support is determined by its cycle and Lemma
7.21 gives [I∨] = [I]. But as X qtri

∞,x,R is a complete intersection, the dual of the previous
bottom sequence gives

I∨ ≃ OY ,

with Y = Supp(I∨) = Supp(I), which is thus Cohen-Macaulay, and thus I = ωY .

Remark 7.23. Actually Proposition 7.22 is also true with the functors B and Bx of
Theorem 7.5 and Corollary 7.7, with the same proof. For B, this uses that the dualizing
sheaf of X is the structure sheaf. This is true as the closed immersion given as the
composite X ↪→ g̃×g g̃ ↪→ g̃× g̃ is a global relative complete intersection and the latter
has a trivial dualizing module, by [MvdK92, Lemma 2.3], and [Sta24, Lemma 0AA2,
0AA3].

We choose for all λ dominant weight, and all w ∈ W a surjective map πw : P (w0 ·
λ) −→ P (w · λ)∨ (see proof of Corollary 7.19).

Lemma 7.24. For all map fw,w′ : P (w · λ)∨ −→ P (w′ · λ)∨ there exists a map f̃w,w′ :
P (w0 · λ) −→ P (w0 · λ) such that the following diagram commutes

P (w0 · λ) P (w0 · λ)

P (w · λ)∨ P (w′ · λ)∨

f̃w,w′

πw πw′

fw,w′

(11)

Proof. As πw′ : P (w0 · λ) −→ P (w′ · λ)∨ is surjective and P (w0 · λ) is projective, the
map Hom(P (w0 · λ), P (w0 · λ)) −→ Hom(P (w0 · λ), P (w′ · λ)∨) is surjective, thus there
exists f̃w,w′ mapping to fw,w′ ◦ πw. This proves the claim.

Lemma 7.25. Let F be either Bx or M∞,x,R. There exists a family of isomorphisms
indexed by w ∈W

Ψw : F(P (w · λ)∨) ∼−→ F(P (w · λ))∨.

such that for any w,w′ ∈ W and any if fw,w′ : P (w · λ)∨ −→ P (w′ · λ)∨, the following
diagram commutes

F(P (w · λ)∨) F(P (w′ · λ)∨)

F(P (w · λ))∨ F(P (w′ · λ))∨

F(fw,w′ )

Ψw Ψw′
F(f∨

w,w′ )∨
(12)

where we denote by the same symbol (·)∨ the duality in O and Serre duality on coherent
sheaves.
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Proof. Let w ∈ W . The sheaves F(P (w · λ)∨) and F(P (w · λ))∨ are isomorphic to the
same quotient of F(P (w0 ·λ)) by Theorem 7.5 for Bx and Corollary 7.19 and Proposition
7.22 for M∞,x,R. This implies that there exists an isomorphism Ψw : F(P (w · λ)∨) ∼−→
F(P (w · λ))∨ such that the following diagram commutes

F(P (w0 · λ)) F(P (w0 · λ))∨

F(P (w · λ)∨) F(P (w · λ))∨

Ψw0

F(πw) F(π∨
w)∨

Ψw

(13)

Fix w,w′ and let’s show that the diagram (12) is commutative. Let fw,w′ ∈ Hom(P (w·
λ)∨, P (w′ · λ)∨). By Lemma 7.24, there exists a map f̃w,w′ ∈ End(P (w0 · λ)) such that
the diagram (11) is commutative. We first consider the following diagram

F(P (w0 · λ)) F(P (w0 · λ))∨

F(P (w0 · λ)) F(P (w0 · λ))∨

Ψw0

F(f̃w,w′ ) F(f̃∨
w,w′ )∨

Ψw0

(14)

But as f̃w,w′ ∈ EndO(P (w0 · λ), P (w0 · λ)) ≃ D = L ⊗AW A, it follows from Corollary
6.14 for F = M∞,x,R and [Bez16, Prop. 23] for F = Bx, and the fact that Ψw0 is
OX qtri

∞,x,R
-linear, that this diagram commutes. Now consider the diagram

F(P (w0 · λ))∨ F(P (w′ · λ))∨

F(P (w0 · λ)) F(P (w′ · λ)∨)

F(P (w0 · λ))∨ F(P (w · λ))∨

F(P (w0 · λ)) F(P (w · λ)∨)

F(π∨
w′ )∨

F(f̃∨
w,w′ )∨

F(πw′ )

Ψw0 Ψw′

F(π∨
w)∨

F(f∨
w,w′ )∨

F(πw)

Ψw0

F(f̃w,w′ )

Ψw

F(fw,w′ )

All faces, except maybe the right hand one (which is the one of the statement), of
this cube are commutative diagrams by functoriality and diagrams (11), (13), (14).
Moreover F(πw), F(π∨

w)∨, F(πw′), F(π∨
w′)∨ are surjective, thus the last right hand face

also commutes.

Corollary 7.26. For any M ∈ Oalg, there is a compatible choice of isomorphisms

ΨM : F(M∨) ∼−→ F(M)∨,

where F is either the functor B,Bx or M∞,x,R. In particular, F is compatible with
duality.
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Proof. By Lemma 7.25, we have an isomorphism F((−)∨) ≃ F(−)∨ on the full subcate-
gory of Oχλ

whose objects are the injective one, when F isMx,∞,R,Bx or B, see Remark
7.23. The result follows again from [Gab62, Cor. 2 to Prop. 14].

7.7 Consequences

We recall that the point x = (ρp, ρ
p, z) is associated to an automorphic representation

π with associated Galois representation ρ and that n = 3. We write mρ for the ideal of
Rρ,S corresponding to ρ, see Remark 5.9 and just before. In particular mx is the pullback
of mρ by R∞ −→ Rρ,S . We recall that we assumed that ρp is φ-generic. In this section
we keep the setting introduced in subsection 7.3. In particular n = 3.

Lemma 7.27. For all M ∈ Oχλ
,

M∞,x,R(M)⊗k(x) ≃
(
HomU(g)(M,Πla

∞[mx])N0 [mδR ]
)′
≃
(
HomU(g)(M,Πla[mρ])N0 [mδR ]

)′
.

Proof. By construction (see Remark 6.2), we have

M∞,x,R(M) ≃
(
HomU(g)(M,Πla

∞[m∞
x ])N0 [m∞

δR ]
)′
.

Moreover, as x corresponds to ρ, which is classical, we have Π∞[mx] = Π[mx] (Proposition
5.11). By Corollary 6.11, the X∞×T̂ -structure on the sheafM∞,x,R(M) factors through
X qtri

∞,x,R −→ X∞ × T̂ . Thus,

M∞,x,R(M)⊗ k(x) ≃
(
HomU(g)(M,Πla

∞[mx])N0 [mδR ]
)′
.

Corollary 7.28. Let δ = δλδsm : T → L× be a continuous character with λ ∈ X∗(T )+

and δsm : T −→ L× smooth, and let χS : TS → L be a character such that S†(Kp)[χS ⊗
δ] ̸= {0}. Assume that the Galois representation ρ associated to χS is crystalline Hodge-
Tate regular and φ-generic at p satisfying (1) and let x = (ρp, ρ

p, z) associated to ρ as
before. Let r = |{τ ∈ ΣF | ωx,R,τ = 1}|. Then

dimS†(Kp)[χS ⊗ δ] = 2r dimScl(Kp)[χS ⊗ δ] ̸= 0.

Proof. The assumptions imply δsm = δR for a refinement R of ρp. In particular δsm is
unramified. By Breuil’s adjunction formula [Bre15, Théorème 4.3] (see also [BHS19, eq.
(5.5)]) and [BHS19, Lemma 5.2.3] we have

S†(Kp)[χS ⊗ δ] = HomU(g)(M(λ),Πla
∞[χS ])N0 [mδR ],

Scl(Kp)[χS ⊗ δ] = HomU(g)(L(λ),Πla
∞[χS ])N0 [mδR ].

In particular, by Lemma 7.27, these spaces are indentified with the dual vector spaces of
the fiber ofM∞,x,R(M(λ)) resp. ofM∞,x,R(L(λ)) at k(x). Thus, asmx = dimM∞,x,R(L(λ))⊗
k(x), the result is a direct corollary of Theorem 7.20 (and Proposition 7.8).
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We can also deduce the following corollaries on the structure of the completed co-
homology Π (see Definition 5.2), which is a representation of G := U(Qp). Recall that
g = Lie(GL).

If M is a U(g)-module, we denote HomL(M,L) the U(g)-module with underlying
vector space HomL(M,L) and action of r ∈ U(g) given by

(r · ϕ)(m) := ϕ(ṙm), ϕ ∈ HomL(M,L),m ∈M,

where r 7→ ṙ is the anti-involution of U(g) extending the multiplication by −1 on g.
We denote B the Borel opposite to B with respect to T , b its Lie algebra and n the
nilpotent radical of n. We then denote B = B(Qp), B = B(Qp) and δB the modulus
character of B. We then denote M ′ := HomL(M,L)n∞ the vectors which are killed by
some finite power of the augmentation ideal of U(n). If M = ⊕

λ∈X∗(T )L
Mλ ∈ Og,b

alg,
then M ′ ∈ Og,b

alg. Finally recall that if M ∈ Og,b
alg and δ is a smooth character of T (Qp)

with values in L×, then Orlik-Strauch constructed (see [OS10] or also [Bre16])

FG
B

(M, δ),

which is a locally analytic representation of G. In particular, locally analytic principal
series are of this form : if λ ∈ X∗(T ), then we have (M(λ)∨)′ ≃ U(g)⊗U(b) (−λ) ∈ Og,b

alg,
and

FG
B

((M(λ)∨)′, δ) = IndG
B

(δλδ)la (15)

where IndG
B

(δλδ)la denotes the locally analytic induced representation of δλδ from B to
G. When λ is dominant, it contains the (locally) algebraic induction IndG

B
(δλδ)lalg.

Recall that ρ : GalE −→ GLn(L) associated to our point x ∈ X∞(L) is crystalline,
Hodge-Tate regular and φ-generic. Let R a choice of refinement and δR the associated
unramified character. Denote λ = (λτ )τ := HT(ρ) − δG ∈ X∗(T )+ the (dominant)
algebraic character associated to ρ as before, where HT(ρ) = (h1,τ < · · · < hn,τ )τ∈ΣF

∈
X∗(T ) gives the Hodge-Tate weights of ρ. Recall also wx,R = (wx,R,τ )τ∈ΣF

and mx ⩾ 1
as in Section 7.1. More directly

mx = dim HomG(IndG
B

(δλδRδ
−1
B )lalg,Πla[mρ]),

and is independant of R as IndG
B

(δλδRδ
−1
B )lalg is, by [Bre16, Lemme 6.2].

Corollary 7.29. Let x, ρ, λ,R as above. For all w ⩽ wx,Rw0, we have

dim HomG(IndG
B

(δw·λδRδ
−1
B )la,Πla[mρ]) = mx.

Proof. By [Bre15, Proposition 4.2] and [BHS19, Lemma 5.2.3], we have, for all M ∈ O

HomU(g)(M,Πla[mρ])N0 [mδR ] ≃ HomG(FG
B

(M ′, δRδ
−1
B ),Πla[mρ]). (16)
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Thus, using Π[mρ] = Π∞[mx], equation (15) and Lemma 7.27 we deduce that the state-
ment is equivalent to

dim HomU(g)(M(w · λ)∨,Πla[mρ])[mδ] = dimM∞,x,R(M(w · λ)∨)⊗ k(x) = mx,

which is Theorem 7.20.

Let gl3 be the Lie algebra (over L) of the group GL3. For a dominant λ for gl3 we
consider the extension

N(λ) = [L(s1 · λ)⊕ L(s2 · λ)− L(λ)] ∈ Ext1
O(L(λ), L(s1 · λ)⊕ L(s2 · λ)),

which is non trivial when mapped in each of Ext1
O(L(λ), L(si · λ)), for i = 1, 2. This

extension can be realized as quotient of the Verma module M(λ) by M(s1s2 ·λ)+M(s2s1 ·
λ). As before we consider the Lie algebra

g = Lie(GL) ≃ Lie
(
(ResF ⊗QQp/Qp

GL3)×Qp L
)
≃

∏
τ∈ΣF

gl3.

We have a decomposition with b ≃
∏

τ bτ where bτ is the projection of b on the gl3-factor
of g indexed by τ ∈ ΣF . Associated to a dominant weight λ = (λτ )τ ∈ X∗(T )+ and
w = (wτ )τ∈ΣF

∈W we define the objects

N(λ,w) =

 ⊠
τ :wτ ̸=1

L(λτ ) ⊠ ⊠
τ :wτ =1

N(λτ )

 and S(λ,w) = ⊠
τ∈ΣF

S(λτ , wτ )

of the category Oχλ
, where

S(λτ , wτ ) =
{ ⊕

w′⩽wτ w0 L(w′ · λτ ) if wτ ̸= 1⊕
ℓ(w′ )̸=1 L(w′ · λτ )⊕N(λτ ) if wτ = 1 ,

so that N(λ,w) ⊂ S(λ,w) and moreover S(λ,w) = ⊕
w′⩽ww0 L(w′ · λ) if wτ ̸= 1 for

all τ . The motivation for defining N(λ,w) in this way is that FG
B

(N(λ,wx,R)′, δRδ
−1
B )

(resp. FG
B

(S(λ,wx,R)′, δRδ
−1
B )) should be the largest subrepresentation of Πla[ρ] which

can be realized as a quotient of FG
B

(M(λ)′, δRδ
−1
B ) (resp. through which all maps from

FG
B

((M(w · λ))′, δRδ
−1
B ), w ∈W , to Πla[ρ] factors).

Theorem 7.30. For x, ρ, λ,R as before, we have an injection of G-representations

FG
B

(S(λ,wx,R)′, δRδ
−1
B )⊕mx ↪→ Πla[mρ].

Moreover, ∀w ∈ W , each map from FG
B

(M(w · λ)′, δRδ
−1
B ) to Πla[mρ] factors through a

map from FG
B

(S(λ,wx,R)′, δRδ
−1
B ) to Πla[mρ].
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Proof. In order to simplify notations, in all this proof we will use notation F(M) =
FG

B
(M ′, δRδ

−1
B ) for any object M in Oχλ

. In particular note that F is covariant.
Let J := {w ∈W | w ⩽ wx,Rw0} and let ∼ be the equivalence relation on J generated

by w ∼ w′ if and only if there exists τ ∈ Σ such that wx,R,τ = 1 with wτ , w
′
τ ∈ {s1, s2}

and wτ ′ = w′
τ ′ for all τ ′ ̸= τ . Note that we have

S(λ,wx,R) ≃
⊕

w∈J/∼
F (w) (17)

where, given w, let Iw = {τ ∈ ΣF | wx,R,τ = 1 and wτ ∈ {s1, s2}} for any choice of a
representative w of w, and

F (w) := ⊠
τ∈ΣF \Iw

L(wτ · λτ ) ⊠⊠
τ∈Iw

N(λτ ).

For later reasons, we introduce the following notation. Let w ∈ W and I ⊂ {τ ∈ ΣF |
wx,R,τ = 1 = wτ}. Then we set

FI(w) := ⊠
τ∈ΣF \I

L(wτ · λτ ) ⊠⊠
τ∈I

N(λτ ).

Then FI(w) is a quotient of M(w · λ). Remark that F (w) = FIw(w′) where w′ = (w′
τ )τ

with w′
τ = wτ if τ /∈ Iw and w′

τ = 1 if τ ∈ Iw. Conversely not all FI(w) are some F (w′)
but is a subobject of a unique F (w′), namely F (w).

We first prove the second claim, i.e. that each map from F(M(w · λ)) to Πla[mρ]
factors through a map from F(S(λ,wx,R)) to Πla[mρ]. This will be a consequence of the
fact that the map

M∞,x,R(M(w · λ))⊗ k(x)→M∞,x,R(FI(w))⊗ k(x)

is an isomorphism when

I = {τ ∈ ΣF | wx,R,τ = wτ = 1}.

Let’s prove this claim. By Corollary 7.17, it is equivalent to prove the same claim with
M∞,x,R replaced with Bx. By Theorem 7.5 6), it is sufficient to prove that for each
τ ∈ ΣF , the maps

Bτ (M(wτ · λτ ))xpdR,τ
⊗ k(xpdR,τ )→ Bτ (L(wτ · λτ ))xpdR,τ

⊗ k(xpdR,τ ) if τ /∈ I
Bτ (M(λτ ))xpdR,τ

⊗ k(xpdR,τ )→ Bτ (N(λτ ))xpdR,τ
⊗ k(xpdR,τ ) if τ ∈ I

are isomorphisms. For the case τ /∈ I, this is a consequence of the fact that Bτ (M(wτ ·
λτ ))xpdR,τ

is free of rank one over its support (using Theorem 7.5 and the fact that the
support is a complete intersection by Proposition 7.8). Therefore it is sufficient to prove
that the map

Bτ (M(λτ ))xpdR,τ
⊗ k(xpdR,τ )→ Bτ (N(λτ ))xpdR,τ

⊗ k(xpdR,τ )
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is an isomorphism when τ ∈ I. As N(λτ ) is the cokernel of a map

M(s1s2 · λτ )⊕M(s2s1 · λτ )→M(λτ ),

it is sufficient to prove that the unique (up to scalar) non trivial mapM(s1s2·λ)→M(λτ )
induces the zero map after application of the functor Bτ (−)xpdR,τ

⊗ k(xpdR,τ ) (the case
of M(s2s1 · λτ ) is similar). As the map M(s1s2 · λ) → M(λτ ) factors through the
unique non trivial map M(s1 · λτ ) → M(λτ ), it is sufficient to prove that any map
M(s1s2·λ)→M(s1·λτ ) induces the zero map after application of Bτ (−)xpdR,τ

⊗k(xpdR,τ ).
As the composition M(s1s2 · λτ ) → M(s1 · λτ ) → L(s1 · λτ ) is zero, it is sufficient to
prove that the map M(s1 · λτ )→ L(s1 · λ) induces an isomorphism after application of
the functor Bτ (−)xpdR,τ

⊗ k(xpdR,τ ). This is again a direct consquence of the fact that
Bτ (M(s1 · λ))xpdR,τ

is free of rank one over its support.
Note that this proves that

dimL Bτ (N(λτ ))xpdR,τ
⊗ k(xpdR,τ ) = dimL Bτ (M(λτ ))xpdR,τ

⊗ k(xpdR,τ ) = 2

for any τ such that wx,R,τ = wτ = 1. Using Corollary 7.17, Theorem 7.5 6) and
Proposition 7.8, we deduce that

dimLM∞,x,R(FI(w))⊗ k(x) = 2|I|mx (18)

for any w and I ⊂ {τ ∈ ΣF | wx,R,τ = wτ = 1}. When I = {τ ∈ ΣF | wx,R,τ = wτ = 1}
this coincides with dimLM∞,x,R(M(w · λ)) ⊗ k(x) proving the equality and thus the
second part of the statement.

We now focus on the first part of the statement, i.e. that there is an injection of
G-representations

F(S(λ,wx,R))⊕mx ↪→ Πla[mρ].

We first show that the kernel of the map

M∞,x,R(F (w))⊗ k(x) −→
⊕
Q

M∞,x,R(Q)⊗ k(x) (19)

has dimension mx for any w ∈ J/ ∼, where the sum is taken over all strict quotients Q
of S(λ,wx,R).

We claim that if τ ∈ Iw, then

dimL Bτ (N(λτ )/L(si · λτ ))xpdR,τ ,τ ⊗ k(xpdR,τ ) = 1 (20)

for any i ∈ {1, 2}. As N(λτ )/L(si · λτ ) ≃ M{si}(λ), it is sufficient to check that
Bτ (M{si}(λ)) is free of rank 1 over its support. However this is a consequence of Theorem
7.5 and the fact that its support is a complete intersection as follows from the explicit
computations of section 7.3.
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Now each quotient of F (w) is of the form

FJ1,J2(w) := ⊠
τ∈(ΣF \Iw)

L(wτ ·λτ )⊠⊠
τ∈J1

L(λτ )⊠⊠
τ∈J2

N(λτ )/L(siτ ,τ ·λτ )⊠ ⊠
τ∈Iw\(J1∪J2)

N(λτ ),

for some J = J1
∐
J2 ⊂ Iw, iτ ∈ {1, 2} for τ ∈ J2. Using again Corollary 7.17, Theorem

7.5 6) and (20), we deduce that

dimLM∞,x,R(FJ1,J2(w))⊗ k(x) = 2|Iw|−|J1∪J2|mx.

Moreover, we have the natural quotient map

FJ1,J2(w) −→ FJ1∪J2,∅(w),

and thus, because of equality of dimensions,

M∞,x,R(FJ1,J2(w))⊗ k(x) =M∞,x,R(FJ1∪J2,∅(w))⊗ k(x).

Therefore the kernel of the map (19) is equal to the kernel of the map

M∞,x,R(F (w))⊗ k(x) −→
⊕

∅≠K⊂Iw

M∞,x,R(FK,∅(w))⊗ k(x).

ForK ⊂ Iw, setG(K) := Ker(M∞,x,R(F (w))⊗k(x) −→M∞,x,R(FK,∅(w))⊗k(x)). Note
that if K,K ′ ⊂ Iw, FK∩K′,∅(w) is the smallest quotient of F (w) dominating FK,∅(w)
and FK′,(w). As M∞,x,R(−) ⊗ k(x) is right exact, this implies that G(K ∩ K ′) =
G(K) ∩G(K ′).

By Grassmann’s formula the dimension of the kernel of the map (19) is thus

D(w) := dimG(∅)−
∑

∅≠K⊂Iw

dim(∩k∈KG({k})).

Now for each K ⊂ Iw, we have ∩k∈KG({k}) = G(K) which has dimension 2|Iw|−|K|mx

so that
D(w) = 2|Iw|mx −

∑
∅≠K⊂Iw

(−1)|K|+12|Iw|−|J |mx = mx.

Now we prove that, for any w ∈ J/ ∼,

socG(F(F (w))) = F(socOχλ
(F (w))). (21)

As any F (w) is of the form FI(w) for some w ∈ J and I ⊂ {τ ∈ ΣF | wx,R,τ = wτ = 1},
it is sufficient to prove, more generally, that for any w ∈ J and I ⊂ {τ ∈ ΣF | wx,R,τ =
wτ = 1}

socG(F(FI(w))) = F(socOχλ
(FI(w))).

First we remark that FI(w) is multiplicity free and that all its simple subquotients are
isomorphic to L(w′ · λ) for some w′ ∈ J so that dim(M∞,x,R(L(w′ · λ)) ⊗ k(x)) =
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mx by Proposition 7.11. Moreover it follows from [OS15, Theorem 1.1] and [Bre16,
Thm. 2.3] that each F(L(w′ · λ)) is topologically irreducible. By exactness of F(−), we
have socG(F(FI(w))) ⊃ F(socOχλ

(FI(w))). We prove the converse : let Q be a simple
subquotient of FI(w) such that F(Q) ⊂ socG(F(FI(w))), then Q ⊂ socOχλ

FI(w). We
prove the result by induction on the cardinal of I. If I = ∅, there is nothing to prove as
FI(w) is simple. So we assume I ̸= ∅ and let Q be a simple subquotient Q of FI(w) such
that F(Q) ⊂ F(FI(w)). Then Q is of the form L(w′ ·λ), for some w′ such that wτ = w′

τ

for all τ ̸∈ I, w′
τ ∈ {1, s1, s2}. Let I ′ = {τ ∈ I | w′

τ = 1}. Then

FI′(w′) :=⊠
τ /∈I′

L(w′
τ · λτ ) ⊠⊠

τ∈I′

N(λτ ),

is a subrepresentation of FI(w) (as L(si · λτ ) is a subrepresentation of N(λτ )) and Q is
the cosocle of FI′(w′). By [Bre16, Cor. 2.7], the representation F(FI(w)) has multiplicity
one so that F(Q) ⊂ F(FI′(w′)). If I ′ ⊊ I, our induction hypothesis implies that Q ⊂
socOχλ

FI′(w′) ⊂ socOχλ
(FI(w)). So we can assume that I = I ′ and Q = L(w · λ) is

actually the cosocle of FI(w). The exactness of F(−) and our hypothesis assure that

F(FI(w))) ≃ F(Q)⊕FG
B

(N),

where N = Ker(FI(w) −→ L(w · λ)). Now, N has 2|I| distincts simple objects in its
cosocle which are of the form L(w′ ·λ) for w′ ∈ J so that, using the exactness ofM∞,x,R
and (18),

2|I|mx = dimL HomG(FG
B

(FI(w)),Πla[mρ])
= dimL HomG(F(Q),Πla[mρ]) + dimL HomG(F(N),Πla[mρ])
⩾ dimLM∞,x,R(Q)⊗ k(x) + dimLM∞,x,R(cosocOχλ

(N))⊗ k(x)
= mx + 2|I|mx > 2|I|mx.

This gives a contradiction and finishes the induction.
Finally we prove the existence of an injection

F(S(λ,wx,R))⊕mx ↪→ Πla[mρ].

Let w ∈ J/ ∼. Dualizing (19), we see that the cokernel of the map⊕
Q

HomG(F(Q),Πla[mρ]) −→ HomG(F(F (w)),Πla[mρ]) (22)

has dimension mx where the sum is taken over the strict quotients Q of F (w). We
choose mx maps f1, . . . , fmx in HomG(F(F (w)),Πla[mρ]) whose images in this cokernel
are linearly independant. We claim that the map fw = (f1, . . . , fmx) is injective. Namely,
if it is not, a linear combination of these maps is zero on some simple constituant of the
socle of F(F (w)) and thus on some F(Q) for Q ⊂ F (w) by (21). This implies that this
linear combination is zero in the cokernel of (22), that is false.
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Finally the decomposition (17), the fact that the socles of the various F (w) are two
by two distincts, (21) and [Bre16, Cor. 2.7] again impliy that the map (fw)w∈J/∼ provides
the desired injection.

Remark 7.31. Assume for simplicity that ΣF is reduced to one element τ so that G =
U(Qp) ≃ GL3(Qp). Assume moreover that wR = 1 so that the Galois representation ρp

is completely reducible and semisimple, i.e. a direct sum of three characters. Let

LALG := IndG
B

(δλδRδ
−1
B )lalg = L(λ)⊗L IndG

B
(δRδ

−1
B )sm.

Then the subspace of locally analytic vectors of Π[mρ]la is isomorphic to LALGmx . More-
over it is expected that Π[mρ] is isomorphic to the direct sum of (mx copies of) 6 con-
tinuous unitary principal series and an other direct factor SC which should be a kind of
“supercuspidal” representation of GL3(Qp) (see [BHH+] for a similar and precise con-
jecture in the mod p case). We deduce from Theorem 7.30 the existence of an injection
of the following locally analytic representation of GL3(Qp) in Π[mρ]:

FG
B

(N(λ)′, δRδ
−1
B ) = [(LAs1 ⊕ LAs2)− LALG],

which is a non split extension of LALG by the direct sum of two topologically irreducible
locally analytic representations without locally algebraic vectors. More precisely, for
s ∈ S3,

LAs := FG
B

(L(s · λ)′, δRδ
−1
B ) (23)

is the socle of the locally analytic principal series IndG
B

(δs·λδRδ
−1
B )la. If our expectation

holds true, the representation (23) appears as a subspace of locally analytic vectors of
SCla showing that this representation SCla has to contain non trivial locally algebraic
vectors in subquotient but not in its socle.

8 Existence of very critical classical modular forms

In this section we show the existence of a classical form f satisfying the hypothesis of
Theorem 1.2. The main difficulty is to find a form satisfying the Taylor-Wiles hypothesis,
which is moreover completely critical at p (i.e. wρf ,R = 1).

For a finite extension F of Qp, we denote by recF : F× → Galab
F the local reciprocity

map sending a uniformizer of F on a geometric Frobenius. If K is a number field we
denote by ArtK the Artin reciprocity map A×

K/K
× → Galab

K such that, for any finite
place v of K the precomposition of ArtK with the inclusion K×

v ↪→ A×
K is recKv . If Ψ is

a character of A×
K/K

× and v is a finite place of K such that Ψv is unramified, we write
Ψ(v) for the evaluation of Ψv at an uniformizer of F×

v . First, we remark the following,

Lemma 8.1. Let K/Qp be a finite extension and let ρp : GalK −→ GLn(Qp) be a
crystalline representation with regular Hodge–Tate weights such that there exists a re-
finement F• ⊂ Dcris(ρp) which contains the Hodge filtration. We moreover assume that
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the eigenvalues of the linearization of the crystalline Frobenius on Dcris(ρp) are pairwise
distinct. Then ρp is a split sum of characters.

Proof. This is a simple application of weak admissibility. Up to extending scalars, we
can assume that D = Dcris(ρp) = ⊕

τ Dτ is split, and is a filtered φ-module. We consider
the linearization φf

τ of the Frobenius on Dτ , where f = [K0 : Qp]. We write Fil•Dτ for
the filtration on Dτ induced by the Hodge-filtration on D. The assumption is that the
Hodge filtration on D is φ-stable i.e. there is a full flag of K ⊗ Qp-modules F•, stable
under φ, such that, for all τ , if kτ

1 ⩽ . . . ⩽ kτ
n are the (opposite) τ -Hodge-Tate weights

(with multiplicities) then Fi,τ ⊂ Filkn−i+1Dτ . Denote the eigenvalues of φf on Fi,τ by
(φ1, . . . , φi). Thus by weak admissibility,

1
f

(v(φ1) + · · ·+ v(φi)) ⩾
∑

τ

i∑
k=1

kτ
n+1−k.

Now, if Gi is a complementary φ-stable subspace of Fi in D (which exists due to the as-
sumptions on the eigenvalues of φf ), then we see directly that the τ -Hodge-Tate weights
of Gi are kτ

1 , . . . , k
τ
n−i. Thus by weak admissibility again,

1
f

(v(φi+1) + · · ·+ v(φn)) ⩾
∑

τ

n−i∑
k=1

kτ
k .

But by weak admissibility of D, the endpoints of both polygons gives
1
f

(v(φ1) + · · ·+ v(φn)) =
∑

τ

∑
i

kτ
i .

Thus both Gi and Fi are weakly admissible, thus admissible, thus ρp splits accordingly.
As this is true for all i, we get the Lemma.

It follows that, when n = 3, an eigenform f as in Theorem 1.2 has a split represen-
tation at p. In the case of modular forms, it was asked by Greenberg (see the work of
Ghate and Vatsal [Gha04], [GV04]) if a cuspform whose representation is split at p is
necessarily a CM form. The natural generalization of this question to GL3 would suggest
that we cannot find a form f to apply Theorem 1.2 with very large image. Fortunately,
we can construct an analog of a CM form for GL3 (more precisely for U(3)) which still
has adequate image modulo p.

8.1 Choosing a Hecke character

Let E be a CM field with totally real subfield E+ = F and let F ′ be a totally real field
disjoint from E, such that F ′/Q is Galois and such that [F ′ : Q] = 3. Set K = EF ′.
This is a CM field. We moreover assume that all the ramified primes of K/E lie above
split primes in E/E+. Choose two distinct primes p and ℓ such that ℓ is totally split
in K = EF ′ and primes above p in E+ = F are totally split in K. Moreover assume
p > 8(= 2(n+ 1) when n = 3) and ζp /∈ E.
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Example 8.2. 1. The easiest choice is F ′ = Q(ζ7)+ and E = Q(i
√

3) so that 7 is split
in E. For this F ′, we can also choose E = Q(i,

√
3), with maximal totally real subfield

E+ = Q(
√

3) so that E/E+ is unramified everywhere.

2. The second easiest choice for F ′ is F ′ = Q(ζ9)+. In this case we can choose
E = Q(i

√
5).

3. If E = Q(i), we can choose F ′ = Q(α) with α a root of X3−X2− 4X − 1, which
has discriminant 132.

4. If F ′ = Q(α) and E = Q(i), we can choose any prime p > 8, ℓ congruent to
1, 5, 21, 25 (mod 52), like 5, 53, 73, .... In particular in that case we better should exclude
p = 13 as in the early version [Bel10] (who knows?).

5. If F ′ = Q(ζ7)+ and E = Q(i
√

3), we can choose any prime congruent to 1, 13
(mod 21) like 13, 43, 97....

6. If F ′ = Q(ζ7)+ and E = Q(i,
√

3), we can take any prime ℓ ≡ 1, 13 (mod 84) like
13, 97, 169... and p ≡ 1, 13 (mod 21) like 13, 43, 97....

7. If we really want to use p = 13 and that p = 13 is inert in F = E+, and if we
want moreover E/E+ to be unramified everywhere, we can choose E = Q(i,

√
7) with

F ′ = Q(β) ⊂ Q(ζ43) as 43 is split in Q(i,
√

7)/Q(
√

7), with β a root of X3−X2−14X−8.

In the following we say that a weight k ∈ ZHom(K,C) is very regular if, for τ1 ̸= τ2 in
Hom(K,C), we have |kτ1 − kτ2 | ⩾ 2.

Let Ψ be an algebraic Hecke character of A×
K with algebraic very regular weight

k = (kv)v|∞, such that Ψc = Ψ∨ and such that Ψ is unramified both at p and ℓ. Choose
an isomorphism ι : C ≃ Qp. We moreover assume that

(Ψ, p) if p|p in E, we have Ψ(v)Ψ(v′)−1 /∈ {1, p} for v ̸= v′ places of K dividing p.

(Ψ, ℓ) There exist λ|ℓ in E, and λ′|λ in E(ζp), such that for all v1 ̸= v2 places of
K dividing λ, if v′

1, v
′
2 are the corresponding places above λ′ in K(ζp), ι(Ψ(v′

1))
(mod mQp

) ̸= ι(Ψ(v′
2)) (mod mQp

).

Consider moreover the following hypothesis on Ψ :

(Ψ, Ram) If v is a place of K such that Ψ is ramified at v, then v divides a prime which
is totally split in K/Q.

Let Ψp : A×
K −→ Q×

p be the p-adic realization of Ψ and ι, and ψp : GalK → Q×
p such

that ψp = Ψp ◦ArtK . It is a Galois representation satisfying ψ∨
p = ψc

p.
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8.2 Galois induction

Definition 8.3. We denote by ρ the induced Galois representation

ρ = IndGalE
GalK ψp = {f : GalE −→ Zp

×| f(gk) = ψ−1
p (k)f(g)∀g ∈ GalE , k ∈ GalK},

where the action of g ∈ GalE is given by (g · f)(x) = f(g−1x).

Then ρ is a three dimensional Galois representation since [K : E] is Galois of degree
3. We claim the following

Lemma 8.4. 1. The representation ρ := ρ⊗Fp is absolutely irreducible, in particular
ρ is absolutely irreducible.

2. The representation ρ(GalE(ζp)) is adequate.

3. The representation ρ is polarized, i.e. ρc ≃ ρ∨.

4. The representation ρGalEv
is split, φ-generic, Hodge–Tate regular for any v|p in

E,

5. If v is a place of E such that ρ is ramified at v, then HomGalEv
(ρv, ρv(1)) = 0.

Proof. We will actually prove that ρ(GalE(ζp)) acts absolutely irreducibly, which will
imply point 1 and point 2 will follow by [Tho12] Lemma 2.4. To prove point 1, remark
that if we denote by σ ∈ GalE a lift of a generator of the Galois group Gal(K/E) =<
σ >= Z/3Z, then ρ has a basis given by f, σ · f, σ2 · f , where f is the function

f : GalE = GalK
∐

σGalK
∐

σ2GalK −→ Z×
p , k ∈ GalK 7→ ψ−1

p (k), σk, σ2k 7→ 0.

Then σ3 ·f = ψp(σ3)f. Thus, after restricting to GalK , there is an isomorphism ρ|GalK ≃
ψp ⊕ ψσ

p ⊕ ψσ2
p , where ψσ

p = ψp(σ−1 · σ). We reduce mod p, where we have a similar
reduction after restricting to GalK . Because of the hypothesis (Ψ, ℓ) away from p, we
have that ρGalE(ζp)λ′

, for λ′|ℓ, is the sum of three distinct characters. Moreover the
group GalE acts transitively on these three eigenspaces. Therefore this representation
is absolutely irreducible. To prove point 3, we compute ρ∨. By [CR81, Prop. 10.28], we
have an isomorphism

ρ∨ ≃ IndGalE
GalK ψ−1

p = IndGalE
GalK ψc

p ≃ ρc.

Let us prove 4. As p is totally split in K/F , we have for v|p in E, GalEv ⊂ GalK
so that ρ|GalEv

≃ ψp,v ⊕ ψσ
p,v ⊕ ψσ2

p,v. As the group GalE acts transitively on the three
places of K over v, we have ρ|GalEv

≃
⊕

v′|v ψp,v′ . Therefore ρ|GalEv
is crystalline and

the eigenvalues of the Frobenius endomorphism of Dcris(ρ|GalEv
) are the Ψ(v′) for v′|v in

K. It follows from hypothesis (Ψ, p) that ρ|GalEv
is φ-generic. Moreover the Hodge–Tate

weights of ρ|GalEv
corresponds to the algebraic (infinitesimal) weight of Ψ, which was

assumed regular so that ρGalEv
is Hodge–Tate regular.
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Finally we prove 5. Let v be a place of E such that ρv is ramified. Then either v
is ramified in K/E or Ψv is ramified. Assume in a first time that Ψv is ramified. Then
(Ψ, Ram) implies that v divides a prime of Q which is totally split in K. In particular,
v is split in K/E. As above, we have ρv ≃

⊕
v′|v ψp,v′ with ψp,v′ = Ψv′ ◦ rec−1

Kv′ as v′ ∤ p.
Therefore it follows from Lemma 8.5 below that HomGalEv

(ρv, ρv(1)) = 0.
Now assume that v is non split in K. As K/E is Galois there is a unique place w of

K over v and ρv ≃ IndGalEv
GalKw

ψp,w. By Frobenius reciprocity, we have

HomGalEv
(ρv, ρv(1)) ≃ HomGalKw

(ψp,w ⊕ ψσ
p,w ⊕ ψσ2

p,w, ψp,wχcyc|Kw
).

Assume that ψp,w = ψσ
p,wχcyc|Kw

. As χcyc|Kw
= χσ

cyc|Kw
, we deduce ψσ

p,w = ψσ2
p,wχcyc|Kw

and ψσ2
p,w = ψσ3

p,wχcyc|Kw
= ψp,wχcyc|Kw

so that ψp,w = ψp,wχ
3
cyc|Kw

which is false. We
prove similarly than ψp,w ̸= ψσ2

p,wχcyc|Kw
and deduce HomGalEv

(ρv, ρv(1)) = 0. If Ψw ̸=
Ψw ◦ σ, then the characters Ψw,Ψw ◦ σ,Ψ ◦ σ2 are pairwise distinct and ρv is irreducible
so that HomGalEv

(ρv, ρv(1)) = 0. If Ψw = Ψw ◦ σ, then ρv is not irreducible, but clearly
HomGalEv

(ρv, ρv(1)) = 0 (as ψp|GalEv
̸= ψp|GalEv

(1)).

Lemma 8.5. Let Ψ : A×
K/K

× −→ C× be an algebraic Hecke character of very regular
weight k. Then, if ℓ is a prime number which is totally split in K, then Ψv ̸= Ψw|·|w for
all places v, w of K dividing ℓ.

Proof. Let Ψ and ℓ be as in the statement. Fix ι : C ≃ Qℓ and let |·|ℓ be the unique
absolute value on Qℓ extending the one on Qℓ. Let Ψι be the continuous character
A×

K/K
×K×

∞ → Q×
ℓ defined by

Ψι,w(xw) =


Ψw(xw) if w ̸ |ℓ, w ̸ |∞
1 if w|∞
ι(Ψw(ww))∏τ∈Hom(Kw,Qℓ),τ |w τ(xw)kι−1τ if w|ℓ,

where τ |w means that |.|ℓ◦τ extends the absolute value given by w onK, and (kσ)σ∈Hom(K,C)

is the weight of Ψ. As the group A×
K/K

×K×
∞ is compact, we have Im(Ψι) ⊂ Z×

ℓ . As ℓ
is totally split ι induces a bijection between {v|ℓ} and Hom(K,C). Let v be a place of
K dividing ℓ corresponding to τ (i.e. |.|ℓ ◦ ι−1τ extends |.|v) and denote kv := kι−1τ . We
have

|ιΨv(ℓ)τ(ℓ)kv |ℓ = 1

so that |ι(Ψv(ℓ))| = lkv . As ℓ is a uniformizer of Kv, for any v|ℓ, the result follows.

8.3 Construction of an explicit set of Hecke characters

In this subsection we explain one way to find a Ψ as before, satisfying hypothesis
(Ψ, p), (Ψ, ℓ), (Ψ, Ram). Fix E a CM extension, with E+ = F its maximal totally real
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subfield, so that [E : E+] = 2. Fix also F ′ disjoint from E, a totally real degree 3 Galois
extension of Q. Choose p, ℓ two primes with are totally split in K := EF ′ such that
p > 8. The following Lemma is a more precise version of [CHT08, Lem. 4.1.1].

Lemma 8.6. Let F be a number field. Let S be a finite set of places of F . Let χS be
an unramified continuous character F×

S := ∏
v∈S F

×
v → C× of finite order. Let T be a

set of finite places of F , disjoint from S and of Dirichlet density 1. Then there exists
a continuous character χ : A×

F /F
× → C× of finite order such that χ|F ×

S
= χS and the

ramification places of χ are in T .

Proof. Let US be the product of the O×
Fv

for v /∈ S. Then F×∩US is a finitely generated
subgroup of F×. Let us write m for the order of the finite cyclic group χS(F× ∩ US).
It follows from the proof of Theorem 1 in [Che51] that we can find finitely many places
w1, . . . , wr in T such that the subgroup of F×∩US congruent to 1 modulo pw1 , . . . , pwr is
contained in (F× ∩US)m. We conclude as in the proof of [CHT08, Lem. 4.1.1] choosing
for U the product of the Uv for v not in S nor {w1, . . . , wr} and a small enough subgroup
at w1, . . . , wr.

Lemma 8.7. Let K be an (imaginary) CM field with totally real subfield K+ and complex
conjugacy c. Denote ψ : A×

K/K
× → C× be a continuous character. Assume that there

exists a finite set S of places of K which are split in K/K+ and such that ψ−1
v = ψcv for

v ∈ S. Moreover, assume that S contains the Archimedean places. Let T be a finite set
of places of K that contains S and is stable under c, such that ψ is unramified outside
of T . Then there exists a Hecke character ψ̃ : A×

K/K
× → C× such that ψ̃−1 = ψ̃c and

ψ̃v = ψv for v ∈ S and such that ψ̃v is unramified outside of T .

Proof. Let θ = ψ ◦ NK/K+ . As S contains the Archimedean places, the character θ is
trivial at Archimedean places and is therefore a character of finite order. Let UT ⊂∏

v∈T∖S K
×
v be a compact open subgroup such that θ|UT

is trivial and such that c(UT ) =
UT . Let

U =
( ∏

v /∈T

O×
Kv

)
· UT ·

( ∏
v∈S

K×
v

)
.

We have an injection of compact groups

NK/K+(A×
K)/(NK/K+(A×

K) ∩K×U) ↪→ A×
K/K

×U.

Under our hypothesis, the character ψ|NK/K+ (A×
K) is trivial on (NK/K+(A×

K) ∩ K×U).
Therefore it extends to a character α of finite order of A×

K trivial on K×U . We thus
have ψ ◦NK/K+ = α ◦NK/K+ . It is easy to check that the character ψ̃ = ψα−1 satisfies
our requirements.

Proposition 8.8. For each choice of fields E and F ′ and places p and ℓ and very regular
weight k as above there exists a Hecke character Ψ : A×

K/K
× → C× satisfying (Ψ, p),

(Ψ, ℓ) and (Ψ, Ram) and such that Ψ−1 = Ψc.
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Proof. Let k be a very regular weight. It follows from [Sch88], Section 0.3, that there ex-
ists a Hecke character Ψ0 of A×

K/K
× with weight k. Using Lemma 8.6, we can construct

a Hecke character θ of finite order such that, setting Ψ1 = Ψ0θ, we have

• the character Ψ1 satisfies (Ψ1, p) and (Ψ1, ℓ) ;

• there exists finitely many primes ℓ1, . . . , ℓr, different from p and ℓ, which are totally
split in K and such that Ψ1 is only ramified at places dividing ℓ1, . . . , ℓr ;

• we have Ψ−1
1,w = Ψ1,cw for any place w of K dividing ℓ or p.

Now it follows from Lemma 8.7 that there exists a Hecke character Ψ of A×
K/K

× such
that

• Ψ−1 = Ψc ;

• Ψv = Ψ1,v if v is a place of K dividing p or ℓ ;

• Ψ is ramified only at places dividing ℓ1, . . . , ℓr.

8.4 Automorphic Induction and base change

Let Ψ and ρ as in subsection 8.1 and let U denote the unitary group in three variables for
E/E+ that is compact at infinity and quasi-split at all finite places. We need to find an
automorphic form for U whose associated Galois representation is induced representation
ρ from 8.3.

Proposition 8.9. There exists an automorphic representation Π of GL3,E, cuspidal,
cohomological at infinity, unramified at ℓ and p, polarized, whose associated Galois rep-
resentation is given by ρ.

Proof. This is the content of [Hen12] Théorème 3 (as K/E cyclic of degree 3) for the
existence of the automorphic representation, Théorème 5 for the compatibility with the
local correspondence at ℓ and p and at infinity (cf. the following remark of [Hen12]).
Polarization can be checked after base change of the automorphic induction to K, where
it follows as Ψc = Ψ∨, and as Ψ ̸= Ψσ for σ ∈ Gal(K/E) such that σ ̸= 1. Moreover,
the automorphic induction is also cuspidal (Theorem 2 of [Hen12]).

Conjecture 8.10. There exists a cohomological, cuspidal, automorphic representation
π of U whose base change to GL3,E is Π.

Proposition 8.11. If E/E+ is everywhere unramified (e.g. for E = Q(i,
√

3) or
Q(i,
√

7)), then the previous conjecture is true.

Proof. This is [Lab11] Theorem 5.4.
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Proposition 8.12. If E is quadratic imaginary, then the previous conjecture is true.

Proof. By [Mor10] Corollary 8.5.3 (ii), there exists π′ an automorphic representation for
GU(3) associated to Π×1, which is automorphic for GL3×GL1. By [HS22] Lemma A.7
(based on [HT01]), there exists π, an automorphic representation of U(3) associated to
π′.

Corollary 8.13. If E is quadratic imaginary or if E/E+ is everywhere unramified, then
there exists a classical form on U(3) satisfying the hypothesis of Theorem 1.2.

Proof. Let π be the automorphic representation of U considered above, and let f ∈ π
be an eigenform for the Hecke operators away from a set S of bad places of π. Then
ρf = ρπ = ρ is crystalline at p and φ-generic. In particular it has 3! = 6 refinements
which are automorphic and split at p. Hence there exists an automorphic refinement R
of f with relative position wR = 1 with respect to the Hodge filtration. In particular,
for this choice of a refinement, there exists a refined classical modular form f ′ satisfying
all hypothesis of Theorem 1.2. But, by Lemma 8.4(5) we know that f gives, for all
v ∈ S\Sp, a point of X□

ρv
which satisfies HomGalEv

(ρv, ρv(1)) = 0. When v splits in
E/E+, such a point is a smooth point by [All16] Prop 1.2.2.
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