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Abstract. Let K be a finite extension of Qp and let ρ̄ be a continuous,
absolutely irreducible representation of its absolute Galois group with values
in a finite field of characteristic p. We prove that the Galois representations
that become crystalline of a fixed regular weight after an abelian extension are
Zariski-dense in the generic fiber of the universal deformation ring of ρ̄. In
fact we deduce this from a similar density result for the space of trianguline
representations. This uses an embedding of eigenvarieties for unitary groups
into the spaces of trianguline representations as well as the corresponding
density claim for eigenvarieties as a global input.

1. introduction

The density of crystalline representations in the generic fiber of a local deforma-
tion ring plays an important role in the p-adic local Langlands correspondence for
GL2(Qp) and was proven by Colmez [Co] and Kisin [Ki4] for 2-dimensional represen-
tations of Gal(Q̄p/Qp). This density statement was generalized by Nakamura [Na2]
and Chenevier [Ch1] to the case of 2-dimensional representations of Gal(Q̄p/K)
for finite extensions K of Qp resp. to the case of d-dimensional representations of
Gal(Q̄p/Qp) and finally the general case was treated in [Na3].

In this paper we prove a slightly different density result in the generic fiber of a
local deformation ring. The above density statements make heavy use of the fact
that the Hodge-Tate weights of the crystalline representations may vary arbitrarily.
Contrary to this case, we fix the Hodge-Tate weights but vary the level, or, more
precisely, we allow finite (abelian) ramification and allow the representation to be
potentially crystalline (more precisely crystabelline).

Note that this density statement is of a different nature than the density of
crystalline representations. The density of crystalline representations holds true in
the rigid generic fiber (Spf Rr̄)

rig of the universal deformation ring Rr̄ of a given
residual Gal(Q̄p/K)-representation r̄. In contrast to this result, the density of po-
tentially crystalline representations of fixed weight only holds true in the “algebraic”
generic fiber Spec(Rr̄[1/p]), as the set of representations with fixed (generalized)
Hodge-Tate weights is Zariski-closed in the rigid generic fiber (Spf Rr̄)

rig.

In the special case of 2-dimensional potentially Barsotti-Tate representations of
Gal(Q̄p/Qp) our result gives a positive answer to a question of Colmez [Co].

A proof of this result (for 2-dimensional representations of Gal(Q̄p/Qp)), using
the p-adic local Langlands correspondence, was announced previously by Emerton
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and Paškūnas. Our approach does not make use of such a correspondence and works
in all dimensions and for arbitrary finite extensions of Qp. We were motivated by
the case of 2-dimensional potentially Barsotti-Tate representations and possible
applications to patching techniques, as for these representations an automorphy
lifting theorem is known [Ki2].

More precisely our results are as follows. Let K be a finite extension of Qp and let
GK = Gal(Q̄p/K) denote its absolute Galois group. Fix an absolutely irreducible
continuous representation r̄ : GK → GLd(F) with values in a finite extension F of
Fp. As the representation is assumed to be absolutely irreducible, the universal
deformation ring Rr̄ of r̄ exists.

Theorem 1.1. Assume that p - 2d and r̄ 6∼= r̄ ⊗ ε, where ε is the cyclotomic
character. Let k = (ki,σ) ∈

∏
σ:K↪→Q̄p Z

d be a regular weight. Then the represen-
tations that are crystabelline of labeled Hodge-Tate weight k are Zariski-dense in
SpecRr̄[1/p].

Let us briefly comment on the assumption that the residual representation r̄ is ab-
solutely irreducible. In the paper we need to identify the deformation space of the
representation r̄ with the deformation space of the associated pseudo-character,
as the global families of Galois representations that we use usually are pseudo-
characters. This identification works for absolutely irreducible representations.
Even though it is known for some reducible representations as well, we restricted
ourselves to the case of irreducible residual representations. Using framed defor-
mations as in [BHS] it is possible to resolve this issue anyway. Moreover, we can
always assure that the we can globalize the situation in the case of an absolutely
irreducible representation, which is essential to our method.

Similarly to the proof of density of crystalline representations we use a so called
space of trianguline representations X(r̄). This space should be seen as a local
Galois-theoretic counterpart of an eigenvariety of Iwahori level. Indeed it was shown
in [He2] that certain eigenvarieties embed into a space of trianguline representations
in the case K = Qp. This result is generalized to the case of an arbitrary extension
K of Qp in section 3.2 below. In fact we prove the following density result for
eigenvarieties which might be of independent interest.

Let E be an imaginary quadratic extension of a totally real field F such that
[F : Q] is even and let G be a definite unitary group over F which is quasi-split at
all finite places. Let Y be an eigenvariety for a certain set of automorphic represen-
tations of G(AF ) as in [Ch3, 3] which comes along with a Galois pseudo-character
interpolating the Galois representations attached to the automorphic representa-
tions at the classical points of Y . Given an absolutely irreducible residual represen-
tation ρ̄ : Gal(Q̄/E)→ GLd(F) there is an open and closed subspace Yρ̄ ⊂ Y where
the pseudo-character reduces to (the pseudo-character attached to) ρ̄ modulo p.
This gives rise to a map Yρ̄ → (Spf Rρ̄)

rig to the rigid generic fiber of the universal
deformation ring Rρ̄ of ρ̄.

Theorem 1.2. Fix an algebraic irreducible representationW of G(F⊗QR). Let f ∈
Rρ̄ such that f vanishes on all classical points z ∈ Yρ̄ corresponding to irreducible
automorphic representations Π with Π∞ = W . Then f vanishes in Γ(Yρ̄,OY ).
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We prove Theorem 1.1 by extending Theorem 1.2 to the space of trianguline
representations X(ρ̄w0), using a map f : Yρ̄ → X(ρ̄w0) constructed in Theorem
3.5 below. Here ρ̄w0 is the restriction of ρ̄ to the decomposition group at some
place w0 of E dividing p. The second step in the proof of Theorem 1.1 then is to
globalize the situation following [GK] and [EG]. Namely one realizes a given residual
representation r̄ : GK → GLd(F) as the restriction to the decomposition group at
w0 of a Gal(Q̄/E)-representation arising from an automorphic representation of
G(AF ). Using Theorem 1.2, we are then able to prove that an element of Rρ̄w0

vanishing at all crystabelline points of Hodge-Tate weight k has to vanish on all
those irreducible components of X(ρ̄w0

) that contain (the image of) an eigenvariety.

The final step is to use the Zariski-density of the image of the space of trianguline
representations in the deformation space, which is the main result of [Na2] and
[Ch1]. We have however to refine this density statement replacing this space of
trianguline representations by the union of its irreducible components containing
automorphic points of finite slope, i.e. we prove the following theorem (see the body
of the paper for a more precise definition of X(ρ̄,W∞)aut and Y (W∞, S, e)ρ̄).

Theorem 1.3. Let X(ρ̄,W∞)aut denote the union of those components of the
space of trianguline representations that contain the image of some eigenvariety
Y (W∞, S, e)ρ̄ of non-specified level S away from p. Then X(ρ̄,W∞)aut has Zariski-
dense image in the rigid analytic generic fiber of the universal deformation ring of
ρ̄w0 .

In order to prove this theorem, we have to prove that this union of components
contains sufficiently many crystalline points which are non critical and whose all
refinements are non critical and stay in this particular union of irreducible com-
ponents. We then reduce this existence to the proof of the fact that such generic
crystalline points form a Zariski-open subset of the scheme parametrizing crystalline
representations of fixed Hodge-Tate weights together with a density statement of
automorphic points in an union of irreducible components of this space. The first
of these two facts is proved using the existence of an universal Breuil-Kisin module
on such a space and the second using the theory of Taylor-Wiles-Kisin systems.
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Notations: We fix the following notations. Let Q̄p be an algebraic closure of
Qp, | · | and val the norm and valuation on Q̄p extending the p-adic norm and
valuation of Qp. Let K ⊂ Q̄p be a finite extension of Qp and let K0 denote the
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maximal unramified subextension of Qp in K. We fix a compatible system εn ∈ Q̄p
of pn-th roots of unity. Let Kn = K(εn) ⊂ Q̄p, K∞ =

⋃
nKn and K ′0 the maximal

unramified subextension of Qp in K∞. We will write GL = Gal(Q̄p/L) for any
subfield L ⊂ Q̄p. Finally we write Γ = ΓK = Gal(K∞/K). We define the Hodge-
Tate weights of a de Rham representation as the opposite of the gaps of the filtration
on the covariant de Rham functor, so that the Hodge-Tate weight of the cyclotomic
character is +1.

We choose a uniformizer $ ∈ OK and normalize the reciprocity isomorphism
recK : K× →W ab

K of local class field theory such that $ is mapped to a geometric
Frobenius automorphism. Here W ab

K is the abelization of the Weil group WK ⊂ GK
and the reciprocity map allows us to identify O×K with a subgroup of Gab

K , the
maximal abelian quotient of GK . Further we write ε : GK → Z×p for the cyclotomic
character.

Given a crystalline (resp. semi-stable) representation ρ : GK → GLd(Q̄p) we write
Dcris(ρ) (resp. Dst(ρ)) for the filtered ϕ-module (resp. (ϕ,N)-module) associated
to ρ by Fontaine (cf. [Fo1]). Further we write WD(Dcris(ρ)) and WD(Dst(ρ)) for
the Weil-Deligne representations associated respectively to Dcris(ρ) and Dst(ρ) by
the recipe of Fontaine in [Fo2]. A similar notation is used for potentially crystalline
(resp. potentially semi-stable representations).

If R is a complete local noetherian Zp-algebra with finite residue field (i.e. a
quotient of Zp[[T1, . . . , Tm]] for some m), we write (Spf R)rig for the rigid analytic
fiber of the formal spectrum of R and often refer to it as the generic fiber of Spf R in
the sense of Berthelot. Moreover, we will always use the expression “rigid analytic
spaces” for rigid analytic spaces locally of finite type over Qp.

If F is a number field, we will denote by AF (resp. AF,f , resp. ApF,f ) its ring of
adeles (resp. of finite adeles, resp. of finite adeles outside of the places dividing p).

2. The space of trianguline representations

Let X be a rigid analytic space and recall the definition of the sheaf of relative
Robba rings RX = RX,K and R+

X = R+
X,K for K. If the base field K is understood

we will omit the subscript K from the notation. This is the sheaf of functions that
converge on the product of X with some boundary part of the open unit disc over
K ′0, see [He1, 2.2] or [KPX, Definition 2.2.3] for example1. If X = SpL for a finite
extension L of Qp we will write RL = RL,K for (the global sections of) this sheaf.
This sheaf of rings is endowed with a continuous OX -linear ring homomorphism
ϕ : RX → RX and a continuous OX -linear action of the group Γ. Recall that a
(ϕ,Γ)-module over a rigid space X consists of an RX -module D that is locally on
X finite free over RX together with a ϕ-linear isomorphism Φ : D → D and a
semi-linear Γ-action commuting with Φ.

Let us write UL for the open unit disc over a p-adic field L and Ur,L ⊂ UL for the
admissible open subspace of points of absolute value ≥ r for some r ∈ pQ ∩ [0, 1).

1The sheaf RX is denoted by B†
X,rig in [He1]



DENSITY OF POTENTIALLY CRYSTALLINE REPRESENTATIONS 5

Given such an r we write RrX for the sheaf

X ⊃ U 7−→ Γ(U × Ur,K0 ,OU×Ur,K0
)

and we write R+
X for the sheaf R0

X of functions converging on the product X×UK0 .

Given a family of GK-representations V over a rigid space X, the work of Berger-
Colmez [BeCo] and Kedlaya-Liu [KL] associates to V a (ϕ,Γ)-module D†rig(V) over
RX .

Given a (ϕ,Γ)-module D over X, we write H∗ϕ,Γ(D) for the cohomology of the
complex

C•ϕ,Γ(D) = [D∆ ϕ−id,γ−id // D∆ ⊕D∆
(id−γ)⊕(ϕ−id) // D∆],

where ∆ ⊂ Γ is the p-torsion subgroup of Γ and γ ∈ Γ/∆ is a topological generator.
It is known that the cohomology sheaves Hi

ϕ,Γ(D) are coherent OX -modules for
i = 0, 1, 2, see [KPX, Theorem 4.4.5].

2.1. The parameters. In this section, we recall the construction of the space
(ϕ,Γ)-modules of rank 1 over R essentially following [Co]. This is first step toward
a construction of the trianguline space.

Let W = Homcont(O×K ,Gm(−)) be the weight space of K. This functor on the
category of rigid analytic spaces is representable by the generic fiber of Spf Zp[[O×K ]].
Further let T = Homcont(K

×,Gm(−)). There is a natural projection T → W given
by restriction to O×K . The choice of the uniformizer $ gives rise to a section of this
projection and identifies T with Gm ×W via δ 7→ (δ($), δ|O×K ). It follows that T
is representable by a rigid analytic space.

We recall how the (ϕ,Γ)-modules of rank 1 over a rigid space X are classified by
T (X), see [KPX, Theorem 6.2.14] (and also [Na1, 1.4] for the case X = SpL in the
context of B-pairs).

Let X be a rigid space over Qp and let D be a rank 1 family of K-filtered ϕ-
modules over X. Recall that this is a coherent OX ⊗Qp K0-module that is locally
on X free of rank 1 together with an id⊗ϕ-linear automorphism Φ : D → D and a
filtration Fil• on DK = D ⊗K0

K by OX ⊗Qp K submodules that are locally on X
direct summands as OX -modules.

Assume that X is affinoid and defined over the normalization Knorm of K inside
Q̄p and assume thatD is free. Then such aK-filtered ϕ-module may be described as
follows. There exists a uniquely determined a ∈ Γ(X,O×X) and uniquely determined
kσ ∈ Z for each embedding σ : K ↪→ Knorm such that D ∼= D(a; (kσ)σ) where
Φ[K0:Qp] acts on D(a; (kσ)σ) via multiplication with a ⊗ id ∈ Γ(X,OX ⊗Qp K0)×

and

(2.1) (griDK)⊗OX⊗QpK,id⊗σ OX ∼=

{
0 i 6= −kσ
OX i = −kσ

for all embeddings σ : K ↪→ Q̄p.
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Given kσ ∈ Z for each embedding σ : K ↪→ Q̄p we consider the following special
K-filtered ϕ-module D((kσ)σ) over L = Knorm whose filtration is given by (2.1)
and which has a basis on which Φ[K0:Qp] acts via multiplication with

∏
σ σ($)kσ .

LetX be an affinoid space defined overKnorm and letD be aK-filtered ϕ-module
over X. Associated to D there is a (ϕ,Γ)-module RX(D) of rank 1 as follows. We
write

D = D(a; (0)σ)⊗K0
D((kσ)σ)

for some kσ ∈ Z and a ∈ Γ(X,O×X) and define

RX(D(a; (0)σ)) = D(a; (0)σ)⊗OX⊗QpK0 RX ,

where ϕ acts diagonally and Γ acts trivially on the first factor.

Given σ : K ↪→ Knorm we write tσ ∈ R+
Knorm for a period of the character σ ◦χLT

from GK into O×Knorm as in [KPX, Not. 6.2.7]. Then
∏
σ tσ is equal to the usual

period of the cyclotomic character t = log([(1, ε1, ε2, . . . )]) ∈ R+
Qp ⊂ R

+
Knorm , up to

multiplication by an invertible element of R+
Knorm .

Using this notations we write

RX(D((kσ)σ)) =
∏

σ
tkσσ RX ⊂ RX

[
1
t

]
with action of ϕ and Γ inherited from RX [1/t]. Finally we set

RX(D) = RX(D(a; (0)σ))⊗RX RX(D((kσ)σ)).

More generally, let δ : K× → Γ(X,O×X) be a continuous character. Then there is a
(ϕ,Γ)-module RX(δ) of rank 1 associated to δ as follows, cf. [KPX, Construction
6.1.4]. Write δ = δ1δ2 with δ1|O×K = 1 and such that δ2 extends to a character of
GK . Then we set

RX(δ) = RX(D(δ1($), (0)σ))⊗RX D†rig(δ2).

We write δ(D) for the character of K× such that RX(δ(D)) = RX(D).

Further, we can check that, given kσ ∈ Z, the character δ(D((kσ)σ)) associated
with the K-filtered ϕ-module D((kσ)σ) is given by δ((kσ)σ), i.e. by the character
z 7→

∏
σ σ(z)kσ . We write δW((kσ)σ) for the restriction of δ((kσ)σ) to O×K . Finally

we have ε ◦ recK = δ(1, . . . , 1)|δ(1, . . . , 1)|.

Lemma 2.1. Let δ ∈ T (L) for a local field L ⊃ Knorm. Then

H0
ϕ,Γ(RL(δ)) 6= 0⇐⇒ δ = δ((−kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z≥0,

H2
ϕ,Γ(RL(δ)) 6= 0⇐⇒ δ = ε · δ((kσ)σ) for some (kσ)σ ∈

∏
σ:K↪→L

Z≥0.

In particular H1
ϕ,Γ(RL(δ)) has L-dimension [K : Qp] if and only if

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ
Z≥0

}
.

Proof. This is [KPX, Proposition 6.2.8], cf. also [Na1, Proposition 2.14]. �

Notation 2.2. (i) Let us write Treg ⊂ T for the set of regular characters, i.e the
characters

δ /∈
{
δ((−kσ)σ), ε · δ((kσ)σ) | (kσ) ∈

∏
σ
Z≥0

}
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(ii) Let d > 0 be an integer. We define the set of regular2 parameters T dreg ⊂ T d
to be the set of (δ1, . . . , δd) ∈ T d such that δi/δj ∈ Treg for i 6= j. Note that by
construction T dreg 6= (Treg)d.

(iii) A weight δ ∈ W(Q̄p) is algebraic of weight (kσ)σ if δ = δW((kσ)σ).

(iv) We say that δ ∈ W(Q̄p) is locally algebraic of weight (kσ)σ if δ ⊗ δW((−kσ)σ)
becomes trivial after restricting to some open subgroup of O×K .

(v) An element k = (kσ,i)σ ∈
∏
σ Zd is called strongly dominant if kσ,1 > kσ,2 >

· · · > kσ,d for all σ.

(vi) Let k = (kσ,i)σ ∈
∏
σ Zd. We say that (δ1, . . . , δd) ∈ Wd(Q̄p) is algebraic of

weight k if δi is algebraic of weight (kσ,i)σ. An element δ = (δ1, . . . , δd) ∈ Wd(Q̄p)
is called locally algebraic of weight k if δi is locally algebraic of weight (kσ,i)σ. The
set of weights that are locally algebraic of weight k is denoted by Wd

k,la ⊂ Wd(Q̄p).

2.2. The space of trianguline (ϕ,Γ)-modules. We extend the construction of
the space of trianguline (ϕ,Γ)-modules with regular parameters given in [Ch1] to
our context. This extension relies on results of Kedlaya, Pottharst and Xiao [KPX].
There are similar results (concerning triangulations in families) due to R. Liu [Liu].

Let d be a positive integer and consider the functor S�d that assigns to a rigid
space X the isomorphism classes of quadruples (D,Fil•(D), δ, ν), where D is a
(ϕ,Γ)-module over RX and Fil•(D) is a filtration of D by sub-RX -modules that
are stable under the action of ϕ and Γ and that are locally on X direct summands
as RX -modules. Further δ ∈ T dreg(X) and ν = (ν1, . . . , νd) is a collection of trivial-
izations

νi : Fili+1(D)/Fili(D)
∼=−→ RX(δi).

Similarly, we consider a variant of this functor parametrizing non-split extensions,
cf. [He2], that is, the functor Sns

d that assigns to X the set of isomorphism classes
of quadruples (D,Fil•(D), δ, νd) where D and Fil•(D) are as above and δ ∈ T dreg

such that locally on X there exist short exact sequences

0 −→ Fili(D) −→ Fili+1(D) −→ RX(δi) −→ 0

that are non split at every geometric point x ∈ X as a sequence of (ϕ,Γ)-modules.
Finally νd is a trivialization

νd : Fild+1(D)/Fild(D)
∼=−→ RX(δd).

Proposition 2.3. Let δ = (δ1, . . . , δd) ∈
(
Treg

)d
(X) for some rigid space X and

let D be a successive extension of the RX(δi). Then Hi
ϕ,Γ(D) is a locally free

OX-module of rank {
0 if i = 0, 2

d[K : Qp] if i = 1

and the canonical morphisms

Hi
ϕ,Γ(D)⊗ k(x) −→ Hi

ϕ,Γ(D ⊗ k(x))

are isomorphisms for all x ∈ X.

2Note that this definition is a bit more restrictive that the definition of [Ch1].
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Proof. By the base change formula [KPX, Theorem 4.4.3] the second claim is a
direct consequence of the first. Let us assume that the claim is true for d = 1. By
way of induction we consider the short exact sequence

(2.2) 0 −→ RX(δ1) −→ D −→ D′ −→ 0.

and we may assume that H1
ϕ,Γ(RX(δ1)) and H1

ϕ,Γ(D′) are locally free of rank [K :

Qp] resp. (d− 1)[K : Qp] and

H0
ϕ,Γ(RX(δ1)) = H2

ϕ,Γ(RX(δ1)) = H0
ϕ,Γ(D′) = H2

ϕ,Γ(D′) = 0.

Then the claim follows from the long exact cohomology sequence of (2.2).

It remains to prove the claim for d = 1. Using the base change formula [KPX,
Theorem 4.4.3 (2)] we are reduced to consider the universal case X = Treg and
D = R(δ), where δ is the universal character on Treg. Let x ∈ X, the base change
formula of loc. cit. induces a spectral sequence

Ej,−i2 = TorXi (Hj
ϕ,Γ(D), k(x))⇒ Hj−i

ϕ,Γ (D ⊗ k(x)).

The fact that Hj
ϕ,Γ(D) = 0 for j > 2 together with the spectral sequence imply

that
H2
ϕ,Γ(D)⊗ k(x) −→ H2

ϕ,Γ(D ⊗ k(x))

is an isomorphism. By Lemma 2.1 the target of this isomorphism vanishes and
hence so does H2

ϕ,Γ(D) ⊗ k(x). But as H2
ϕ,Γ(D) is a coherent sheaf by [KPX,

Theorem 4.4.2] (and again using the base change formula in the flat case) it follows
that H2

ϕ,Γ(D) = 0, as we have shown that all its fibers vanish.

As H2
ϕ,Γ(D) = 0, it follows that TorX1 (H2

ϕ,Γ(D), k(x)) = 0 for all x ∈ X and
hence the above spectral sequence implies that

H1
ϕ,Γ(D)⊗ k(x) −→ H1

ϕ,Γ(D ⊗ k(x))

is an isomorphism for all x ∈ X. By Lemma 2.1 we conclude that H1
ϕ,Γ(D)⊗ k(x)

has dimension [K : Qp] for all x ∈ X. Being a coherent sheaf of constant rank on
a reduced space it has to be locally free automatically.

Finally we deduce that Ej,−i2 = 0 for i, j > 0 and any fixed x ∈ X. It follows
that

H0
ϕ,Γ(D)⊗ k(x) −→ H0

ϕ,Γ(D ⊗ k(x))

is an isomorphism for all x ∈ X. As the right hand side vanishes for all x ∈ X by
Lemma 2.1 we again conclude that H0

ϕ,Γ(D) = 0.

�

Theorem 2.4. (i) The functors S�d and Sns
d are representable by rigid spaces.

(ii) The map S�d → T dreg is smooth of relative dimension d(d−1)
2 [K : Qp].

(iii) The map Sns
d → T dreg is smooth and proper and

dimSns
d = 1 + [K : Qp]

(d(d+1)
2

)
Proof. The proof is the same as the proof of [Ch1, Theorem 3.3] resp. [He2, Propo-
sition 2.3]. For the convenience of the reader we give a short sketch. The case d = 1
is settled by S�1 = Sns

1 = T . Now assume that S�d−1 and Sns
d−1 are constructed with

universal objects D�
d−1 resp. Dns

d−1. Let U ⊂ T × S�d−1 resp. V ⊂ Sns
d−1 × T be the
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preimage of T dreg ⊂ T ×T d−1
reg under the canonical projection. Then Proposition 2.3

implies that
E xt1RU (RU (δ1),D�

d−1) = H1
ϕ,Γ(D�

d−1(δ−1
1 ))

resp.
E xt1RV (RV (δ1),Dns

d−1) = H1
ϕ,Γ(Dns

d−1(δ−1
1 ))

are vector bundles of rank (d− 1)[K : Qp]. As the Tate-duality is a perfect pairing
[KPX, Theorem 4.4.5] we find that also

MU = E xt1RU (D�
d−1,RU (δ1))

resp.
MV = E xt1RV (Dns

d−1,RV (δ1))

are vector bundles of rank (d − 1)[K : Qp]. Now S�d = Spec
U

(Sym•M∨U ) is the
geometric vector bundle over U associated to MU while Sns

d = PV (M∨V ) is the
projective bundle associated toMV . Here Spec is the relative spectrum in the sense
of [Con, 2.2] and given a vector bundle E the projective bundle P(E) = Proj(Sym• E)
is the relative Proj in the sense of [Con, 2.3].

The universal object D�
d then is the universal extension

0 −→ R(δ1) −→ D�
d −→ D�

d−1 −→ 0

over S�d . In the non-split context consider the geometric vector bundle S̃ns
d =

Spec
V

(Sym•M∨V ) over V associated toMV . Then there is a universal extension

0 −→ R(δ1) −→ D̃ns
d −→ Dns

d−1 −→ 0

over S̃ns
d . Consider the open subspace S̃ns

d \V ⊂ S̃ns
d where the image of the zero

section 0 : V ↪→ S̃ns
d is removed. This space carries a natural action of Gm and

this action lifts to an action on the restriction of D̃ns
d to S̃ns

d \V by acting on R(δ1).
Hence D̃ns

d descends to a (ϕ,Γ)-module Dns
d over P(M∨V ) = (S̃ns

d \V )/Gm.

The computation of the dimension follows from the construction as well as the
fact that S�d is smooth over T dreg and Sns

d is smooth and proper over T dreg. �

Let r ∈ pQ ∩ [0, 1) and consider the ring Rr = RrQp . If n � 0, then there is a
morphism Rr → Kn[[t]] where the ring Kn[[t]] is viewed as the complete local ring
at the point of Ur,K′0 corresponding to (the Gal(Q̄p/K ′0)-orbit of) 1− εn. If Dr is a
(ϕ,Γ)-module defined over RrL for some p-adic field L and some r ∈ pQ ∩ [0, 1) and
if D = Dr ⊗RrL RL, then we define

DdR(D) = (K∞ ⊗Kn Kn((t))⊗RrQp Dr)
Γ

FiliDdR(D) = (K∞ ⊗Kn tiKn[[t]]⊗RrQp Dr)
Γ.

If L containsKnorm, thenDdR(D) splits up into a productDdR(D) =
∏
σDdR,σ(D)

and FiliDdR(D) =
∏
σ FiliσDdR(D) splits up into filtrations FiliσDdR(D) of the

DdR,σ(D).
As in [BeCh, Def. 2.2.10], we can extend the notions of being crystalline or de Rham
to (ϕ,Γ)-modules.
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Definition 2.5. Let L be a finite extension of Qp and let D be a (ϕ,Γ)-module of
rank d over RL = RL,K . Assume that D = Dr⊗RrLRL for some (ϕ,Γ)-module Dr

defined over RrL and some r < 1.
(i) The (ϕ,Γ)-module D is called de Rham if DdR(D) is a free L⊗Qp K-module of
rank d.
(ii) The module D is called crystalline if Dcris(D) = D[1/t]Γ is free of rank d over
L⊗Qp K0.
(iii) The module D is called crystabelline if D ⊗RL,K RL,K′ is crystalline for some
abelian extension K ′ of K.

The following proposition is the generalization of [BeCh, Proposition 2.3.4]3 to
our context and its proof is essentially the same as in the case K = Qp.
Proposition 2.6. Let L be a finite extension of Qp containing Knorm and let D be
a (ϕ,Γ)-module of rank d over RL that is a successive extension of rank 1 objects
RL(δi). Assume that (δ1|O×K , . . . , δd|O×K ) is locally algebraic of weight k = (kσ,i)

for some strongly dominant weight k. Then D is de Rham with labeled Hodge-Tate
weights k.

Proof. Write R =
⋃
n(L⊗QpKn[[t]]) for the moment. We proceed by induction on d.

The case d = 1 easily follows from the fact that we may twist by characters δ such
that δ|O×K = 1 and the fact that the claim is true for characters of Gab

K = Ẑ × O×K
by the definition of locally algebraic weights.

For simplicity we only treat the case p 6= 2. In this case the group Γ is pro-cyclic.
In the case p = 2 one concludes similarly after taking invariants under the 2-power
torsion subgroup ∆ of Γ.

Let γ ∈ Γ be a topological generator and let Γ0 = 〈γ〉 ⊂ Γ. We will prove by
induction on 1 ≤ j ≤ d that for (

∏
σ t

kσ,jR ⊗RrQp Filj(D)r)
Γ0 6= 0 for big enough

r. Suppose we have the result for j ≤ d − 1. One deduces from the short exact
sequence

0→
∏

σ
Fil−kσ,dσ DdR(Fild−1(D))→

∏
σ

Fil−kσσ DdR(D)→
∏

σ
Fil−kσσ RL(δd)

→ H1
(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ
t
−kσ,d
σ

)
R
)
.

that it suffices to show that

H1
(
Γ0,Fild−1(D)r ⊗RrQp

(∏
σ
t
−kσ,d
σ

)
R
)

= 0.

To do so we are reduced to compute the first cohomology of (
∏
σ t
−kσ
σ )R ⊗L

R(δi) for i ≤ d − 1. However, this cohomology vanishes, as
∏
σ tσ

−kσ,dR ⊗ δj '∏
σ tσ

−kσ,d+kσ,jR ⊗ R(δ) with δ a finite order character, and −kσ,d + kσ,j > 0 for
all σ and hence

H1
(

Γ0,
(∏

σ
tiσσ
)
R
)

=
(∏

σ
tiσσ
)
R
/

(γ − 1)
(∏

σ
tiσσ
)
R = 0

if iσ > 0 for all embeddings σ. It follows that D has to be de Rham. �

Let ω�
d : S�d → Wd resp. ωd : Sns

d → Wd denote the projection to the weight
space.

3Note that Bellaiche and Chenevier use a different sign convention.
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Corollary 2.7. (i) Let w ∈ Wd
alg be a strongly dominant algebraic weight. Then

there is a non-empty Zariski-open subset Zcris(w) ⊂ ω−1
d (w) such that all points of

Zcris(w) are crystalline (ϕ,Γ)-modules.
(ii) Let k ∈

∏
σ Zd be strongly dominant and let w ∈ Wd

k,la be a locally algebraic
weight. Then there is a non-empty Zariski-open subset Zpcris(w) ⊂ ω−1

d (w) such
that all points of Zpcris(w) are crystabelline.

Proof. The proof is identical to the one of [Ch1, Theorem 3.14].
(i) As w = (w1, . . . , wd) ∈ Wd is algebraic we may write R(δi) = R(D(δi)) for any
character δi ∈ T restricting to wi on O×K . We write D(δi) = D(ai, (kσ)σ) with
ai = δi(σ)

∏
σ σ($)−kσ,i and let

Zcris(w) =
{

(D,Fil•(D), δ, νd) ∈ ω−1
d (w) | aiaj 6= p±[K0:Qp] for i < j

}
.

Let D be a (ϕ,Γ)-module associated to some point in Zcris(w) then D is de Rham
by Proposition 2.6 above and hence potentially semi-stable. As w is algebraic, D is
a successive extension of crystalline (ϕ,Γ)-modules, hence it has to be semi-stable
and we have to assure that the monodromy acts trivially. However the monodromy
operator maps the Φf -eigenspace with eigenvalue λ to the Φf -eigenspace with eigen-
value pfλ, where f = [K0 : Qp]. As the possible eigenvalues of Φf are given by the
ai the monodromy has to be trivial.

(ii) Let wsm = w · δ(−k) = (w1, . . . , wn) and let K ′ be the abelian extension of K
corresponding to

⋂
1≤i≤n kerwi ⊂ O×K ↪→ Gab

K . Then the same argument as above
yields a Zariski-open subset Zpcris(w) ⊂ ω−1

d (w) whose points are (ϕ,Γ)-modules
that become crystalline over K ′. �

Remark 2.8. In the case d = 2 the second claim of the corollary above applies for ex-
ample to the weight k = ((0, 1)σ), i.e. to potentially Barsotti-Tate representations.
If d > 2 a corresponding statement for potentially Barsotti-Tate representations
can not hold true any longer. There are no strongly dominant weights for poten-
tially Barsotti-Tate representations in this case and the dimension of the flag variety
parametrizing the Hodge-filtrations for weights that are not strongly dominant will
be strictly smaller than the dimension of the space of extensions of (ϕ,Γ)-modules.

Lemma 2.9. Let L ⊂ Q̄p be a finite extension of the Galois closure Knorm of
K inside Q̄p and let V be a crystalline representation of GK on a d-dimensional
L-vector space with labeled Hodge-Tate weights k = (kσ,i) such that k is strongly
dominant. Let D = Dcris(V ) and assume that the [K0 : Qp]-th power of the crys-
talline Frobenius Φcris on WD(D) = D ⊗L⊗QpK0 Q̄p is semi-simple. Let λ1, . . . , λd
be an ordering of its eigenvalues and assume that for all σ one has

(2.3)

[K:Qp]
[K0:Qp]val(λ1) < −kσ,2 −

∑
σ′ 6=σ

kσ′,1

[K:Qp]
[K0:Qp]val(λ1 . . . λi) < −kσ,i+1 −

∑
σ′ 6=σ

kσ′,i −
∑

σ′

∑i−1

j=1
kσ′,j .
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Then there is a triangulation 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D†rig(V ) such that
Di/Di−1

∼= D(δi) with δi : K× → L× given by

δi|O×K : z 7−→
∏

σ
σ(z)kσ,i

δi($) = λi
∏

σ
σ($)kσ,i .

Proof. Let Di ⊂ D†rig(V ) be the filtration induced by a filtration 0 = D′0 ⊂ D′1 ⊂
· · · ⊂ D′d = D = Dcris(V ) by Φcris-stable subspaces such that the restriction of
Φ

[K0:Qp]
cris to WD(Di) has eigenvalues λ1, . . . , λi. Then Di is stable under ϕ and

Γ and we need to compute the graded pieces. However, the graded pieces are as
claimed, if the filtration D′• is in general position with all the Hodge filtrations Fil•σ
which is to say(
D′i⊗K0⊗L,σ⊗idQ̄p

)
⊕
(

Fil−kσ,i+1 DK⊗K⊗L,σ⊗idQ̄p
)

= D⊗K0⊗L,σ⊗idQ̄p = WD(D).

One easily sees that this is assured by weak admissibility and condition (2.3). �

2.3. Construction of Galois-representations. Let ρ̄ : GK → GLd(F) be an
absolutely irreducible continuous representation, where F is a finite field of charac-
teristic p. Write Rρ̄ for the universal deformation ring of ρ̄ and Xρ̄ for the generic
fiber of Spf Rρ̄ in the sense of Berthelot.

Recall that a pseudo-character T : G → R of a group G with values in a ring R
is a map satisfying several axioms, see [BeCh, 1.2.1] and the references cited there
for example. If moreover G is a topological group and R is a topological ring, the
pseudo-character T is called continuous if the map T is continuous (as a map of
topological spaces).

Let X be a rigid space and let T : GK → Γ(X,OX) be a continuous pseudo-
character of dimension d. We say that T has residual type ρ̄ if for all x ∈ X the
semi-simple representation ρx : GK → GLd(OQ̄p) with tr ρx = (T ⊗ k(x))⊗k(x) Q̄p
(which is uniquely determined up to conjugation) reduces to (the isomorphism class
of) ρ̄ modulo the maximal ideal of OQ̄p .

Then the rigid space Xρ̄ represents the functor that assigns to a rigid space X
the pseudo-characters T : GK → Γ(X,OX) of dimension d and residual type ρ̄.

By [He1, Theorem 5.2] there exists a natural rigid space Sns,adm
d which is étale

over Sns
d and a vector bundle V on Sns,adm

d together with a continuous representation
ρ : GK → GL(V) such that D†rig(V) is the restriction of the universal trianguline
(ϕ,Γ)-module. In the set up of adic spaces (cf. [Hu2]) the spaces Sns,adm

d is an open
subspace of Sns

d . In what follows we will embed the category of rigid spaces into
the category of adic spaces as in [Hu2, 1.1.11].

Let us write S(ρ̄) ⊂ Sns,adm
d for the open and closed subspace where the pseudo-

character trρ has residual type ρ̄. Then we obtain a canonical map

πρ̄ : S(ρ̄) −→ Xρ̄ × T dreg.

It is clear, reasonning along [He2, Proposition 3.10] for the case K = Qp, that this
map is injective at the level of rigid analytic points, see Lemma 2.12 below.
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Definition 2.10. Let X(ρ̄) be the Zariski-closure of Im(πρ̄) ⊂ Xρ̄×T dreg in Xρ̄×T d.
This is a Zariski-closed subset of a rigid analytic space and we view it itself as an
rigid analytic space with the induced reduced structure. The space X(ρ̄) is called
the trianguline space in the following.

Theorem 2.11. The space X(ρ̄) is equidimensional of dimension

dimX(ρ̄) = 1 + [K : Qp]d(d+1)
2 .

If x = (ρ, δ) ∈ X(ρ̄) ⊂ Xρ̄×T d is a rigid analytic point, then the Galois representa-
tion ρ is trianguline. Moreover the morphism πρ̄ : S(ρ̄)→ X(ρ̄) is an isomorphism
onto a Zariski-open and dense subspace of X(ρ̄).

The image of πρ̄ is then a Zariski-open and dense subset X(ρ̄)reg ⊂ X(ρ̄), that
we call the regular trianguline space.

For the proof of Theorem 2.11, we need some preliminary lemmas.

Lemma 2.12. Let (ρ, δ1, . . . , δd) be a rigid point of Xρ̄ × T dreg. Then the (ϕ,Γ)-
module D†rig(ρ) has at most one triangulation of parameter (δ1, . . . , δd). In partic-
ular the map πρ̄ is injective on rigid points.

Proof. We are reduced to prove that if D is a trianguline (ϕ,Γ)-module having
a triangulation whose successive subquotients isomorphic to RL,K(δi), then this
triangulation is unique. We can prove this statement by induction, the case where
d = 1 being clear. Assume the claim proved for d − 1 ≥ 1 and consider D a
(ϕ,Γ)-module of parameter (δ1, . . . , δd) ∈ T dreg. Using the induction hypothesis,
it is sufficient to prove that Hom(ϕ,Γ)(RL,K(δ1), D) has L-dimension 1. This is
a consequence of the fact that End(ϕ,Γ)(RL,K(δ1)) has L-dimension 1 and that
Hom(ϕ,Γ)(RL,K(δ1),RL,K(δi)) = 0 for i ≥ 2, the last equality being a consequence
of (δ1, . . . , δd) ∈ T dreg and Lemma 2.1. �

Lemma 2.13. Let X be an adic space of finite type over Qp and let U ⊂ X be an
open subset. Suppose that U is constructible for the Zariski topology, i.e. U is a
finite union of subsets that are locally closed for the Zariski topology. Then U ⊂ X
is Zariski-open.

Proof. The claim is local on X and hence we may assume X = Spa(A,A+) with
(A,A+) an affinoid Tate algebra topologically of finite type over Qp. Given x ∈ X
we write suppx for the support of the valuation defined by x. This support is a
prime ideal and the corresponding map f : X → Spec A is continuous and surjec-
tive (for surjectivity it is enough to consider the case of Qp〈T1, . . . , Tn〉, where it is
easily seen to be surjective). Moreover a subset U ⊂ X is Zariski-open (resp. con-
structible for the Zariski-topology) if V = f−1(V) for some V ⊂ SpecA open
(resp. constructible).

Write V = f−1(V) for some constructible subset V ⊂ SpecA. It is enough to show
that V is stable under generalization. Let p q = suppx be a specialization4 with
x ∈ U . As U is open there exists a neighborhood U ′ of x contained in U = f−1(U).

4Note that specializations in SpecA are different from specializations in Spa(A,A+). In fact
the morphism Spa(A,A+)→ SpecA identifies points x and y such that x is a specialization of y
in the sense of adic spaces.



14 E. HELLMANN, B. SCHRAEN

However, then U ′ contains a point y with supp y = p and hence p ∈ U : this comes
down to showing that, if Spa(B,B+) ↪→ Spa(A,A+) is the inclusion of an affinoid
subdomain with suppx ∈ Spa(B,B+), then SpecB contains all generalizations of
p = suppx in SpecA. However this follows from the diagram

SpecB // SpecA

Spec B̂p

OO

= // Spec Âp

OO

and the fact that the image of Spec Âp → SpecA contains all generalizations of the
prime ideal p. �

Lemma 2.14. Let A be a Tate algebra over Qp and let f : X → Spa(A,A+) be a
projective morphism. Let U ⊂ X be a Zariski-open subset, then f(U) ⊂ Spa(A,A+)
is constructible for the Zariski topology.

Proof. Let g : X → Spec A be a scheme of finite type over Spec A. Then there is
an analytification gan : X an → Spa(A,A+) which can be written as a fibre product

X an

gan

��

// X

g

��
Spa(A,A+) // SpecA,

as in [Hu1, Proposition 3.8]. Here the morphism Spa(A,A+) → SpecA maps a
valuation to its support. By [Kö, §3] there is also a functor F 7→ Fan from the
category CohX of coherent sheaves on X to the category CohX an of coherent sheaves
on X an. By §§4,5 of loc. cit. this functor is an equivalence of categories when g is
projective.

Applying this equivalence to the sheaf of ideals of an embedding of X into some
projective space over Spa(A,A+) we find a projective morphism g : X → SpecA
such that f = gan. Moreover there exists a closed subscheme Z ⊂ X such that
U = X an\Zan. Let us write U = X\Z, then we have U = Uan.

As the morphism g is a morphism of finite type between noetherian schemes the
Theorem of Chevalley (cf. [EGAIV, Thm. 1.8.4]) implies that there is a decom-
position SpecA =

⋃
Vi with Vi ⊂ SpecA locally closed such that gi(Ui) ⊂ Vi is

Zariski-open, where we write

gi = g|g−1(Vi) : g−1(Vi) −→ Vi

and Ui = U ∩ g−1(Vi). As
⋃
f(Ui)an then is constructible for the Zariski-topology

it remains to show that gan
i (Uan

i ) = (gi(Ui))an. However, this is easily verified. �

Lemma 2.15. Let X = Spa(A,A+) be an affinoid adic space of finite type over
Qp and let U ⊂ X be constructible for the Zariski-topology such that U contains all
rigid analytic points of X. Then U = X.
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Proof. As U is constructibe for the Zariski-topology we have U = q−1(U) for some
constructible set U ⊂ Spec A, where q : Spa(A,A+) → Spec A denotes the mor-
phism mapping a valuation to its support. It follows that U contains all maximal
ideals of A and hence U = Spec A since A is a Jacobson ring. �

Proof of Theorem 2.11. Let us write M ⊂ X(ρ̄) for the set of rigid analytic points
in the image of πρ̄. Further we write ρun for the pullback of the universal GK-
representation on Xρ̄ to X(ρ̄). By Lemma 2.12, all points of M are strictly trian-
guline in the sense of [KPX, Def. 6.3.1]. Then by [loc. cit.,Cor. 6.3.10] there exists
a morphism

f : X̃(ρ̄) −→ X(ρ̄)

and a filtration Fi of D̃ = D†rig(f∗ρun) by submodules that are stable under the
action of ϕ and Γ such that there are short exact sequences

0 −→ Fi/Fi−1 −→ RX̃(ρ̄)(δi)⊗ Li −→Mi −→ 0,

where the Li are line bundles on X̃(ρ̄) and Mi is supported on a Zariski-closed
subset Zi of X̃(ρ̄) not containing any irreducible component of X̃(ρ̄). Moreover f
is projective and birational (in fact it is the composition of the normalization of
X(ρ̄) with some blow-ups) and

f−1(M) ⊂ X̃(ρ̄)\
⋃
i

Zi.

Let U ⊂ X̃(ρ̄) be a Zariski-open and dense subset such that U ⊂ X̃(ρ̄)\
⋃
i Zi and

such that f induces an isomorphism of U onto its image in X(ρ̄) (that we will
denote by U again). For x ∈ U we find Mi ⊗ κ(x) = 0 and hence Fi|U is locally
on U a direct factor of the RU -module D̃. Hence we find short exact sequences

(2.4) 0 −→ Fi−1 ⊗ k(x) −→ Fi ⊗ k(x) −→ R(δi)⊗ k(x) −→ 0.

Shrinking U if necessary we may assume that all the extensions (2.4) for x ∈ U are
non-split and that U ⊂ Xρ̄ × T dreg. Then the filtration F•|U defines a section

(2.5) s : U −→ S(ρ̄)

to π−1
ρ̄ (U) −→ U . However, as πρ̄ is separated this section is a closed immersion.

On the other hand πρ̄ is injective on rigid analytic points and hence π−1
ρ̄ (U) ∼= U ,

as π−1
ρ̄ (U) is smooth and in particular reduced. It follows that U is equidimensional

of the claimed dimension and hence so is X(ρ̄) as U is Zariski-open and dense in
X(ρ̄). Moreover [KPX, Thm. 6.3.13] implies that all the representation ρun ⊗ k(x)
for rigid analytic points x ∈ X(ρ̄) are trianguline.

We let

(2.6) V ⊂ (X̃(ρ̄)\
⋃
i

Zi) ∩ f−1(Xρ̄ × T dreg)

denote the Zariski-open subset of X̃(ρ̄),where all the extensions (2.4) are non-split.
Then the rigid analytic points in f(V ) are precisely the points of M , as both sets
precisely consist of the non-split trianguline representations with parameters in
T dreg. Moreover, for the same reasons as before, the morphism U → S(ρ̄) from (2.5)
extends to a morphism s : V → S(ρ̄). In particular we find f(V ) ⊂ Imπρ̄.



16 E. HELLMANN, B. SCHRAEN

We will show in Proposition 2.17 below that the morphism πρ̄ : S(ρ̄) → X(ρ̄) is
étale at rigid analytic points y ∈ S(ρ̄). Let’s remark that the proof of that proposi-
tion doesn’t use what follows. Let us finish the proof of the theorem assuming this
claim. It then follows from [Hu2, Proposition 1.7.11] that πρ̄ is étale as a morphism
of adic space and hence Imπρ̄ is open by [Hu2, Proposition 1.7.8].

For Spa(A,A+) ⊂ X(ρ̄) open affinoid, Lemma 2.14 implies that f(V )∩Spa(A,A+)
is constructible. On the other hand f(V ) = πρ̄(s(V )) ⊂ Imπρ̄ and hence restricting
to some affinoid neighborhood of x ∈ f(V ) contained in Imπρ̄ Lemma 2.15 implies
that f(V ) is open. It follows from Lemma 2.13 that f(V ) ⊂ X(ρ̄) is Zariski-open.
We define X(ρ̄)reg to be the Zariski-open subset f(V ).

It is left to show that the morphism πρ̄ : S(ρ̄)→ X(ρ̄)reg is an isomorphism (still
assuming that we already know that it is étale). As remarked above the morphism
πρ̄ is injective on rigid analytic points and in particular (locally) quasi-finite as a
morphism of rigid analytic spaces. Then [Hu2, Proposition 1.5.7] implies that πρ̄ is
(locally) quasi-finite as a morphism of adic spaces. Further πρ̄ is partially proper,
as S(ρ̄) is partially proper (cf. [He2, Proposition 3.6]) and X(ρ̄) is separated. It
follows from [Hu2, Proposition 1.5.6] that πρ̄ is locally on S(ρ̄) and X(ρ̄) of the
form g : Z → T with g finite. Moreover g then has to be finite étale and hence it is
an isomorphism if it has degree 1. However, we have constructed above a section
s : U → S(ρ̄) to πρ̄ on some Zariski-open and dense subset U ⊂ X(ρ̄). As g is
injective it has to be an isomorphism. �

Lemma 2.16. Let x ∈ Imπρ̄ be a rigid point, then the complete local ring ÔX(ρ̄),x

is a domain.

Proof. Let X = X(ρ̄). By [vdPSch, Cor. 5], the ring OX,x is an henselian local
ring. It is then a consequence of [R, Cor. 1], that OX,x is a domain if and only if
ÔX,x is a domain. To prove that OX,x is a domain, it is sufficient to prove that, in
the normalization X ′ → X, the fiber over x is just one point. As the space S(ρ̄) is
smooth, it is normal, and then the map πρ̄ has a canonical factorization π′ρ̄ through
X ′. Let x′ a point of X ′ over x, and x̃ a point of the canonical blow-up X̃ = X̃(ρ̄)
over x′. Writing again M for the set of rigid analytic points in the image of πρ̄ the
construction of f : X̃ → X implies that f−1(M) ⊂ V , where V is the Zariski-open
subset defined in (2.6). In particular this means x̃ ∈ V . As constructed above we
have a morphism s : V → S(ρ̄). To summarize, we have the following diagram

S(ρ̄)

πρ̄

��
π′ρ̄
}}

V //

s
33

X ′ // X

As the outer triangle is commutative, by the universal property of the normalization,
we must have g = π′ρ̄ ◦ s, proving that x′ = g(x̃) = π′ρ̄(s(x̃)) is in the image of π′ρ̄.
As the map πρ̄ is injective, the map π′ρ̄ must be injective too. We have proved that
the entire fiber of X ′ → X over x is contained in the image of π′ρ̄. Hence we can
conclude that there is only one point of X ′ over x. �

Proposition 2.17. The morphism πρ̄ : S(ρ̄) → X(ρ̄) is étale at rigid analytic
points.
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Proof. Let x = (ρ, δ) ∈ Imπρ̄ ⊂ Xρ̄ × T dreg and write Rρ = ÔXρ̄,r for the complete
local ring at ρ. This is the complete local noetherian ring pro-representing the
deformation functor of ρ. Further the choice of y ∈ S(ρ̄) mapping to x defines
a triangulation Fil• on D†rig(ρ). Then the functor of (trianguline) deformations of
(D†rig(ρ),Fil•) is pro-representable by ÔS(ρ̄),y. On the other hand by [BeCh, Propo-
sition 2.3.6] this functor is a subfunctor 5 of the deformation functor pro-represented
by Rρ. It follows that the canonical morphism Rρ → ÔS(ρ̄),y is surjective. On the
other hand this morphism factors through ÔX(ρ̄),x and hence the canonical mor-
phism

ÔX(ρ̄),x −→ ÔS(ρ̄),y

is surjective. Further both rings are reduced (the left one by excellence) and have
the same dimension. Now it follows from Lemma 2.16 that ÔX(ρ̄),x is a domain and
hence the morphism from ÔX(ρ̄),x → ÔS(ρ̄),y has to be an isomorphism. It follows
from [Hu2, Definition 1.7.10] that the morphism S(ρ̄)→ X(ρ̄) is étale at y. �

We will refer to the space X(ρ̄)reg constructed in Theorem 2.11 as the regular
part of the trianguline space. The following lemma is a direct consequence of the
construction of Sns(ρ̄) as an open subspace of a successive extension of vector
bundles over T dreg.

Lemma 2.18. Let x ∈ X(ρ̄)reg be a rigid analytic point. Then there exists a
neighborhood of x in X(ρ̄)reg that is isomorphic to the product of a neighborhood of
ωd(x) ∈ Wd with the closed unit disc of dimension 1 + d(d− 1)/2 · [K : Qp].

Similar to the space Sns(ρ̄) we can define a subspace S�(ρ̄) ⊂ S�d consisting of
those trianguline (ϕ,Γ)-modules in S� that come from a GK-representation whose
associated pseudo-character has residual type ρ̄. As in the discussion above we have
a map π�

ρ̄ : S�(ρ̄)→ Xρ̄ × T d.

Lemma 2.19. The map π�
ρ̄ : S�(ρ̄)→ Xρ̄ × T d factors over X(ρ̄).

Proof. As X(ρ̄) is closed and S�(ρ̄) is reduced it is enough to show that a dense
subset of S�(ρ̄) maps to X(ρ̄). However, the set S̃�d of all points x ∈ S�d , where
all the extensions

0 −→ Fili(D)⊗ k(x) −→ Fili+1(D)⊗ k(x) −→ Rk(x)(δi) −→ 0

are non-split is Zariski-open and dense. It follows that S̃�d meets every component
of S�(ρ) and in hence fact the intersection S�(ρ̄) ∩ S̃�d is Zariski-open and dense
in S�(ρ̄). Now we conclude by remarking that there is a canonical map S̃�d → Sns

d

(which is in fact a Gd−1
m -torsor) that induces a map q : S̃�d ∩ S�(ρ̄)→ Sns(ρ̄) such

that the map π�
ρ̄ factors through q. �

5Strictly speaking [BeCh] treat the case K = Qp. However, the same argument applies in the
general case.
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3. Application of eigenvarieties

In this section, we recall some facts about eigenvarieties attached to definite
unitary groups and prove a density statement about them which will be used in the
proof of the main theorem.

3.1. The eigenvarieties. The eigenvarieties that we are going to use are studied
in Chenevier’s paper [Ch3]. The first result that we need is the analogue of the
results in [He2], where the corresponding eigenvarieties were studied in [BeCh]. We
recall the set up of Chenevier’s paper.

Notation 3.1.
(i) We choose a totally real field F such that [F : Q] is even and let E be a CM

quadratic extension of F . We write c for the complex conjugation of E over
F and assume that there is a place v0 of F dividing p such that v0 = w0w

c
0

splits in E and such that Fv0
= Ew0

∼= K. We fix such an isomorphism and
view the uniformizer $ of K as an uniformizer of Fv0

.
(ii) We fix an algebraic closure Q̄ of Q and embeddings ι∞ : Q̄ ↪→ C and

ιp : Q̄ ↪→ Q̄p. Let I∞ = Hom(F,C) = Hom(F,R) denote the set of infinite
places of F . Given a place v of F dividing p the set I(v) = Hom(Fv, Q̄p) is
identified with a subset I∞(v) ⊂ I∞ via our choice of embeddings ι∞ and
ιp.

(iii) Let d ≥ 1 be an integer and let us write G for the unique unitary group
in d variables defined over F which splits over E, is quasi-split at all finite
places and compact at all infinite places. The existence of such a group can
be deduced from the considerations of section 2 of [Cl].

(iv) As v0 splits in E, there exists an isomorphism G(Fv0) ∼= GLd(K) that we
fix for the following. We write Sp for the set of places v of F dividing p
and S′p = Sp\{v0}6.

(v) Let T denote the diagonal torus in GLd(K) and denote by T 0 its maximal
compact subgroup. Further we fix the Borel B ⊂ GLd(K) of upper triangu-
lar matrices in order to have a notion of dominant weights. Let L ⊂ Q̄p be
a subfield containing σ(Fv0) for all σ ∈ I(v0). We define the weight space
for the automorphic representations to be

Waut = Homcont(T
0,Gm,L(−)),

as a rigid space over L. In particular we have a canonical identification
Waut ∼=Wd

L.
(vi) Fix a finite set S of finite places of F containing Sp and all places such that

G(Fv) ramifies and fix a compact open subgroup H =
∏
vHv ⊂ G(AF,f )

such that Hv is maximal hyperspecial for all v /∈ S and such that Hv0

is GLd(OK). Write S′ = S\{v0}. We define H ′ =
∏
vH
′
v such that

H ′v = Hv is v 6= v0 and H ′v0
is the Iwahori-subgroup I of GLd(OK) of

matrices whose reduction modulo $ are upper triangular. Further let
Hun = OL[G(ASF,f )//HS ] denote the spherical Hecke-algebra outside of S.
Furthermore, we ask that H is small enough, i.e. for g ∈ G(AF,f ),

(3.1) G(F ) ∩ gHg−1 = 1.

6Let us remark that here Sp is not exactly the same as in [Ch3]
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(vii) For each place v ∈ S′ we fix an idempotent element ev in the Hecke-algebra
OL[G(Fv)//Hv] and write e = (⊗v∈S′ev)⊗1Hun for the resulting idempotent
element of the Hecke algebra OL[G(Av0

F,f )//Hv0 ]. 7

(viii) For 1 ≤ i ≤ d, let ti = diag(1, . . . , 1, $, 1 . . . , 1) ∈ T , where the uni-
formizer is at the i-th diagonal entry. Let T− ⊂ T denote the set of
diag(x1, . . . , xd) ∈ T such that val(x1) ≥ · · · ≥ val(xd). We regard Z[T/T 0]
as a subring of the Iwahori-Hecke algebra of G(Fv0

) with coefficients in
Z[1/p] by means of t 7→ 1Hv0 tHv0

. This subalgebra is generated by the
Hecke-operators 1Hv0 tHv0 for t ∈ T− and their inverses. Finally let H =

Hun ⊗Z Z[T/T 0], which is a subalgebra of L[G(AF,f )//H ′].

Let W∞ be an irreducible algebraic representation of
∏
v∈S′p,w∈I∞(v)G(Fw) and

let A = A(W∞, S, e) denote the set of isomorphism classes of all irreducible auto-
morphic representations Π of G(AF ) such that

⊗
v∈S′p,w∈I∞(v) Πw is isomorphic to

W∞ and e(Πf )H
′
v0 6= 0. Further define the set of classical points to be

(3.2) Z =

{
(Π, χ)

∣∣∣∣∣ Π ∈ A, χ : T/T 0 → Q̄×p continuous

such that Πv0 |det |
1−d

2
v0 is a sub-object of Ind

GLd(K)
B χ

}
where the parabolic induction is normalized.

Associated to these data there is an eigenvariety, that is a reduced rigid analytic
space Y (W∞, S, e) over L together with a morphism

κ : Y (W∞, S, e) −→Waut

and
ψ = ψun ⊗ ψv0 : H −→ Γ(Y (W∞, S, e),OY (W∞,S,e))

a morphism of algebras such that Y (W∞, S, e) contains a set Z as a Zariski-dense
accumulation8 subset. These data are due to the property that there is a bijection
between Z and Z sending a point z ∈ Z on the pair (Πz, χz) ∈ Z according to the
following rule.

The evaluation ψun(z) : Hun → k(z) is the character of the spherical Hecke-
algebra associated to the representation ΠS

z . For w ∈ I∞(v0), let κΠz,w denote
the algebraic character of Tv0 obtained from Πz,w following the rule of [Ch3, §1.4].
Then, κ(z) =

∏
w∈I∞(v0) κΠz,w . Let κ$(z) be the unique character T/T 0 → Q̄×p

such that κ$(z)(t) = κ(z)(t) when t is a diagonal matrix whose entries are powers
of $. Finally the component ψv0

of the morphism ψ is given by

ψv0(z)|T−v0 : 1Hv0 tHv0 7−→ χz(t) · δ−1/2
Bv

(t)|det(t)|
d−1

2 κ$(z)(t),

where δBv is the modulus character.

In what follows, we fix the data (W∞, S, e) and write simply Y for Y (W∞, S, e).

7We can view ev resp. e also as idempotent elements of the full Hecke algebra, i.e. the convo-
lution algebra of all compactly supported smooth functions on G(Fv) resp. G(Av0

F,f ) (which are
bi-invariant under some compact open subgroup). In particular we can apply these idempotents
to any representation of G(Fv) resp. G(Av0

F,f ).
8Recall that a subset A ⊂ Y of a rigid space accumulates at a point x ∈ Y if A ∩ U is

Zariski-dense in U for every connected affinoid neighborhood U of x in Y .
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In [Ch3, §2], Chenevier constructs these eigenvarieties using a space of overcon-
vergent p-adic automorphic forms. More precisely, if V is an open affinoid of Waut,
one defines a certain rV ≥ 1, and constructs for each r ≥ rV an O(V )-Banach
space denoted eS(V, r) with a continuous action of H such that the operator Uv0

corresponding to diag($d−1, $d−2, . . . , 1) ∈ Z[T/T 0] ⊂ H acts as a compact oper-
ator (see also (3.5) below for a definition of Uv0

). We say that a character of H is
Uv0-finite if the image of Uv0 is non zero. Then we have the following interpretation
of points of Y , which is a consequence of Buzzard’s construction of eigenvarieties
[Bu, §5].

Proposition 3.2. Let t ∈ W(Q̄p). Then there is a natural bijection between Q̄p-
points of Y mapping to t and Q̄p-valued Uv0-finite system of eigenvalues of H on
lim−→V,r

eS(V, r)⊗O(V ) k(t).

3.2. The map to the trianguline space. In the above section we have recalled
the construction of an eigenvariety Y → Waut. Now assume that the extension
E/F is unramified at finite places and S\{v0} contains only places which split in
E. As above we write Z ⊂ Y for the set of classical points (3.2). Let (Π, χ) ∈ Z and
let π =

⊗′
v BC(Πv) be the representation of GLd(AE) defined by local base change

for GLd. Then by [Ch3, Theorem 3.2, 3.3] there are Galois-representations ρΠ :
GE → GLn(Q̄p) attached to the automorphic representations Π ∈ Z, unramified
outside a finite set of places and such that the semi-simplification of theWeil-Deligne
representation attached to ρΠ|Gv equals the Langlands parameter of πv| · |(1−d)/2,
where Gv ⊂ GE is the decomposition group at v for v not dividing p.

Let B ⊂ G = ResK/Qp GLd denote the Weil restriction of the Borel subgroup of
upper triangular matrices and let T ⊂ B denote the Weil restriction of the diagonal
torus. Using the canonical isomorphism GQ̄p

∼=
∏
σ GLd,Q̄p an algebraic weight n

of (GQ̄p ,TQ̄p) that is dominant with respect to BQ̄p can be identified with a tuple
(nσ,1, . . . , nσ,d)σ∈I(v0) ∈

∏
σ∈I(v0) Zd such that nσ,1 ≥ · · · ≥ nσ,d for all σ. Note

that this algebraic weight is already canonically defined over the reflex field En of
the weight n, i.e. over the subfield of Q̄p defined by

Gal(Q̄p/En) = {ψ ∈ Gal(Q̄p/Qp) | nσ,i = nψ◦σ,i for all embeddings σ}

and in particular over our fixed field L. Hence n defines an L-valued point of Wd.

Let z = (Π, χ) ∈ Z and for σ ∈ I(v0) let nσ,1 ≥ · · · ≥ nσ,d denote the highest
weight of Πv(σ), where v(σ) = ι∞ι

−1
p σ ∈ I∞(v0). We say that z is regular (with

respect to v0) if nσ,1 > · · · > nσ,d for all σ ∈ I(v0) and if
λi
λj

/∈ {1, p±[K0:Qp]},

where we set
λi = χ(ti).

We further say that z = (Π, χ) is uncritical if in addition condition (2.3) holds with
λi as above and kσ,i = nσ,i − (i − 1). We write Zreg ⊂ Z for the set of regular
points and Zun ⊂ Z for the set of uncritical regular points.

Lemma 3.3. The subsets Zreg and Zun are Zariski-dense in the eigenvariety Y
and accumulate at all classical points z ∈ Z.
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Proof. The proof is the same as the usual proof of density of classical points. Let
us denote by Y0 ⊂ Wd × Gm the Fredholm hypersurface cut out by the Fredholm
determinant of Uv0 = diag($d−1, . . . , $, 1). Let z ∈ Z ⊂ Y be a classical point
and let U ⊂ Y be a connected affinoid neighborhood. After shrinking U we may
assume that there is an affinoid open subset V ⊂ Wd such that U → V is finite
and torsion free. As U is quasi-compact, there exist C1, . . . , Cd such that

Ci ≥ valx(ψv0(x)(t1 · · · ti))

for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let
us write A ⊂ V for the set of dominant algebraic weights nσ,1 ≥ · · · ≥ nσ,d such
that Ci < nσ,i − nσ,i+1 + 1 for all i and σ : K ↪→ Q̄p

Then one easily sees that A accumulates at the point κ(z). It follows from [Ch3,
Theorem 1.6 (vi)] that the points x ∈ U such that κ(x) ∈ A are classical. Moreover,
using the relation

[K:Qp]
[K0:Qp]valx(λi(x)) +

∑
σ

kσ,i =
[K:Qp]
[K0:Qp]valx(ψv0(x)(ti)),

we obtain

(3.3)

[K:Qp]
[K0:Qp]valx(λ1(x)) ≤C1 −

∑
σ′
kσ′,1

[K:Qp]
[K0:Qp]valx(λ1(x) · · ·λi(x)) ≤Ci −

∑
σ′

i∑
j=1

kσ′,j for all i,

which implies that these points lie in Zun. The claim now follows from this as the
map U → V is finite and torsion free. �

Let us fix an identification of the decomposition group Gw0 of GE at w0 with the
local Galois group GK .

Proposition 3.4. Let Π = Πz for some z ∈ Zreg. For an infinite place v ∈ I let
nv,1 ≥ · · · ≥ nv,d denote the highest weight of Πv. Then the representation ρΠ|GK
is crystalline with Hodge-Tate weights9

(3.4) kσ,i = nv(σ),i − (i− 1),

where v(σ) = ι∞ι
−1
p σ. Moreover the Frobenius Φcris,Π that is the [K0 : Qp]-th power

of the crystalline Frobenius on

WD(ρΠ|GK ) = Dcris(ρΠ|GK )⊗K0⊗Qp Q̄p Q̄p

is semi-simple, its eigenvalues are distinct and given by λi = χz(ti).

Proof. It follows from [Ch3, Theorem 3.2] that the representation is semi-stable with
Hodge-Tate weights and Frobenius eigenvalues as described above. The condition

λi
λj
6= p±[K0:Qp]

assures that the monodromy operator has to vanish and hence the representation is
crystalline. Further the condition λi/λj 6= 1 assures that the Frobenius has distinct
eigenvalues and is a priori semi-simple. �

9Again note that we use a different sign convention as [Ch3].
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By [Ch3, Corollary 3.9] there is a pseudo-character TY : GE,S → Γ(Y,OY ) such
that for all Π ∈ Zreg one has T ⊗ k(Π) = tr ρΠ. Let us write GE,S for the Galois
group of the maximal extension ES inside Q̄ that is unramified outside S and fix
a continuous residual representation ρ̄ : GE,S → GLd(F) with values in a finite
extension F of Fp such that the restriction ρ̄w0

= ρ̄|Gw0
is absolutely irreducible.

We write Rρ̄,S reps. Rρ̄w0
for the universal deformation rings of ρ̄ resp. ρ̄v and

let Xρ̄,S resp. Xρ̄v denote their rigid analytic generic fibers. As we assume ρ̄w0

(and hence also ρ̄) to be absolutely irreducible [Ch2, Theorem A and Theorem B]
implies that the universal deformation rings Rρ̄w0

and Rρ̄,S agree with the universal
deformation rings of the corresponding pseudo-characters tr ρ̄w0

resp. tr ρ̄.

Let Yρ̄ ⊂ Y denote the open and closed subset where the pseudo-character TY has
residual type ρ̄. Then the restriction to the decomposition group GK ∼= Gw0

⊂ GE,S
at w0 induces a map fρ̄ : Yρ̄ → Xρ̄w0

. Let NK/Qp : K× → Q×p denote the norm map
of K. We define gi : Y → Gm by

z 7−→ ψv0
(tv0,i) · (|NK/Qp($)|NK/Qp($))1−i.

Further we define a morphism

ωY = (ωY,i)i : Y −→Wd

by setting ωY,i = κi · δW((1− i, . . . , 1− i)).

Theorem 3.5. The map

f = (fρ̄, ωY , (gi)i) : Yρ̄ −→ Xρ̄w0
×W ×Gdm = Xρ̄w0

× T d

factors over the trianguline space X(ρ̄w0) ⊂ Xρ̄w0
×T d and fits into the commutative

diagram

Yρ̄
f //

ωY ##

X(ρ̄w0)

ωd
��
Wd

Proof. The subset X(ρ̄w0
) ⊂ Xρ̄w0

×T d is Zariski-closed an hence it suffices to check
that f(z) ∈ X(ρ̄w0

) for all z = (Πz, χz) ∈ Zun∩Y (ρ̄), as this subset is Zariski-dense
by Lemma 3.3 and as Yρ̄ is reduced. By Lemma 2.19 this amounts to say that for
z ∈ Zun the representation ρΠz |Dw0

is trianguline with graded pieces R(δi), where
δi : K× → Q̄×p is the character

δi|O×K : z 7−→
∏

σ
σ(z)nv(σ),i+1−i

δi($) = ψv0
(z)(tv0,i)(|NK/Qp($)|NK/Qp($))1−i.

where as above v(σ) = ι∞ι
−1
p σ and where we write (nv(σ),i) for the highest weight

of Πz,v(σ). By our choice of Zun this follows from Lemma 2.9 and Proposition
3.4. �

3.3. A density result for the space of p-adic automorphic forms. We now
introduce the Banach space of p-adic automorphic forms of tame level Hv0 and
prove that an element of Rρ̄,S vanishing on this space, vanishes on the eigenvariety
Y (W∞, S, e)ρ̄ too.
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Recall that we have fixed a finite extension L of Qp with ring of integers O and
uniformizer $L. If H =

∏
vHv ⊂ G(AF,f ) is a compact open subgroup such that

Hv ⊂ GLd(Fv) for v|p, we can define, for W0 a finite O-module with a continuous
action of GLd(OF ⊗Zp), the space of automorphic forms of level H and weight W0

by

SW0
(H,O) = {f : G(F )\G(A∞F )→W0 | f(gh) = h−1f(g) for all h ∈ H}.

If Hv0 =
∏
v 6=v0

Hv, we can define

SW0(Hv0 ,O) = lim−→
Hv0⊂G(OFv0 )

SW0
(Hv0Hv0

,O),

where the limit is taken over all compact open subgroups of G(OFv0 ). This spaces
carries an action of G(Fv0) which is induced by right translation on functions.

Let ŜW0
(Hv0 ,O) be the $L-adic completion of SW0

(Hv0 ,O). When W0 is the
trivial representation, we omit it from the notation.

If n is a dominant algebraic weight, we writeWn for the irreducible representation
of GQ̄p = (ResK/Qp GLd)Q̄p of highest weight n relatively to our choice of Borel
subgroup. Note that this representation is already canonically defined over the
reflex field En of the weight n and in particular over our fixed field L, because we
assumed that L contains all the Galois conjugates σ(K) of K inside Q̄p. Finally we
write Wn for the representation of GLd(K) or GLd(OK) given by composing the
embedding

GLd(K) −→
∏

σ
GLd(L) = (ResK/Qp GLd)(L)

x 7−→ (σ(x))σ.

with the evaluation of Wn on L-valued points (and similar for its restriction to
GLd(OK)).

Recall that W∞ is the representation of
∏
v∈S′p

∏
w∈I∞(v)G(Fv) fixed in sec-

tion 3.1. Using ιp and ι∞ and choosing L big enough, we can view W∞ as
a representation of

∏
v∈S′p

G(Fv) and put an L-structure on it. Let us write

Ŝn(Hv0 , L) = ŜW 0(Hv0 ,O) ⊗O L, where W 0 is a stable OL-lattice of the repre-
sentation Wn ⊗OL W∞ of G(OF ⊗ Zp) = GLd(OK)×

∏
v∈S′p

G(OFv ).

If H is a compact open subgroup of G(AF,f ) we write H(H) for the image of Hun

in End(Ŝk(H,L)).

Now we fix H as in section 3.1, and assume moreover now that all places v|p
are split in E and Hv is maximal at theses places10. Recall that we fixed a Galois
representation ρ̄ which is automorphic of level H, i.e. there exists z ∈ Z such that
ρ̄ is isomorphic to the reduction mod $L of ρΠz . Let m be the maximal ideal of
Hun such that for v /∈ S, the conjugacy class of ρ̄(Frobv) coincides via the Satake
correspondence with the morphism H(G(Fv), Hv) = OL[G(Fv)//Hv]→ H(H)/m '
kL.

Given a compact open subgroup Hv0
⊂ G(OFv0 ) we write Hm(Hv0

) for the
image of Hun

m in End(S(Hv0Hv0
,O)m). It follows from [Tho, Prop.6.7] that there

10This restriction is only here to be able to apply the idempotent e at the spaces SW (H,L).
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is a unique continuous map

θ : Rρ̄ −→ Hm(Hv0
)

with the following property: Given a morphism ψ : Hm(Hv0
)→ Q̄p of OL-algebras,

the deformations ρ of ρ̄ corresponding to ψ◦θ are such that for v /∈ S, the conjugacy
class of ρ(Frobv) coincides via the Satake correspondence with the morphism

H(G(Fv), Hv) −→ Hm(Hv0)
ψ−→ Q̄p.

By unicity, these maps glue into a map

θ : Rρ̄ −→ lim←−
Hv0

Hm(Hv0)

giving a continuous action of Rρ̄ on Ŝ(Hv0 ,O)m.

Now we can fix an idempotent e as in section 3.1 such that eS(Hv0 , L)m 6= 0. We
will prove that if an element t ∈ Rρ̄ vanishes on eŜ(Hv0 , L)m, then it vanishes on
Yρ̄ = Y (W∞, S, e)ρ̄ too.

Lemma 3.6. If n is a dominant algebraic weight, there exists a GLd(OK)×Hun-
equivariant homeomorphism

Ŝn(Hv0 , L)m 'Wn ⊗L Ŝ(Hv0 , L)m,

supposing that Hun acts trivially on Wn.

Proof. It is sufficient to prove it before the localization in m, by Hun-equivariance.
Then we can use the following list of GLd(OK)×Hun-equivariant isomorphisms

W 0
n ⊗OL Ŝ(Hv0 ,OL) = lim←−

n

(W 0
n/$

n
L)⊗OL S(Hv0 ,OL/$n

L))

= lim←−
n

(W 0
n/$

n
L)⊗OL (lim−→

Hv0

S(Hv0
Hv0 ,OL/$n

L))

= lim←−
n

lim−→
Hv0

(SW 0
n/$

n
L

(Hv0
Hv0 ,OL/$n

L)

= Ŝn(Hv0 ,OL).

�

Proposition 3.7. The GLd(OK)-representation Ŝ(Hv0 ,O)m is isomorphic to a
direct factor of C(G(OK), L)r for some r ≥ 0, where C(G(OK), L) denotes the
space of continuous L-valued functions on G(OK).

Proof. Using Lemma 3.6, it is sufficient to prove it when n = 0. In this case
we remark that the Banach space Ŝ(Hv0 , L) =Ŝ0(Hv0 , L) is the Banach space of
continuous functions G(F )\G(AF,f )/Hv0 → W∞. Let g1, . . . , gr′ ∈ G(AF,f ) be
a set of representatives of G(F )\G(AF,f )/H. We have G(F ) ∩ giHg−1

i = {1}
for each i, proving that G(F )\G(AF,f )/Hv0 is isomorphic to GLd(OK)r

′
. This

proves that Ŝ(Hv0 , L) is GLd(OK)-equivariantly isomorphic to C(GLd(OK), L)r

with r = r′ dimW∞. Using the fact that lim←−Hv0
H(Hv0

,OL) and its action on

Ŝ(Hv0 , L) commutes to GLd(OK), we can conclude that Ŝ(Hv0 , L)m is isomorphic
to a direct factor of C(GLd(OK), L)r. �
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By Lemma 3.6, there is an Hun-equivariant isomorphism

Sn(H,L)m ' HomGLd(OK)(W
∗
n , Ŝ(Hv0 , L)m).

This implies that if t ∈ Rρ̄ vanishes on Ŝ(Hv0 , L)ρ̄ it will vanish at each point of
Z ⊂ Yρ̄. These points being Zariski-dense in Y , the function t vanishes on Yρ̄.

3.4. A density result for the eigenvariety. Now we fix k a strongly dominant
weight. We say that a closed point y ∈ Yρ̄ is crystabelline of Hodge-Tate weights
k if its image in X(ρ̄) is crystalline on an abelian extension of K and its Hodge-
Tate weights are given by k. The purpose of this section is to prove that if t ∈ Rρ̄
vanishes on the subset of points of Yρ̄ which are crystabelline of Hodge-Tate weights
k, then t vanishes on Yρ̄.

Recall that we have fixed a Borel subgroup B ⊂ GLd(K) and let us write N ⊂ B
for its unipotent radical. Further we write N0 = N ∩GLd(OK).

Recall that given a representation Π of G(Fv0
) the operator Uv0

is defined to be

(3.5) Uv0
v =

∑
n∈N0/zv0N0z

−1
v0

nzv

on ΠN0 with zv0
= diag($d−1, $d−2, . . . , 1).

Definition 3.8. Let Π be an irreducible smooth representation of G(Fv0
). We say

that Π has finite slope if the operator Uv0 has a non zero eigenvalue on the space
ΠN0 . If Π is an irreducible automorphic representation of G(AF ), we say that Π
has finite slope if Πv0

has finite slope as a smooth representation of G(Fv0
).

The following result tells us that finite slope automorphic representations of
G(AF ) give rise to closed points of Yρ̄.

Proposition 3.9. Let Π be an irreducible automorphic representation of G(AF )
of finite slope whose isomorphism class lies in A(W∞, S, e). Then there exists a
point z ∈ Y (W∞, S, e) such that ψz|Hun = ψΠ|Hun . Moreover, if

⊗
w∈I∞(v0) Πw is

isomorphic to Wn, then the Galois-representation attached to z becomes semi-stable
of weight k= (kσ,i), when restricted to the Galois group of an abelian extension of
K, where kσ,i = nσ,i − (i− 1). If moreover, for ηi = ωY,i(z)δW((kσ,i))

−1, we have
ηi 6= ηj for i 6= j then this Galois representation is potentially crystalline of weight
k.

Proof. By assumption, there exists f ∈ eŜ(Hv0 , L)
N0 which is an eigenvector of

H×L[T 0] such that the character of H is ψΠ and the eigenvalue of Uv0
is non zero.

Let χ be the character of T 0 giving the action of T 0 on f . By [Loe, Proposition
3.10.1], we have

eŜ(Hv0 , L)
N0

[χ] ' lim−→
r

eS(χ, r)

By Proposition 3.2, there exists a point z of Y (W∞, S, e) such that ψz|Hun =
ψΠ|Hun . The claim about semi-stability after an abelian extension follows easily
using the map to the trianguline space and the fact that the fibers over strongly
dominant locally algebraic characters have this property. By Theorem 3.5, the
character (ηi)i gives the action of the inertia on the Weil-Deligne module of this
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Galois representation, which is non monodromic under the last assumption of the
proposition. �

Let k and n as in the proposition. This proposition shows us that if we want
to prove that an element t ∈ Hun vanishing on all crystabelline points of type k
of Y (W∞, S, e)ρ̄ is zero, it is sufficient to prove the following: An element t ∈ Hun

vanishing on eSn(Hv0 , L)m[Πf ] for all irreducible automorphic representations Π of
finite slope such that eΠf 6= 0, satisfies t = 0 on eŜ(Hv0 , L)m.

To produce sufficiently many automorphic finite slope representations we can use
the following result. Now we write In for the level n Iwahori subgroup of GLd(OK)
i.e. the group of elements of GLd(OK) such that the entries below the diagonal are
divisible by $n, and B0 = B ∩ In and N0 = N ∩ B0. Recall that the level of a
smooth character χ : O×K → C× is the least integer n such that 1 + $n+1OK is
contained in ker(χ).

Proposition 3.10. Let χ =
⊗d

i=1 χi be a smooth character of T 0 such that for
1 ≤ i ≤ n−1, the level of χi is strictly bigger than the level of χi+1, then there exists
an open subgroup I(χ) such that I(χ) = (I(χ) ∩ N̄)T 0(I(χ) ∩ N), I(χ) ∩ B = B0

and if we write χ for the composite I(χ) → T 0 → C×, then the pair (I(χ), χ) is
a type for the inertial conjugacy class of (T, χ), more precisely, if π is a smooth
irreducible representation of GLd(K), then

HomI(χ)(χ, π) 6= 0⇐⇒ π ∼= Ind
GLd(K)
B (η)

with η a character of T such that η|T = χ. Moreover, in this case, π has finite
slope.

Proof. Let ni be the level of χi and define I(χ) as the subgroup of I of matri-
ces (ai,j)1≤i,j≤d such that $nj |ai,j for j < i. It is immediate to check that χ
can be extended to a character of I(χ). It is enough to prove that (I(χ), χ) is a
type for the GLd(K)-inertial equivalence class of (T, χ). In order to do so, we use
the characterization of part 2 of the introduction of [BK]. The only non trivial
condition is (iii) of loc. cit. We follow closely the arguments of [BK] where the
situation is much more general. Let z be the element of T whose diagonal entries
are ($n−1, $n−2, . . . , $, 1) and fz the element of H(G,χ) with support I(χ)zI(χ)
such that fz(z) = 1. We only have to prove that fz is an invertible element of
H(G,χ). Let fz−1 be the element of support I(χ)z−1I(χ) such that fz−1(z−1) = 1.
We want to prove that g = fz−1 ∗ fz has support in I(χ). The support of g is
contained in I(χ)z−1I(χ)zI(χ). Now remark that

I(χ)zI(χ) =
∐

u∈I(χ)/(I(χ)∩zI(χ)z−1)
uzI(χ)

and that each class of I(χ) modulo I(χ)∩zI(χ)z−1 contains an element ofN∩I(χ) =
N0, so that I(χ)z−1I(χ)zI(χ) = I(χ)z−1N0zI(χ) ⊂ I(χ)NI(χ). By [BH, Prop.
11.1.2.], it is then sufficient to check that if an element u ∈ N intertwines the
character χ, then u ∈ N0. We can restrict us to the case d = 2. Let u = ( 1 x

0 1 ).
Suppose that x /∈ OK and choose n = n1 − v(x) with ni the level of χi. If u
intertwines χ, an easy computation shows us that we must have χ1(a+x$nc)χ2(d−
x$nc) = χ1(a)χ2(d) for each (a, d, c) ∈ O×K ×O

×
K ×OK . As n1 ≥ n2 + 1, we have
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χ2(d − x$nc) = χ2(d), so that we have χ1(1 + x$nc) = 1 for all c ∈ OK , which
contradicts the fact that n1 = n+ v(x) is the level of χ1. �

Let T̃ 0 be the set of smooth characters T 0 → Cp of the form χ1 ⊗ · · · ⊗ χd such
that the level of χi is strictly bigger than the level of χi+1 for 1 ≤ i ≤ d− 1.

Proposition 3.11. Let B be the Banach space of continuous function O×K → Cp
and for n ∈ N, let B≥n denote the subspace generated by the characters O×K → C×p
of finite level bigger than n. Then B≥n is dense in B.

Proof. As the space of smooth functions from O×K → Cp is dense in B and a basis
of this space is given by the set of all characters of finite level, the closure of B≥n
in B is a subspace of finite codimension. If it is strictly included in B, there exists
a continuous map λ : B → Cp which is U -equivariant for some open subgroup
U ⊂ O×K acting trivially on Cp. Then λ gives rise to a non trivial Haar measure on
U which can not exist. �

Corollary 3.12. Let C(T 0,Cp) denote the space of continuous Cp-valued functions
on T 0. Then the subspace of C(T 0,Cp) generated by the elements of T̃ 0 is dense.

Proposition 3.13. 11 Let C(N0\GLd(OK),Cp) denote the space of Cp-valued con-
tinuous functions on GLd(OK) which are left invariant under N0. Then the sub-
space ∑

χ∈Td

Ind
GLd(OK)
I(χ) (χ) ⊂ C(N0\GLd(OK),Cp)

is dense.

Proof. If χ ∈ T̃ 0, the character χ of T 0 uniquely extends to a character χ of I(χ)
which is trivial on In ∩ N and In ∩ N̄ . Let’s name such a function a character
function for the moment. More generally for g ∈ GLd(OK), the function χ(·g) of
support I(χ)g−1 is named a right translated character function. For χ ∈ T̃ 0, the
space Ind

GLd(OK)
I(χ) (χ) is exactly the subspace of C(N0\GLd(OK ,Cp)) generated by

the right translated character functions. Let f : GLd(OK) → Cp be a continuous
function, invariant on the left under N0. We have to prove that we can approximate
f by right translated character functions. Let g1, . . . , gr be a system of representa-
tives of the quotient I1\GLd(OK). Let fi = f(· g−1

i )|I1 , so that f =
∑r
i=1 fi(·gi).

Now fix 1 ≤ i ≤ r and ε > 0. As I1 is compact, we can find n ≥ 1, such that
for h ∈ In ∩ N̄ , we have ||fi − fi(· h)|| < ε. Let h1, . . . , hs ∈ I1 be a system of
representatives of (In ∩ N̄)\(I1 ∩ N̄), which is also a system of representatives of
In\I1, and define fi,j = fi(· h−1

j )|In . Let f ′i,j be the function on In defined by
f ′i,j(ntN̄) = fi,j(t) for (n, t, N̄) ∈ (N ∩ In)×T 0× (N̄ ∩ In). As (N̄ ∩ In) is a normal
subgroup of (N̄ ∩ I1), we have ||fi,j − f ′i,j || < ε. Using Corollary 3.12, for each
(i, j) ∈ [1, r] × [1, s], we can find elements f̃i,j ∈ Td, such that ||f ′i,j |T 0 − f̃i,j || < ε.
Now we can write each f̃i,j as

∑
k ai,j,kχi,j,k with I(χi,j,k) ⊂ In. We extend each

χi,j,k to I(χi,j,k) as previously described. As I(χi,j,k) ⊂ In, we can write f̃i,j as a

11V. Paškūnas informed us that he has more general versions of this result in his forthcoming
work with M. Emerton
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finite sum of right translated character functions. If f̃ =
∑
i,j f̃i,j(· hjgi), we have

||f − f̃ || < ε, and f̃ is a finite sum of right translated character functions. �

Now we can conclude the proof.

Proposition 3.14. Let t ∈ Rρ̄ such that t is zero on each eSn(Hv0I(χ),Cp)m[χ]

such that χ ∈ T̃ 0, then t = 0 on eŜ(Hv0 , L)N0
m .

Proof. We know that
∑
χ Ind

GLn(OK)
I(χ) (χ) is dense in C(N0\GLn(OK),Cp) and that

Ŝn(Hv0 , L)m is isomorphic to a direct summand of C(GLd(OK), L)r for some r.
It follows that S1 = Ŝn(Hv0 , L)m⊗̂LCp is isomorphic to a direct summand of
C(GLd(OK),Cp)r. We can write C(GLd(OK),Cp)r = S1 ⊕ S2.

As the functor F =
⊕

χ HomI(χ)(χ,−) commutes with finite direct sums, we
know that F (S1) ⊕ F (S2) is dense in [C(GLd(OK),Cp)r]N0 . As the functor of
N0-invariants commutes with direct sums, we conclude that F (S1) ⊂ SN0

1 must
be dense. By assumption, t vanishes on F (S1), hence on SN0

1 , which contains
Ŝn(Hv0 , L)N0

m . Finally we conclude by remarking that

Ŝn(Hv0 , L)N0
m = Wn ⊗L Ŝ(Hv0 , L)N0

m .

�

Corollary 3.15. Let f ∈ Rρ̄ be a function vanishing on all points of Yρ̄ which are
crystabelline of Hodge-Tate weights k. Then the image of f in Γ(Yρ̄,OY ) is zero.

3.5. Conclusion. Let us summarize what we have proven so far using eigenvari-
eties. The following definition will be useful.

Definition 3.16. Let X be a rigid space and R be a ring together with a ring
homomorphism ψ : R→ Γ(X,OX).
(i) A subset Z ⊂ X is called R-closed if Z = {x ∈ X | ψ(f)(x) = 0 for all f ∈ I}
for some ideal I ⊂ R.
(ii) A subset U ⊂ X is called R-open if its complement is R-closed.

Further we have an obvious notion of the R-closure of some subset Z ⊂ X and a
notion of R-density.

Let k = (kσ,i)σ ∈
∏
σ Zd be a strongly dominant algebraic weight and Xk(ρ̄w0

)
denote the Rρ̄v0 -closure of the set of crystabelline points of X(ρ̄w0

) which have
labeled Hodge-Tate weights k. We have finally proved the following result.

Theorem 3.17. The image of Y (W∞, S, e)ρ̄ in X(ρ̄w0
) under the map defined by

Theorem 3.5 is contained in Xk(ρ̄w0
).

4. The main theorem

Let us fix a continuous absolutely irreducible representation r̄ : GK → GLd(F).
We need to embed our local situation into a global one. For this we use the results
of the appendix of [EG] and the following proposition.
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Proposition 4.1. Let k be a set of labeled Hodge-Tate weights. Then r̄ has a
potentially diagonal lift of Hodge-Tate weights k.

Proof. Let K ′ be the unique unramified extension of degree d of K. Then there
exists a character η of GK′ such that r̄ ' IndGKGK′ η. If k = (kσ,i) is a stronlgy
dominant weight, let θ be a character GK′ → Q̄×p such that the restriction of θ to
the inertia group of K ′ corresponds, via local class field theory, to the character
of O×K′ given by x 7→

∏
σ,i ψσ,i(x)kσ,i , (ψσ,i)1≤i≤d being the set of embeddings of

K ′ in Q̄p whose restriction to K is σ. Let δ be a locally constant lift of ηθ̄−1,
for example using the Teichmüller lift, then IndGKGK′ (θδ) is a lift of r̄ which has
Hodge-Tate weights k and whose restriction to GK′ is diagonal. �

We also assume that p does not divide 2d. Then Corollary A.7 of [EG] and
Proposition 4.1 tell us that we can find F a totally real field, E a totally imaginary
quadratic extension of F which is unramified at each finite place12, and a continuous
irreducible representation ρ̄ : GF → Gd(F̄p) (see for example [EG, §5.1] for the
definition of Gd) such that

• 4|[F : Q] ;
• each place v|p of F splits in E and Fv ' K;
• for each place v|p of F , there is a place ṽ of E dividing p and such that
ρ̄|GFṽ ' r̄ ;
• ρ̄ is unramified outside of p ;
• ρ̄−1(GLd(F̄p)×GL1(F̄p)) = GE ;
• ρ̄(GE(ζp)) is adequate (in the sense of [Tho, §2])
• ρ̄ is automorphic, we will explain now what this means.

Let v1 be a place13 of F which is prime to p and satisfies the same hypothesis as
in [EG, §5.3]. We define the compact open subgroup Hmax =

∏
vHmax,v ⊂ G(AF )

so that Hmax,v ' GLd(OK) if v|p, Hmax,v ⊂ G(Fv) is maximal hyperspecial if
v - p and v 6= v1, and Hmax,v1 an open pro-`-subgroup of G(Fv1) for ` the residual
characteristic of v1. We say that ρ̄ is automorphic if SW (Hmax, L)ρ̄ 6= 0 for some
irreducible locally algebraic representation W of G0

p =
∏
v∈Sp Hmax,v.

Remark 4.2. Of course the group Hmax is not a maximal compact subgroup. How-
ever, it will be the largest compact open subgroup that will appear in the following.

From now on we fix a place v0 of F dividing p such that Fv0 ' K.

All constructions we did in section 3 depend on the choice of a representation
W∞ of the group

∏
v∈S′p,w∈I∞(v)G(Fw). Even if that’s not explicit in the notation,

the space Ŝ(Hv0
max, L) actually depends on W∞. That’s why we need the following

lemma.
Lemma 4.3. There exists an irreducible algebraic representation W∞ of the group∏
v∈S′p

∏
w∈I∞(v)G(Fv) such that Ŝ(Hv0

max, L)ρ̄ 6= 0.

12This condition is not exactly in [EG], but it can be obtained by a suitable solvable base
change.

13The introduction of this auxiliary place is only needed so that the group H satisfies condition
(3.1).
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Proof. By definition, we know that there exists an irreducible locally algebraic
representation W of G0

p such that SW (Hmax, L)ρ̄ 6= 0. Let

Ŝ(Hp
max, L)ρ̄ = lim←−

n

lim−→
Hp⊂G0

p

S(Hp
maxHp,OL/$n

L)ρ̄.

We see, as in section 3.3, that SW (Hmax, L)ρ̄ ' HomG0
p
(W ∗, Ŝ(Hp

max, L)ρ̄) and
that, as a G0

p-representation, S(Hp
max, L)ρ̄ is isomorphic to a non zero direct factor

of (G0
p)
r for some r ≥ 1.

We can then find an irreducible algebraic representation W v0 of
∏
v∈S′p

GLd(OFv )

such that Hom∏
v∈S′p

GLd(OFv )(W
v0 , Ŝ(Hp

max, L)ρ̄) 6= 0 and choose for W∞ the irre-
ducible algebraic representation of

∏
v∈S′p

∏
w∈I∞(v) GLd(Fv) associated to W v0 as

explained in section 3.3. Then we have by definition

Ŝ(Hv0
max, L)ρ̄ ' Hom∏

v∈S′p
GL(OFv )(W

v0 , Ŝ(Hp
max, L)ρ̄).

�

From now on, all pairs (S,Hv0) to which we are going to apply the results of §3
(where Hv0 is a compact open subgroup of G(Av0

F,f ) and S a finite set of places of
F splitting in E such that Hv is maximal hyperspecial for v /∈ S) are assumed to
satisfy Hv0 ⊂ Hv0

max and S ⊃ Sp ∪ {v1}.

4.1. A result of density in crystalline deformation spaces. Fix n a dominant
algebraic weight such that HomGLd(OK)(W

∗
n , Ŝ(Hv0 , L)ρ̄) 6= 0. We write k for the

strongly dominant weight associated to n by the recipe of (3.4).

By Kisin’s result [Ki3] there exists a reduced p-torsion free quotient Rcris
r̄,k of Rr̄

such that a continuous homomorphism ζ : Rr̄ → Q̄p factors through Rcris
r̄,k if and

only if ζ ◦ runiv is crystalline of Hodge-Tate weight k. Here runiv is the universal
deformation of r̄ on Rr̄. Moreover the ring Rcris

r̄,k [1/p] is formally smooth. Let’s
denote by Xcris

r̄,k the generic fiber of the formal scheme Spf Rcris
r̄,k . In this section

we will use patching techniques to prove that the Rr̄-closure (or equivalently the
Rcris
r̄,k -closure) of automorphic points of Xcris

r̄,k is a union of connected components of
Xcris
r̄,k .

Let nowHp be a compact open subgroup ofG(ApF ) which is such thatHp
v is hyper-

special for every finite place v of F which is inert in E. We will say that a Q̄p-point
of Spec(Rcris

r̄,k ) is Hp-automorphic if the corresponding deformation of r̄ is isomor-
phic to the restriction to GEw0

of a deformation ρ of ρ̄ associated to an automorphic
form of G of typeW∞. More precisely, let p be the kernel of the map Rρ̄[1/p]→ Q̄p
associated to ρ, then ρ is called Hp-automorphic if SWn(G0

pH
p, L)[p] 6= 0 where we

recall that G0
p =

∏
v∈Sp GLd(OFv ).

Further an irreducible component of Spec(Rcris
r̄,k [1/p]) is called Hp-automorphic

if it contains an Hp-automorphic point.

Finally, we say that a Q̄p-point (resp. a connected component) of Spec(Rcris
r̄,k [1/p])

is automorphic if it is Hp-automorphic for some Hp as above.
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Remark 4.4. Note that actually our definition of being automorphic depends on
the representation W∞ chosen as in Lemma 4.3. However, in order not to overload
the notation we often will suppress W∞ from the notations.

Our goal in this section is to use the usual patching construction to prove the
following result.

Theorem 4.5. Let Z be an automorphic component of Spec(Rcris
r̄,k [1/p]). Then the

set of automorphic points in Z is Zariski dense.

Let Xaut
r̄,k be the union the components of the rigid analytic generic fiber Xcris

r̄,k of
Spf Rcris

r̄,k that correspond to automorphic components of Spec(Rcris
r̄,k [1/p]).

Corollary 4.6. The set automorphic points in Xaut
r̄,k is Rr̄-dense in Xaut

r̄,k .

Given a rigid space X over Qp we write |X| for the underlying point set of X.
Similarly we write |X| for the set of closed points of a Qp-scheme X. Let R be a
complete local noetherian Zp-algebra with finite residue field and let X denote the
generic fiber of R in the sense of Berthelot. Further let X = SpecR[1/p]. Then we
have |X| = |X|, as, if we write R = Zp[[T1, . . . , Tn]]/(f1, . . . , fm), then both sets are
identified with the Gal(Q̄p/Qp)-orbits in

{x = (x1, . . . , xn) ∈ Q̄p | |xi| < 1 and fj(x) = 0},

compare also [dJ, Lemma 7.1.9]. Further a subset Z ⊂ |X| = |X| is dense in X if
and only it is R-dense in X. This proves that the theorem implies the corollary.

Proof of Theorem 4.5. Let Hp ⊂ G(ApF ) be a compact open subgroup, hyperspecial
at all finite place of F which are inert in E, such that the component Z has Hp-
automorphic points. Let S be the finite set of places v of F which are either dividing
p either such that Hv0

v is not maximal. It is classical that, up to enlarging S and
taking an open subgroup of Hp, we can assume that the group Hp

∏
v∈S G

0
p satisfies

the relation (3.1).

If v ∈ S\Sp, fix ṽ a place of E dividing v and define R�
ṽ as the universal ring

pro-representing the functor of lifts of ρ̄|Gṽ , and R
�,rtf
ṽ its biggest quotient wich is

reduced and p-torsion free. We have to take care of the fact that we fixed the weight
W∞ =

⊗
v∈S′p,w∈I∞(v)Ww. As a consequence, for v ∈ S′p, let R′v be the quotient

Rcris
ρ̄|GEṽ ,kv

of Rρ̄|GEṽ where kv is the set of Hodge-Tate weights associated to the

highest weight of the algebraic representation
⊗

w∈I∞(v)Ww. Let R′v0
= Rcris

r̄,k ,

Rloc =
⊗̂

v∈Sp
R′v⊗̂

⊗̂
v∈S\Sp

R�,rtf
ṽ

and R∞,g = Rloc[[x1, . . . , xg]]. Then the patching construction (see [Tho, §6]) gives
us, for g big enough, a R∞,g-moduleM∞ of finite type whose support in SpecR∞,g
is a union of irreducible components and M∞[1/p] is a projective R∞[1/p]-module.
Let R̄ be the quotient of Rloc corresponding to one of these irreducible components.
Then R̄ ⊗Rloc M∞[1/p] is a faithful R̄[[x1, . . . , xg]][1/p]-module. Moreover, M∞ is
constructed as an inverse limit of the modulesMn, whereMn is a quotient of a space
of automorphic forms of weight k, on which the action of R∞,g factors through a
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ring of Hecke operators. Let’s precise that these spaces of automorphic forms have
tame level H̃p where H̃p is an open subgroup of Hp still satisfying the condition
that H̃p is hyperspecial at places of F which are inert in E.

Lemma 3.4.12 in [Ki2] shows that the irreducible components of the scheme
Spec(Rloc[[x1, . . . , xg]]) are of the form Spec(R̄[[x1, . . . , xg]]) where R̄ =

⊗
v∈S R̄

′
v

and R̄′v is an irreducible component of R′v if v|p and of R�,rtf
ṽ if v ∈ S\Sp. Now

let R̄′v0
be the quotient of Rcris,�

r̄,k such that Z = Spec(R̄′v0
[1/p]). By assumption,

there exists an irreducible component R̄′[[x1, . . . , xg]] of Rloc[[x1, . . . , xg]] containing
R̄′v0

in the support of M∞. If t ∈ Rcris,�
r̄,k vanishes on each automorphic point, then

t acts trivially on the spaces Mn, and so on M∞. Now R̄ ⊗Rloc M∞[1/p] being a
faithful R̄[1/p]-module, the image of t in R̄′v0

[1/p] is zero which implies that t = 0

in R̄′v0
since R̄′v0

is p-torsion free. �

4.2. Variation on the density of trianguline representations. In order to
deduce density statements in the generic fiber of a local deformation ring from
density statements in the space of trianguline representations one needs to show
that the image of the space of trianguline representations is dense. This density
result is included in the work of Chenevier [Ch1] and Nakamura [Na3]. In our case
the situation will be a bit more restrictive: we only can make a statement about
the components of the space of trianguline representations that are met by some
eigenvariety. Hence we need to sharpen this density result a bit. In order to do
so we need to compare the fibers of the space of trianguline representations over
strongly dominant algebraic weights with Kisin’s crystalline deformation rings.

Let k = (kσ,i) be a strongly dominant weight and let us continue to assume
that r̄ is absolutely irreducible. In order not to overload the notation let us write
Ak = Rcris

r̄,k for the rest of this subsection. Further (for the remaining of this
subsection) we write

Zk = (Spf Ak)rig

Zk = Spec(Ak[1/p]).

Definition 4.7. We say that a crystalline representation rx : GK → GLd(κ(x))
corresponding to a rigid analytic point x ∈ Zk respectively to a closed point x ∈
Zk is regular if the eigenvalues (λ1, . . . , λd) of the Frobenius on the Weil-Deligne
representation WD(Dcris(rx)) associated to rx satisfy λi/λj /∈ {1, p±[K0:Qp]} for
i 6= j. We further say that x (resp. rx) is generic if all d! filtrations on Dcris(rx)
induced by an ordering of the Frobenius eigenvalues are in general position with
respect to all Hodge-Tate filtrations (with respect to all embeddings ψ : K ↪→ L).

Remark 4.8. Note that if rx is crystalline generic, then all parameters (δ1, . . . , δd)

of all possible triangulations of its (ϕ,Γ)-module D†rig(rx) have the property that
(δ1|O×K , . . . , δd|O×K ) is algebraic of strongly dominant weight k. Moreover, given such

a trianguline filtration Fili of D
†
rig(rx) the extensions

0 −→ Fili −→ Fili+1 −→ Rk(x)(δi) −→ 0

are non split. This may be checked after taking the quotient by Fili−1 and hence
we are reduced to the 2-dimensional case where one easily checks that the direct
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sum of two (ϕ,Γ)-modules R(δ)⊕R(δ′) such that δ|O×K = δW(a) 6= δW(a′) = δ′|O×K
is not generic: One of the two possible triangulations is not in general position with
the Hodge filtration. It follows that a point x ∈ Zk ⊂ Xr̄ that is moreover generic
is in the image of X(r̄)reg ⊂ X(r̄) under the map X(r̄)→ Xr̄.

By [Ki3, Theorem 2.5.5] there is a (locally free) Ak⊗ZpK0 -module on Zk together
with an id⊗ ϕ-linear automorphism Φ : D → D such that

(D,Φ)⊗ κ(x) ∼= Dcris(rx)

for all closed points x ∈ Zk. It follows that there is a Zariski open subset Zreg
k ⊂

Zk with closed points precisely given by the regular points: Indeed, let us write
(WD(D),ΦWD) for the Weil-Deligne representation on Zk, i.e. the locally free Ak-
module

WD(D) = D ⊗Ak⊗QpK0,id⊗ψ0
Ak

for some fixed embedding ψ0 : K0 ↪→ L, endowed with the Ak-linear Frobenius
Φ[K0:Qp] ⊗ id. Then the isomorphism class of (WD(D),ΦWD) does not depend on
the choice of ψ0. Moreover we can consider the morphism Zk → Ad that is defined
by the coefficients of the characteristic polynomial of ΦWD. Then it is easy to see
that the condition on the eigenvalues of the crystalline Frobenius defining the set
of regular points implies that Zreg

k is the preimage of an Zariski-open subset of Ad.

Passing to the associated adic spaces, we find that there is a Zariski open subset
Zreg
k ⊂ Zkwith rigid analytic points precisely given by the regular points in Zk.

In fact we will see below that this subset is Zariski-dense (and in particular non-
empty).

Recall that we have a map ω : Sns(r̄) → Wd to the weight space. We further
view the weight k as an element of Wd.

Proposition 4.9. The map ω−1(k)→ Xr̄ induces a map gk : ω−1(k)→ Zk which
is étale over Zreg

k . Further g−1
k (Zreg

k ) is open and dense in ω−1(k).

Proof. By Corollary 2.7 there is a Zariski-open subset of ω−1(k) on which the Galois
representations are pointwise crystalline of weight k. Hence the map ω−1(k)→ Xr̄
generically factors over Zk. As Zk ⊂ Xr̄ is Zariski-closed the first claim fol-
lows. It is further easy to see that the preimage of Zreg

k is open and dense:
It is identified with the preimage of the set of characters (δ1, . . . , δd) such that
δi(p)/δj(p) /∈ {

∏
σ σ($)ki,σ−kj,σ}.

It remains to prove the claim on étaleness which, in the adic set up can be
checked using the infinitesimal lifting criterion, cf. [Hu2, Definition 1.6.5]. Consider
an affinoid algebra A with ideal I ⊂ A satisfying I2 = 0 and the diagram

Sp(A/I) //

��

g−1
k (Zreg

k )

��
Sp(A) // Zreg

k .

This diagram gives rise to a family of filtered ϕ-modules over A and as above we
write (WD(D),ΦWD) for the associated family of Weil-Deligne representations on
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Sp(A). Further the upper arrow in the diagram gives us a filtration

0 ( Fil
1 ( · · · ( Fil

d−1 ⊂ Fil
d

= WD(D) = WD(D)/I

by subspaces that are locally on Sp(A) direct summands and stable under the
Frobenius ΦWD = ΦWD mod I and we have to prove that this filtration uniquely
lifts to a ΦWD-stable filtration Fil• of WD(D) such that locally on Sp(A) the Fili

are direct summands of WD(D). After localizing on Sp(A) we may assume that D
is free and that all the Fil

i
are direct summands of WD(D). We show that we can

lift Fil
1
uniquely to a Φ-stable direct summand of WD(D). The rest will follow by

induction. Let us chose a basis ē1, . . . , ēd of WD(D) such that Fil
i
is generated by

ē1, . . . , ēi and take arbitrary lifts ej of the ēj in WD(D). We write A = (aij) for the
matrix of ΦWD in this basis. Then the above implies that aij ∈ I for i > j and that
aii 6= ajj for all i 6= j, as this is true modulo all maximal ideals of A by definition
of Zreg

k . We have to show that there exists uniquely determined λ2 . . . , λd ∈ I and
a µ ∈ A× such that

Φ(e1 +

d∑
j=2

λjej) = µ(e1 +

d∑
j=2

λjej).

However, this comes down to showing that

(A− µE)e1 +

d∑
j=2

λj(A− µE)ej = 0

has (up to scalar) a unique solution with λi ∈ I which is an easy consequence of
aij ∈ I for i > j and aii 6= ajj for i 6= j. �

The following result is a slightly stronger version of [Ch1, Lemma 4.4]. Its proof
parallels the proof of loc. cit. but relies on a stronger statement about integral
model on Kisin’s crystalline deformation ring.

Proposition 4.10. There is a Zariski open and dense subset Zgen
k ⊂ Zk whose

closed points are precisely the generic crystalline representations. In particular,
there is an Rr̄-open subset Zgen

k ⊂ Zk whose rigid analytic points are precisely the
generic crystalline representations.

Proof. After twisting with some power of the cyclotomic character we may assume
that all Hodge-Tate weights are non-negative. The ring Ak is a quotient of the
universal deformation ring Rr̄ and (with the notations of [Ki3, 1.6.4]) it is even a
quotient of R≤hr̄ for some h� 0. By construction of the quotient R≤hr̄ there is a free
Ak⊗̂ZpW [[u]]-module M together with an injection Φ : M→M that is semi-linear
with respect to the identity on Ak, the Frobenius on W = OK0 and u 7→ up and
whose cokernel is killed by E(u)h. Here E(u) denotes the minimal polynomial of a
chosen uniformizer of K over K0.

By [Ki3, Theorem 2.2.5] this module has the property that for all closed points
x ∈ Zk with corresponding crystalline representation rx : GK → κ(x) one has a
canonical isomorphism

Dcris(rx) ∼= (M/uM,Φ modu)⊗Ak
κ(x).
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Let us write N = M[1/p]. By the construction in [Ki3, 2.1, 2.2, (2.5.3) ] resp. [PR,
5.a.1, (5.30)] we have an isomorphism

N/uN⊗W K ∼= Φ(ϕ∗N)/E(u)Φ(ϕ∗N)

under which (for all closed points x ∈ Xk) the Hodge filtration on Dcris(rx)⊗K0
K

is induced by the filtration on Φ(ϕ∗N)/E(u)Φ(ϕ∗N) by the E(u)iN/E(u)Φ(ϕ∗N).
As the condition for two possible filtrations to be in general position is an open
condition it follows that there is a Zariski open subset Zgen

k ⊂ Zk whose closed
points are precisely the generic crystalline points.

It remains to show that every connected component of Zk contains a generic
point (recall that Zk is formally smooth and hence every connected component is
irreducible). However, this is proven exactly as in [Ch1, Proposition 4.3]. �

4.3. Making use of eigenvarieties. We now return to the setup with eigenvari-
eties. The data of F , E, G, H, ρ̄ are satisfying the properties of section 3.1, so that
we can consider the eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄ with S ⊃ Sp, S\Sp being the
set of places where H is not hyperspecial and e a well suited idempotent. Recall
that if v is a place of F not dividing p and inert in E, then Hv is hyperspecial.

Recall that we have defined a Zariski-open subset X(r̄)reg ⊂ X(r̄) of the trian-
guline space. Moreover this subset is smooth.

Definition 4.11. Write X(ρ̄,W∞)aut for the union of irreducible components of
X(r̄) whose intersection with the regular part X(r̄)reg ⊂ X(r̄) is met by any of the
eigenvarieties Y (W∞, S, e)ρ̄ under the map defined in Theorem 3.5 for some (S, e)
where S contains Sp and is such that each element of S\Sp splits in E.

Remark 4.12. The space X(ρ̄,W∞)aut (or rather a variant of it which is defined in
a fixed patching situation) is studied in more detail in [BHS].

Lemma 4.13. The space X(ρ̄,W∞)aut is non-empty.

Proof. Let C be an automorphic component of the crystalline deformation space
Zk for some weight k. Then Proposition 4.10 and Theorem 4.5 imply that there
exists an automorphic point r ∈ C which is generic. It follows that for some (S, e)
with corresponding eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄, there is a classical point y ∈ Yρ̄
mapping to r under the canonical morphism

Yρ̄
f // X(r̄) // Xr̄.

We claim that f(y) ∈ X(r̄)reg which implies the claim.

Let us write Π for the automorphic representation that gives rise to the point
y ∈ Yρ̄. Then the representation Πv0 is unramified and there is a character χ of
Tv0/T

0
v0

such that Πv0 |det | 1−d2 appears in the parabolic induction Ind
GLd(K)
B χ and

such that f(y) = (r, δ1, . . . , δd) ∈ X(r̄) ⊂ Xr̄×T d, where δi is an algebraic character
of weight (kσ,i)σ with

δi($) = χ(ti)
∏

σ
σ($)kσ,i

and χ(ti) is an eigenvalue of the crystalline Frobenius on WD(Dcris(r)). By as-
sumption r is generic and hence (δ1, . . . , δn) ∈ T dreg. Moreover, the fact that r is
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generic implies that the ordering of the Frobenius eigenvalues χ(t1), . . . , χ(td) cor-
responds to the choice of a Frobenius stable flag that is in general position with the
Hodge-filtration (as all Frobenius stable flags have this property for generic r). It
follows that r has a triangulation with parameter δ1, . . . , δd which is nowhere split,
compare Remark 4.8. It follows that f(y) = (r, δ1, . . . , δd) ∈ X(r̄)reg as claimed.

�

Theorem 4.14. The image of X(ρ̄,W∞)aut in Xρ̄w0
= Xr̄ is Zariski-dense in a

union of irreducible components of Xρ̄w0
.

Proof. Let us write T for the Zariski-closure of the image of X(ρ̄,W∞)aut in Xρ̄w0
for

the moment. We view T as an adic space equipped with its reduced structure and
write T sm for the locus of regular points, which is Zariski open and dense in T .
Following the proof of [Ch1, 4.5] and [Na3, Theorem. 4.3], we are reduced to show
that there exists a generic crystalline point r ∈ T sm with the following additional
properties

(i) if λ1, . . . , λd are the (pairwise distinct) eigenvalues of the Frobenius on
WD(Dcris(r)), then λiλ−1

j /∈ pZ for all i, j.
(ii) the space X(ρ̄,W∞, e)

aut contains all possible triangulations of the repre-
sentation r.

In fact the proof of Lemma 4.13 constructs representations that satisfy (i) and
(ii) but that do not necessarily map to T sm. In order to take care of this additional
property we have to redo the proof changing the point and even its weight.

Let us write π : X(ρ̄,W∞)aut → Xr̄ for the canonical projection that by definition
factors over T .

Fix a connected component C ⊂ X(ρ̄,W∞)aut∩X(r̄)reg such that π−1(T sm)∩C 6=
∅ and hence π−1(T sm) ∩ C is Zariski-open and dense in C. Then, by definition of
X(ρ̄,W∞)aut, there is a pair (S, e) such that Yρ̄ = Y (W∞, S, e)ρ̄ 6= ∅ and a point
y0 ∈ Yρ̄ such that f(y0) ∈ C. Here f : Yρ̄ → X(ρ̄,W∞)aut is the map defined by
Theorem 3.5.

Lemma 4.15. There is a classical point y1 ∈ Yρ̄ such that its image ry1
in Xr̄ lies

on an automorphic component C of Zk ⊂ Xr̄ for some strongly dominant weight
k = ωY (y1) such that C ∩ T sm is non-empty (and hence Zariski-open and dense in
C).

Indeed it suffices to construct y1 classical such that ry1 ∈ C and C ∩ T sm is
non-empty: as y is associated with an automorphic representation the component
C ⊂ Zk is automatically automorphic (note that we did not claim that k is the
weight of y0).

Proof of Lemma 4.15. Let U ⊂ X(r̄)reg ∩ C be a connected open neighborhood of
the point x0 = f(y0) ∈ X(r̄)reg ∩X(ρ̄,W∞)aut such that ωd|U has connected fibers.
Indeed such a neighborhood exists by Lemma 2.18. As π−1(T sm)∩C is Zariski-open
and dense in C, we find that π−1(T sm)∩U is non-empty and hence it is Zariski-open
and dense in U .
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Let V ⊂ Yρ̄ be a quasi-compact neighborhood of y0 such that f(V ) ⊂ U . Then
there are constants M1, . . . ,Md such that

Mi ≥ valx(ψv0
(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ V , where valx is the valuation on k(x) normalized by valx(p) = 1. As
the strongly dominant algebraic weights k ∈ Wd such that Mi < kσ,i − kσ,i+1

accumulate at ω(y0) there is a weight k such that

kσ,i − kσ,i+1 > Mi,

ω−1
d (k) ∩ U ∩ π−1(T sm) 6= ∅ and
ω−1
d (k) ∩ U ∩ f(Yρ̄) 6= ∅.

The last assumption is possible by the fact that the map ω : Yρ̄ → Wd is locally
(on Yρ̄) finite with open image.

It follows (see for example [Ch3, Theorem 1.6 (vi)]) that a point y ∈ V with
f(y) ∈ ω−1(k) ∩ U is classical (i.e. associated to an automorphic representation)
and has the required property that T sm ∩ C 6= ∅, where C ⊂ Zk is the connected
component containing ry = π(f(y)): as U ∩ ω−1

d (k) is connected it maps to C and
hence ω−1

d (k) ∩ U ∩ π−1(T sm) 6= ∅ implies T sm ∩ C 6= ∅. �

Let us fix the weight k and the automorphic component C ⊂ Zk as in the
preceding lemma.

Lemma 4.16. There exists a tuple (S′, e′) and (up to lowering the tame level Hv0)
a classical point y′ ∈ Y ′ρ̄ = Y (W∞, S

′, e′)ρ̄ such that the crystalline representation
ry′ given by the image of y′ in Xr̄ is generic and y′ lies on C ⊂ Zk ⊂ Xr̄.

Proof of Lemma 4.16. By Corollary 4.6 the automorphic points are Rr̄-dense in C
and by Proposition 4.10 the generic locus is Rr̄-open in C. Hence there exists a
pair (S′, e′) and a point y′ ∈ Y ′ρ̄ = Y (W∞, S

′, e′)ρ̄ that has the desired properties
(at least after a lowering of the tame level Hv0). �

We write f ′ : Y ′ρ̄ → X(r̄) for the map defined by Theorem 3.5 corresponding to
the eigenvariety Y ′ρ̄ . Now the triangulations of ry′ are in bijection with the orderings
of the Frobenius eigenvalues as the representation is regular and hence there are
exactly d! such triangulations.

Lemma 4.17. All these possible triangulations of ry′ lie in f ′(Y ′ρ̄).

Proof of Lemma 4.17. Let us write Π for the automorphic representation associ-
ated to y′. As Πv0

is unramified, there are d! distinct characters χi of Tv0
/T 0

v0

such that Πv0
|det | 1−d2 appears in the parabolic induction Ind

GLd(K)
B χi and as the

representation is generic the Hodge filtrations is in general position with the trian-
gulation given by the ordering of the Frobenius eigenvalues. It follows, as in the
proof of Lemma 4.13, that the parameters of the triangulation are prescribed by
the character χi. �

Let us finish the proof of the theorem. The preceding lemma shows that there
are points z1, . . . , zd! ∈ X(ρ̄,W∞)

aut with zi = f ′(Π, χi) mapping to ry′ ∈ Xr̄ and
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z1, . . . , zd! are precisely the d! possible triangulations of the crystalline representa-
tion ry′ . Note that the assumption that ry′ is generic implies that the trianguline
filtrations have to be nowhere split and hence zi ∈ X(ρ̄,W∞)aut ∩X(r̄)reg. How-
ever, we still can not conclude as we do not know whether ry′ lies in the smooth
locus T sm.

Using Theorem 2.11 we may identify open subsets of X(r̄)reg with open subsets
of Sns(r̄). Now there exist connected open neighborhoods

Ui ⊂ Xreg(r̄) ∩X(ρ̄,W∞)aut ∩ ω−1(k)

of the zi such that Ui∩Uj = ∅. As the map gk : ω−1(k)→ Zk from Proposition 4.9
is étale at all the zi it follows from [Hu2, Proposition 1.7.8] that gk is open in some
neighborhood of the zi. Hence it follows that (after eventually shrinking the Ui)
the image of the Ui in Zreg

k ∩ C is open and after shrinking the Ui even further we
may assume that Uz = gk(Ui) = gk(Uj) for all i, j. It follows that all the crystalline
representations r ∈ Uz have the property that X(ρ̄,W∞)aut ∩Xreg(r̄) contains all
their possible triangulations.

Finally the subset of all generic points r ∈ C such that the Frobenius eigenvalues
satisfy condition (i) from above is a Zariski-open and dense subset of C ′ ⊂ C.
Hence Uz ∩C ′ ∩T sm 6= ∅ and an element of this intersection is a point lying in T sm

and satisfying the conditions (i) and (ii) from above. �

4.4. End of the proof. Let us keep the notations from the preceding subsec-
tion. Fix a strongly dominant weight14 k = (kσ,i)σ ∈

∏
σ Zd and recall the subset

Wd
k,la ⊂ Wd. Recall further that we wrote Xk(r̄) ⊂ X(r̄) for the Rr̄-closure of all

crystabelline points of Hodge-Tate weight k.

In this section we prove the following theorem which will imply the desired result
on the density of potentially crystalline representations of fixed weight.

Theorem 4.18. We have an inclusion X(ρ̄,W∞)aut ⊂ Xk(r̄).

Proof. It follows from Corollary 3.15 (resp. Theorem 3.17) that

f(Yρ̄) ⊂ Xk(r̄)

for every eigenvariety Yρ̄ = Y (W∞, S, e)ρ̄.

Let (S, e) and Yρ̄ = Y (W∞, S, e)ρ̄ be chosen so that we can find a point y ∈ Yρ̄
such that x = f(y) ∈ X(r̄)reg (compare the proof of Lemma 4.13). By definition
ω(x) = ωY (y) is a strongly dominant algebraic weight k′. Let us write Xk′ for the
intersection of ω−1(k′) with X(ρ̄,W∞)aut ∩ X(r̄)reg. Let C denote the connected
component of Xk′ containing x and let Ccris ⊂ C be the Zariski-open (and dense)
subset of crystalline points.

Lemma 4.19. The component C is contained in Xk(r̄).

Proof of Lemma 4.19. By construction C maps under the projection to Xr̄ to a
connected component C ′ of Xcris

r̄,k′ = Zk′ . We write R′ for the quotient of Rcris
r̄,k′

corresponding to C ′. Further the component C ′ is an automorphic component, as

14not necessarily as in preceding section
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by assumption the representation defined by x extends to an automorphic Galois
representation.

Let t ∈ Rr̄ be an element vanishing on Xk(r̄) and consider its image, still denoted
by t, in R′. Let z′ ∈ C ′ be an automorphic point corresponding to a crystalline GK-
representation rz′ . By definition, we can find an irreducible cuspidal automorphic
representation Π of an unitary group G, of some level H̃ ⊂ H as in section 3.1
such that (ρΠ)w0

' rz′ . Then there exists a triple (W∞, S
′, e′) and a character

χ of T/T 0 such that (Π, χ) ∈ Z. Here Z is the set of classical points of the
eigenvariety Y (W∞, S

′, e′). Now Theorem 3.17 implies that the image of (Π, χ) ∈
Y (W∞, S

′, e′)ρ̄Π
inX(r̄) is in fact contained inXk(r̄), or equivalently that t(z′) = 0.

From Corollary 4.6 we can deduce that the image t in R′ is zero. As the image of C
under π : X(r̄)→ Xr̄ is contained in C ′, we have shown that any t ∈ Rr̄ vanishing
on Xk(r̄) also vanishes on C. This implies that C ⊂ Xk(r̄). �

We can now conclude. Fix C a component of X(ρ̄,W∞)aut and y0 ∈ Yρ̄ such that
f(y0) = x0 ∈ X(ρ̄,W∞)aut ∩ X(r̄)reg. Let k′0 = ωY (y) and pick x̃0 ∈ Sns(r̄) such
that πr̄(x̃0) = x0. By Lemma 2.18 there is a quasi-compact connected neighborhood
U of x inside Xreg(r̄) such that U is isomorphic to a product of an open subset
U1 ⊂ Wd with a rigid space U2 which we may chose to be connected. After shrinking
U1 we may also assume that f(Yρ̄) ∩ U surjects onto U1. As U is quasi-compact,
there exist M1, . . . ,Md such that

Mi ≥ valx(ψv0
(tv0,1 . . . tv0,i)(x)) + 1

for all x ∈ U , where valx is the valuation on k(x) normalized by valx(p) = 1. Let us
write Z1 ⊂ U1 for the set of strongly dominant algebraic weights kσ,1 > · · · > kσ,d
such that Mi < kσ,i − kσ,i+1 for all i and σ : K ↪→ Q̄p. Then Z1 is Zariski dense in
U1 and hence ω−1(Z1) ∩ U is Zariski dense in U .

A point y ∈ f−1(U) mapping to k′ ∈ Z1 is classical by the choice ofMi and [Ch3,
Theorem 1.6 (vi)]. Applying Lemma 4.19 with the point y and the component of
Xk′ containing ω−1({k′}) ∩ U ' U2 we find that ω−1({k′}) ∩ U ⊂ Xk(r̄). This
implies that Xk(r̄) contains ω−1(Z1) ∩ U which is Zariski dense in U and hence
U ⊂ Xk(r̄). This implies that Xk(r̄) contains C. �

Theorem 4.20. Let p - 2d and let K be a finite extension of Qp. Let r̄ : GK →
GLd(F) be an absolutely irreducible continuous representation and let Rr̄ be its
universal deformation ring. Assume that r̄ 6∼= r̄(1). Let k = (ki,σ) ∈

∏
σ:K↪→Q̄p Z

d

be a strongly dominant weight. Then the representations that are crystabelline of
labeled Hodge-Tate weight k are Zariski-dense in SpecRr̄[1/p].

Proof. The assumptions that r̄ is absolutely irreducible and r̄ 6∼= r̄(1) imply that
Z = SpecRr̄[1/p] is smooth and irreducible.

Let X = X(ρ̄,W∞)aut ⊂ X(r̄) for a suitable choice of W∞ as in Lemma 4.3.
Our assumptions imply that X is non-empty and hence Theorem 4.14 implies that
X has dense image in Z. Let t ∈ Rρ̄ be a function vanishing on all crystabelline
points of weight k. Then Corollary 2.7 implies that it vanishes on X ∩ ω−1(Wd

k,la)
and hence by Theorem 4.18 is vanishes on X. The claim follows as X has dense
image in Z. �
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