Stability an discretization for some elliptic inverse parameter problems from internal data application to elastography

Laurent Seppecher
École Centrale de Lyon

$$
\text { June 9, } 2021
$$

One World Imagine Seminars

The reduced elastography problem

Find μ such that

$$
-\nabla \cdot(\mu S)=\mathbf{f} \quad \text { in } \Omega,
$$

The reduced elastography problem

Find μ such that

$$
-\nabla \cdot(\mu S)=\mathbf{f} \quad \text { in } \Omega,
$$

- Ω is a Lipschitz domain of \mathbb{R}^{d}
- $S \in L^{\infty}\left(\Omega, \mathbb{R}^{d \times d}\right)$ is given
- \mathbf{f} is a given vector field (can be zero)
- μ is the unknown parameter function

Joint work with E. Bretin, P. Millien

Elastography from internal data

Original elastic object Deformed elastic object

Inverse problem in two steps

- step 1: Record the displacement field $\mathbf{u}(x)$ inside the domain

Elastography from internal data

Original elastic object Deformed elastic object

Inverse problem in two steps

- step 1: Record the displacement field $\mathbf{u}(x)$ inside the domain
- step 2: Reconstruct the elastic properties of the medium

Medical elastography

Goal

Measure the elastic parameters of soft biological tissues
Advantages:

- High contrast (for the shear modulus)
- Good discrimination between pathological states

Medical elastography

Goal

Measure the elastic parameters of soft biological tissues
Advantages:

- High contrast (for the shear modulus)
- Good discrimination between pathological states

Difficulties:

- High contrast (multiple scattering of waves)
- High wavelength

Medical elastography

Detect an characterize tumoral and pre-tumoral tissues

Figure: X-rays image of breast-tumor

Medical elastography

Figure: X-rays image of breast-tumor

Detect an characterize tumoral and pre-tumoral tissues

- Scanner (X-rays imaging) is harmful and expensive (poor discrimination),

Medical elastography

Figure: X-rays image of breast-tumor

Detect an characterize tumoral and pre-tumoral tissues

- Scanner (X-rays imaging) is harmful and expensive (poor discrimination),
- Untrasound imaging fails (no contrast),

Medical elastography

Figure: X-rays image of breast-tumor

Detect an characterize tumoral and pre-tumoral tissues

- Scanner (X-rays imaging) is harmful and expensive (poor discrimination),
- Untrasound imaging fails (no contrast),
- Shear modulus $\mu(x)$ is very high in tumoral tissues.

Quasi-static deformation of a phantom

Quasi-static elastography

Figure: Shear modulus image of phantom from quasi-static data (data from E. Brusseau and L. Pretrusca - CREATIS/INSA)

Shear wave imaging by fast-ultrasound

Reconstruct the corresponding shear modulus

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)

An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography

An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography

An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography
- OCT Elastography

An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography
- OCT Elastography

Different types of perturbations : static, dynamic, harmonic.

Inversion step 2 : recover the shear modulus

Linear elasticity:

$$
\left\{\begin{array}{l}
-\nabla \cdot(2 \mu \mathcal{E}(\mathbf{u}))-\nabla(\lambda \nabla \cdot \mathbf{u})=\mathbf{f} \quad \Omega \\
B C \quad \partial \Omega
\end{array}\right.
$$

with $\mathbf{u} \in \mathbb{R}^{d}$ the displacement field, $\mathcal{E}(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)$ and (λ, μ) are the Lamé coefficients.

Inverse problem
 Recover (λ, μ) from the knowledge of \mathbf{u} in Ω.

Remark

In soft tissues, $\lambda(x) \sim \lambda_{0}$ and assumed known.

Available inversion algorithms (1)

$$
-\nabla \cdot(\mu \mathcal{E}(\mathbf{u}))=\mathbf{f}
$$

Solving a first order transport equation in μ

Institute of Physics Pexushing	Invese Pboblems
Inverse Problems 20 (2004) l -24	6-5611(04)62168.X

Recovery of the Lamé parameter μ in biological tissues
Lin Ji and Joyce McLaughlin
Depariment of Manthematice, Rensselaer Polytectricic Institute. Troy. NY 12180, USA

Reconstruction of constitutive parameters in isotropic linear elasticity from noisy fullfield measurements

Guillaume Bal ${ }^{1}$, Cédric Bellis ${ }^{2}$, Sébastien Imperiale ${ }^{3}$ and François Monard ${ }^{+}$

Inversion step 2 : recover the shear modulus

Transport : Assume that μ is smooth and known near $\partial \Omega$ and remark that

$$
\nabla \cdot\left(\mu \nabla^{s} \mathbf{u}\right)=\nabla^{s} \mathbf{u} \nabla \mu+\mu \nabla \cdot \nabla^{s} \mathbf{u}
$$

assume that $\nabla^{s} \mathbf{u}$ is a.e. invertible μ is solution of the transport problem,

$$
\begin{aligned}
\nabla \mu+\mu\left(\nabla^{s} \mathbf{u}\right)^{-1} \nabla \cdot \nabla^{s} \mathbf{u} & =-\left(\nabla^{s} \mathbf{u}\right)^{-1} \mathbf{f} \\
\nabla \mu+\mu \mathbf{b} & =-\tilde{\mathbf{f}}
\end{aligned}
$$

Inversion step 2 : recover the shear modulus

Transport : Assume that μ is smooth and known near $\partial \Omega$ and remark that

$$
\nabla \cdot\left(\mu \nabla^{s} \mathbf{u}\right)=\nabla^{s} \mathbf{u} \nabla \mu+\mu \nabla \cdot \nabla^{s} \mathbf{u}
$$

assume that $\nabla^{s} \mathbf{u}$ is a.e. invertible μ is solution of the transport problem,

$$
\begin{aligned}
\nabla \mu+\mu\left(\nabla^{s} \mathbf{u}\right)^{-1} \nabla \cdot \nabla^{s} \mathbf{u} & =-\left(\nabla^{s} \mathbf{u}\right)^{-1} \mathbf{f} \\
\nabla \mu+\mu \mathbf{b} & =-\tilde{\mathbf{f}}
\end{aligned}
$$

(Proof of uniqueness and stability with several measurements and strong smoothness hypothesis and boundary data)

Available inversion algorithms (2)

Least squares: Assume knowledge of \mathbf{g} the surface density of force outside of Ω and define

$$
F: \mu \mapsto \mathbf{u}[\mu]:\left\{\begin{array}{rr}
-\nabla \cdot\left(\mu \nabla^{s} \mathbf{u}\right)=\mathbf{f}\left(\partial_{t t} \mathbf{u}\right), & \text { in } \Omega, \\
\mu \nabla^{s} \mathbf{u} \cdot \nu=\mathbf{g} \quad \text { on } \partial \Omega
\end{array}\right.
$$

defining $F: L^{\infty}\left(\Omega,\left[\mu_{0},+\infty\right)\right) \rightarrow H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ fréchet differentiable. Then minimize

$$
J[\mu]=\left\|F[\mu]-\mathbf{u}_{\text {mes }}\right\|_{H^{1}(\Omega)}^{2}+\text { reg. term }
$$

Available inversion algorithms (2)

Least squares: Assume knowledge of \mathbf{g} the surface density of force outside of Ω and define

$$
F: \mu \mapsto \mathbf{u}[\mu]:\left\{\begin{array}{rr}
-\nabla \cdot\left(\mu \nabla^{s} \mathbf{u}\right)=\mathbf{f} \quad\left(\partial_{t t} \mathbf{u}\right), & \text { in } \Omega, \\
\mu \nabla^{s} \mathbf{u} \cdot \nu=\mathbf{g} \quad \text { on } \partial \Omega
\end{array}\right.
$$

defining $F: L^{\infty}\left(\Omega,\left[\mu_{0},+\infty\right)\right) \rightarrow H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ fréchet differentiable. Then minimize

$$
J[\mu]=\left\|F[\mu]-\mathbf{u}_{\text {mes }}\right\|_{H^{1}(\Omega)}^{2}+\text { reg. term }
$$

- Very slow (flat problem)

Available inversion algorithms (2)

Least squares: Assume knowledge of \mathbf{g} the surface density of force outside of Ω and define

$$
F: \mu \mapsto \mathbf{u}[\mu]:\left\{\begin{array}{rr}
-\nabla \cdot\left(\mu \nabla^{s} \mathbf{u}\right)=\mathbf{f} \quad\left(\partial_{t t} \mathbf{u}\right), & \text { in } \Omega, \\
\mu \nabla^{s} \mathbf{u} \cdot \nu=\mathbf{g} \quad \text { on } \partial \Omega
\end{array}\right.
$$

defining $F: L^{\infty}\left(\Omega,\left[\mu_{0},+\infty\right)\right) \rightarrow H^{1}\left(\Omega, \mathbb{R}^{d}\right)$ fréchet differentiable. Then minimize

$$
J[\mu]=\left\|F[\mu]-\mathbf{u}_{\text {mes }}\right\|_{H^{1}(\Omega)}^{2}+\text { reg. term }
$$

- Very slow (flat problem)
- needs knowledge of \mathbf{g} and μ on the boundary

Available inversion algorithms (3)

Wave front traking : assuming that μ is piecewise constant,

$$
\partial_{t t} \mathbf{u}-\mu \nabla \cdot \nabla^{s} \mathbf{u} \approx \mathbf{0}, \quad \text { a.e. }
$$

the wave speed is $c=\sqrt{\mu}$.

Available inversion algorithms (4)

Algebraic inversion :

Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem

Paul E Barbone ${ }^{1}$ and Assad A Oberai ${ }^{2}$

Shear Modulus Imaging with 2-D Transient Elastography
Laurent Sandrin, Mickaë Tanter, Stefan Catheline, and Mathias Fink

Example

If μ is constant then $\mu \Delta \mathbf{u}=\rho \partial_{t \mathbf{t}} \mathbf{u} \Longrightarrow \mu \approx \rho \frac{\left|\partial_{t t} \mathbf{u}\right|}{|\Delta \mathbf{u}|}$

Current chalenges for medical elastography

- Increase the resolution

Current chalenges for medical elastography

- Increase the resolution
- Be more quantitative

Current chalenges for medical elastography

- Increase the resolution
- Be more quantitative
- Be more stable

Current chalenges for medical elastography

- Increase the resolution
- Be more quantitative
- Be more stable
- Be more practical (quasi-static with acoustic probe ?)

A general equation

The problem takes the general form
Reduced elastography problem

$$
-\nabla \cdot(\mu S)=\mathbf{f}
$$

in the cases

- λ is known: $S:=2 \mathcal{E}(\mathbf{u})$

A general equation

The problem takes the general form
Reduced elastography problem

$$
-\nabla \cdot(\mu S)=\mathbf{f}
$$

in the cases

- λ is known: $S:=2 \mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S:=\alpha \mathcal{E}(\mathbf{u})+\beta(\nabla \cdot \mathbf{u}) /$

A general equation

The problem takes the general form
Reduced elastography problem

$$
-\nabla \cdot(\mu S)=\mathbf{f}
$$

in the cases

- λ is known: $S:=2 \mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S:=\alpha \mathcal{E}(\mathbf{u})+\beta(\nabla \cdot \mathbf{u}) /$
- in plane stress approximation (sliced 2D model)

A general equation

The problem takes the general form

Reduced elastography problem

$$
-\nabla \cdot(\mu S)=\mathbf{f}
$$

in the cases

- λ is known: $S:=2 \mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S:=\alpha \mathcal{E}(\mathbf{u})+\beta(\nabla \cdot \mathbf{u}) /$
- in plane stress approximation (sliced 2D model)

But also for conductivity equation with two internal data:

$$
-\nabla \cdot\left(\sigma\left[\nabla u_{1} \nabla u_{2}\right]\right)=\mathbf{f}
$$

And other problems...

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

or by the equivalent variational formulation

$$
a(\mu, \mathbf{v}):=\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

the problem takes the form

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

or by the equivalent variational formulation

$$
a(\mu, \mathbf{v}):=\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

the problem takes the form
Find $\mu \in L^{2}(\Omega)$ s.t.

$$
a(\mu, \mathbf{v})=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

or by the equivalent variational formulation

$$
a(\mu, \mathbf{v}):=\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

the problem takes the form
Find $\mu \in L^{2}(\Omega)$ s.t.

$$
a(\mu, \mathbf{v})=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

- No boundary data used

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

or by the equivalent variational formulation

$$
a(\mu, \mathbf{v}):=\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

the problem takes the form
Find $\mu \in L^{2}(\Omega)$ s.t.

$$
a(\mu, \mathbf{v})=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^{\infty}\left(\Omega, \mathbb{R}^{d \times d}\right)$

The Reverse Weak Formulation

Define the operator

$$
\begin{aligned}
T: L^{\infty}(\Omega) \subset L^{2}(\Omega) & \rightarrow H^{-1}\left(\Omega, \mathbb{R}^{d}\right) \\
\mu & \mapsto-\nabla \cdot(\mu S)
\end{aligned}
$$

or by the equivalent variational formulation

$$
a(\mu, \mathbf{v}):=\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

the problem takes the form
Find $\mu \in L^{2}(\Omega)$ s.t.

$$
a(\mu, \mathbf{v})=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^{\infty}\left(\Omega, \mathbb{R}^{d \times d}\right)$
- "Easy" to discretize through the Galerkin method

Reverse Weak Formulation: discretization

Find $\mu \in L^{2}(\Omega)$ s.t.

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
$$

becomes

Reverse Weak Formulation: discretization

Find $\mu \in L^{2}(\Omega)$ s.t.

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
$$

becomes
Find $\mu_{h} \in M_{h}$ s.t.

$$
\left\langle T_{h} \mu_{h}, \mathbf{v}_{h}\right\rangle_{H^{-1}, H_{0}^{1}}=\left\langle\mathbf{f}_{h}, \mathbf{v}_{h}\right\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in V_{h}
$$

where

Reverse Weak Formulation: discretization

Find $\mu \in L^{2}(\Omega)$ s.t.

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}=\langle\mathbf{f}, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)
$$

becomes
Find $\mu_{h} \in M_{h}$ s.t.

$$
\left\langle T_{h} \mu_{h}, \mathbf{v}_{h}\right\rangle_{H^{-1}, H_{0}^{1}}=\left\langle\mathbf{f}_{h}, \mathbf{v}_{h}\right\rangle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in V_{h}
$$

where

- $\left(M_{h}, V_{h}\right)$ approaches $\left(L^{2}(\Omega), H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)\right)$
- T_{h} approaches T
- \mathbf{f}_{h} approaches \mathbf{f}

Approximation of the spaces

Let M be a Hilbert and $M_{h} \subset M$ a sub-Hilbert space and $\pi_{h}: M \rightarrow M_{h}$ the orthogonal projection.

Definition

The sequence $\left(M_{h}\right)_{h>0}$ approaches M if for any $\mu \in M$,

$$
\lim _{h \rightarrow 0}\left\|\pi_{h} \mu-\mu\right\|_{M}=0
$$

For any non zero $\mu \in M$, we define its relative error of interpolation onto M_{h} by

$$
\varepsilon_{h}^{\mathrm{int}}(\mu):=\frac{\left\|\pi_{h} \mu-\mu\right\|_{M}}{\|\mu\|_{M}}
$$

Approximation of the operator

The operator $T: L^{2} \rightarrow H^{-1}$ given by

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

Approximation of the operator

The operator $T: L^{2} \rightarrow H^{-1}$ given by

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

is approached by $T_{h}: M_{h} \rightarrow V_{h}^{\prime}$

$$
\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}:=\int_{\Omega} \mu S_{h}: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_{h}
$$

Hence

Approximation of the operator

The operator $T: L^{2} \rightarrow H^{-1}$ given by

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

is approached by $T_{h}: M_{h} \rightarrow V_{h}^{\prime}$

$$
\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}:=\int_{\Omega} \mu S_{h}: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_{h}
$$

Hence

$$
\begin{aligned}
\left\langle\left(T_{h}-T\right) \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}} & =\int_{\Omega} \mu\left(S_{h}-S\right): \nabla \mathbf{v} \\
& \leq\|\mu\|_{L^{\infty}}\left\|S_{h}-S\right\|_{L^{2}(\Omega)}\|\mathbf{v}\|_{H_{0}^{1}}
\end{aligned}
$$

Approximation of the operator

The operator $T: L^{2} \rightarrow H^{-1}$ given by

$$
\langle T \mu, \mathbf{v}\rangle_{H^{-1}, H_{0}^{1}}:=\int_{\Omega} \mu S: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d \times d}\right)
$$

is approached by $T_{h}: M_{h} \rightarrow V_{h}^{\prime}$

$$
\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}:=\int_{\Omega} \mu S_{h}: \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_{h}
$$

Hence

$$
\begin{aligned}
\left\langle\left(T_{h}-T\right) \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}} & =\int_{\Omega} \mu\left(S_{h}-S\right): \nabla \mathbf{v} \\
& \leq\|\mu\|_{L^{\infty}}\left\|S_{h}-S\right\|_{L^{2}(\Omega)}\|\mathbf{v}\|_{H_{0}^{1}}
\end{aligned}
$$

The error $T_{h}-T$ is small for the $\mathcal{L}\left(L^{\infty}, V_{h}^{\prime}\right)$ topology weaker than the $\left.\mathcal{L}\left(L^{2}, V_{h}^{\prime}\right)\right)$ topology!

Approximation of the operator

Definition

The interpolation error $\varepsilon_{h}^{\mathrm{op}}$ between T and T_{h} is defined by

$$
\varepsilon_{h}^{\mathrm{op}}:=\left\|T_{h}-T\right\|_{L^{\infty}, V_{h}^{\prime}}:=\sup _{\mu \in M_{h}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle\left(T_{h}-T\right) \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mu\|_{L^{\infty}}\|\mathbf{v}\|_{H_{0}^{1}}}
$$

Approximation of the operator

Definition

The interpolation error $\varepsilon_{h}^{\mathrm{op}}$ between T and T_{h} is defined by

$$
\varepsilon_{h}^{\mathrm{op}}:=\left\|T_{h}-T\right\|_{L^{\infty}, V_{h}^{\prime}}:=\sup _{\mu \in M_{h}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle\left(T_{h}-T\right) \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mu\|_{L^{\infty}}\|\mathbf{v}\|_{H_{0}^{1}}} .
$$

- This error contains both the data noise and the interpolation error over $\left(M_{h}, V_{h}\right)$.

Approximation of the operator

Definition

The interpolation error $\varepsilon_{h}^{\mathrm{op}}$ between T and T_{h} is defined by

$$
\varepsilon_{h}^{\mathrm{op}}:=\left\|T_{h}-T\right\|_{L^{\infty}, V_{h}^{\prime}}:=\sup _{\mu \in M_{h}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle\left(T_{h}-T\right) \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mu\|_{L^{\infty}}\|\mathbf{v}\|_{H_{0}^{1}}} .
$$

- This error contains both the data noise and the interpolation error over $\left(M_{h}, V_{h}\right)$.
- This particular norm does not allow us to use directly the sensitivity analysis and discretization analysis for the Moore-Penrose generalized inverse of T when T is a closed range operator

Approximation of the right-hand side

Definition

The relative error of interpolation $\varepsilon_{h}^{\text {rhs }}$ between $\mathbf{f} \neq \mathbf{0}$ and \mathbf{f}_{h} is defined by

$$
\varepsilon_{h}^{\text {rhs }}:=\frac{1}{\|\mathbf{f}\|_{V^{\prime}}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle\mathbf{f}_{h}-\mathbf{f}, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mathbf{v}\|_{V}}:=\frac{\left\|\mathbf{f}_{h}-\mathbf{f}\right\|_{V_{h}^{\prime}}}{\|\mathbf{f}\|_{V^{\prime}}}
$$

Questions

- Is $T \mu=\mathbf{f}$ invertible with stability?

Questions

- Is $T \mu=\mathbf{f}$ invertible with stability ?
- Is $T_{h} \mu_{h}=\mathbf{f}_{h}$ invertible with stability ? (Condition on M_{h}, V_{h} and T_{h})

Questions

- Is $T \mu=\mathbf{f}$ invertible with stability ?
- Is $T_{h} \mu_{h}=\mathbf{f}_{h}$ invertible with stability? (Condition on M_{h}, V_{h} and T_{h})
- Is the solution μ_{h} close to μ in $L^{2}(\Omega)$?

A model problem

When $S(x)=I$, then $T \mu:=-\nabla \cdot(\mu S)=-\nabla \mu$. i.e. $T=-\nabla$

A model problem

When $S(x)=I$, then $T \mu:=-\nabla \cdot(\mu S)=-\nabla \mu$. i.e. $T=-\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^{2} \rightarrow H^{-1}$ has closed range. i.e. there exists $C>0$ s.t.

$$
\begin{equation*}
\|q\|_{L^{2}(\Omega)} \leq C\|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L_{0}^{2}(\Omega) \tag{1}
\end{equation*}
$$

equivalently

A model problem

When $S(x)=I$, then $T \mu:=-\nabla \cdot(\mu S)=-\nabla \mu$. i.e. $T=-\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^{2} \rightarrow H^{-1}$ has closed range. i.e. there exists $C>0$ s.t.

$$
\begin{equation*}
\|q\|_{L^{2}(\Omega)} \leq C\|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L_{0}^{2}(\Omega) \tag{1}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\beta:=\inf _{q \in L_{0}^{2}(\Omega)} \sup _{\mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)} \frac{\int_{\Omega}(\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_{0}^{1}(\Omega)}\|q\|_{L^{2}(\Omega)}}>0 \tag{2}
\end{equation*}
$$

Operator ∇ satisfies the inf-sup condition.

A model problem

When $S(x)=I$, then $T \mu:=-\nabla \cdot(\mu S)=-\nabla \mu$. i.e. $T=-\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^{2} \rightarrow H^{-1}$ has closed range. i.e. there exists $C>0$ s.t.

$$
\begin{equation*}
\|q\|_{L^{2}(\Omega)} \leq C\|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L_{0}^{2}(\Omega) \tag{1}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
\beta:=\inf _{q \in L_{0}^{2}(\Omega)} \sup _{\mathbf{v} \in H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)} \frac{\int_{\Omega}(\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_{0}^{1}(\Omega)}\|q\|_{L^{2}(\Omega)}}>0 \tag{2}
\end{equation*}
$$

Operator ∇ satisfies the inf-sup condition. It is invertible with stability in $L^{2}(\Omega) \cap N(\nabla)^{\perp}$.

A model problem: discretization

Problem: the constant β may not behave well in finite element spaces!
Take $M_{h} \subset L_{0}^{2}(\Omega)$ and $V_{h} \subset H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ the discrete inf-sup constant

$$
\beta_{h}:=\inf _{q \in M_{h}} \sup _{\mathbf{v} \in V_{h}} \frac{\int_{\Omega}(\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_{0}^{1}(\Omega)}\|q\|_{L^{2}(\Omega)}}
$$

may not satisfy the discrete inf-sup condition (of LBB condition for Ladyzhenskaya-Babuska-Brezzi):

$$
\forall h>0, \beta_{h} \geq \beta^{*}>0
$$

A model problem: discretization

Problem: the constant β may not behave well in finite element spaces!
Take $M_{h} \subset L_{0}^{2}(\Omega)$ and $V_{h} \subset H_{0}^{1}\left(\Omega, \mathbb{R}^{d}\right)$ the discrete inf-sup constant

$$
\beta_{h}:=\inf _{q \in M_{h}} \sup _{\mathbf{v} \in V_{h}} \frac{\int_{\Omega}(\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_{0}^{1}(\Omega)}\|q\|_{L^{2}(\Omega)}}
$$

may not satisfy the discrete inf-sup condition (of LBB condition for Ladyzhenskaya-Babuska-Brezzi):

$$
\forall h>0, \beta_{h} \geq \beta^{*}>0
$$

Pairs of finite element spaces that satisfy the discrete inf-sup condition are known as inf-sup stable elements and play an important role in the stability of the Galerkin approximation for the Stokes problem.

Inf-sup constant for the operator T

Theoretical study of $T \mu:=-\nabla \cdot(\mu S)$, with Ammari, Bretin and Millien (2020):

If $S \in W^{1, p} p>d$ and $|\operatorname{det} S(x)| \geq c>0$ a.e, we have

- $\operatorname{dim} N(T) \leq 1$
- if $\operatorname{dim} N(T)=1, T$ has closed range.

Inf-sup constant for the operator T

Theoretical study of $T \mu:=-\nabla \cdot(\mu S)$, with Ammari, Bretin and Millien (2020):

If $S \in W^{1, p} p>d$ and $|\operatorname{det} S(x)| \geq c>0$ a.e, we have

- $\operatorname{dim} N(T) \leq 1$
- if $\operatorname{dim} N(T)=1, T$ has closed range.
- At worst T is a "gradient type" operator

Inf-sup constant for the operator T

Theoretical study of $T \mu:=-\nabla \cdot(\mu S)$, with Ammari, Bretin and Millien (2020):

If $S \in W^{1, p} p>d$ and $|\operatorname{det} S(x)| \geq c>0$ a.e, we have

- $\operatorname{dim} N(T) \leq 1$
- if $\operatorname{dim} N(T)=1, T$ has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1, p}$

Inf-sup constant for the operator T

Theoretical study of $T \mu:=-\nabla \cdot(\mu S)$, with Ammari, Bretin and Millien (2020):

If $S \in W^{1, p} p>d$ and $|\operatorname{det} S(x)| \geq c>0$ a.e, we have

- $\operatorname{dim} N(T) \leq 1$
- if $\operatorname{dim} N(T)=1, T$ has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1, p}$
- minimal assumption on S to have closed range property is an open question (as far as we know)

Generalized inf-sup constant

M, V two Hilbert spaces and $T \in \mathcal{L}\left(M, V^{\prime}\right)$,

Definition (classic constants)

$\alpha(T):=\inf _{\mu \in M} \sup _{\mathbf{v} \in V} \frac{\langle T \mu, \mathbf{v}\rangle_{V^{\prime}, V}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}} \quad$ and $\quad \rho(T):=\sup _{\mu \in M} \sup _{\mathbf{v} \in V} \frac{\langle T \mu, \mathbf{v}\rangle_{V^{\prime}, V}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}}$.

Generalized inf-sup constant

M, V two Hilbert spaces and $T \in \mathcal{L}\left(M, V^{\prime}\right)$,
Definition (classic constants)
$\alpha(T):=\inf _{\mu \in M} \sup _{\mathbf{v} \in V} \frac{\langle T \mu, \mathbf{v}\rangle_{V^{\prime}, V}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}} \quad$ and $\quad \rho(T):=\sup _{\mu \in M} \sup _{\mathbf{v} \in V} \frac{\langle T \mu, \mathbf{v}\rangle_{V^{\prime}, V}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}}$.

Definition (Generalized inf-sup constant)
The generalized inf-sup constant red $\beta(T)$ is built as follows:

$$
\beta_{e}(T):=\inf _{\substack{\mu \in M \\ \mu \perp e}} \sup _{\mathbf{v} \in V} \frac{\langle T \mu, \mathbf{v}\rangle_{V^{\prime}, V}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}} \quad \beta(T):=\sup _{\substack{e \in M \\\|e\|_{M}=1}} \beta_{e}(T) .
$$

Correspondance

Proposition

If $N(T) \neq\{0\}$, consider any $z \in N(T)$ such that $\|z\|_{M}=1$. Then we have $\beta(T)=\beta_{z}(T)$.

Correspondance

Proposition

If $N(T) \neq\{0\}$, consider any $z \in N(T)$ such that $\|z\|_{M}=1$. Then we have $\beta(T)=\beta_{z}(T)$.

For example, if $T=\nabla$, the classic definition of $\beta(\nabla)$ given in the literature matches the definition the generalized inf-sup constant.

Correspondance

Proposition

If $N(T) \neq\{0\}$, consider any $z \in N(T)$ such that $\|z\|_{M}=1$. Then we have $\beta(T)=\beta_{z}(T)$.

For example, if $T=\nabla$, the classic definition of $\beta(\nabla)$ given in the literature matches the definition the generalized inf-sup constant.

Proposition

If there exists $z \in M$ such that $\|z\|_{M}=1$ and $\|T z\|_{V^{\prime}}=\alpha(T)$, Then we have $\beta(T)=\beta_{z}(T)$.

True for any finite rank (and finite dimensional) operator

Discrete inf-sup constant

Definition (Discrete inf-sup constant)

$$
\beta\left(T_{h}\right):=\inf _{\substack{\mu \in M_{h} \\ \mu \perp z_{h}}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}} .
$$

where

$$
z_{h}=\underset{z \in M_{h}}{\arg \min } \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|z\|_{M}\|\mathbf{v}\|_{V}} .
$$

Discrete inf-sup constant

Definition (Discrete inf-sup constant)

$$
\beta\left(T_{h}\right):=\inf _{\substack{\mu \in M_{h} \\ \mu \perp z_{h}}} \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, V_{h}}}{\|\mu\|_{M}\|\mathbf{v}\|_{V}} .
$$

where

$$
z_{h}=\underset{z \in M_{h}}{\arg \min } \sup _{\mathbf{v} \in V_{h}} \frac{\left\langle T_{h} \mu, \mathbf{v}\right\rangle_{V_{h}^{\prime}, v_{h}}}{\|z\|_{M}\|\mathbf{v}\|_{V}}
$$

What is the behavior of $\beta\left(T_{h}\right)$ with respect to $\beta(T)$?

Upper semi-continuity of the inf-sup constant

Theorem

If $\varepsilon_{h}^{o p} \rightarrow 0$ when $h \rightarrow 0$, then

$$
\limsup _{h \rightarrow 0} \alpha\left(T_{h}\right) \leq \alpha(T)
$$

Moreover, if the problem $T z=\mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $\left(T_{h}\right)_{h>0}$ satisfies the discrete inf-sup condition, then

$$
0<\limsup _{h \rightarrow 0} \beta\left(T_{h}\right) \leq \beta(T)
$$

Upper semi-continuity of the inf-sup constant

Theorem

If $\varepsilon_{h}^{o p} \rightarrow 0$ when $h \rightarrow 0$, then

$$
\limsup _{h \rightarrow 0} \alpha\left(T_{h}\right) \leq \alpha(T)
$$

Moreover, if the problem $T z=\mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $\left(T_{h}\right)_{h>0}$ satisfies the discrete inf-sup condition, then

$$
0<\limsup _{h \rightarrow 0} \beta\left(T_{h}\right) \leq \beta(T)
$$

- $\beta\left(T_{h}\right)$ is not asymptotically better than $\beta(T)$.

Upper semi-continuity of the inf-sup constant

Theorem

If $\varepsilon_{h}^{o p} \rightarrow 0$ when $h \rightarrow 0$, then

$$
\limsup _{h \rightarrow 0} \alpha\left(T_{h}\right) \leq \alpha(T)
$$

Moreover, if the problem $T z=\mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $\left(T_{h}\right)_{h>0}$ satisfies the discrete inf-sup condition, then

$$
0<\limsup _{h \rightarrow 0} \beta\left(T_{h}\right) \leq \beta(T)
$$

- $\beta\left(T_{h}\right)$ is not asymptotically better than $\beta(T)$.
- It might be a possible way to show that T as closed range.

Discrete stability estimate (case $\mathbf{f}=\mathbf{0}$)

Theorem (1)

Let $z \in L^{\infty}(\Omega)$ be a solution of $T z=\mathbf{0}$ with $\|z\|_{M}=1$.. Fix $r \geq\|z\|_{\infty}$ and consider $z_{h} \in M_{h}$ a solution of

$$
\begin{equation*}
\left\|T_{h} z_{h}\right\|_{V_{h}^{\prime}}=\alpha\left(T_{h}\right) \quad \text { with } \quad\left\|z_{h}\right\|_{M}=1 \quad \text { and } \quad\left\langle z_{h}, z\right\rangle_{M} \geq 0 \tag{3}
\end{equation*}
$$

If $\beta\left(T_{h}\right)>0$ we have

$$
\left\|z_{h}-\pi_{h} z\right\|_{L^{2}(\Omega)} \leq \frac{4}{\beta\left(T_{h}\right)}\left(\sqrt{2} r \varepsilon_{h}^{o p}+2 \rho(T) \varepsilon_{h}^{i n t}(z)\right)
$$

Moreover, if $\beta\left(T_{h}\right) \geq \beta^{*}>0$ and if $\varepsilon_{h}^{o p} \rightarrow 0$, then $z_{h} \rightarrow z$.

Discrete stability estimate general case

Theorem (2)

Consider $\mu \in L^{\infty}(\Omega)$ a solution of $T \mu=\mathbf{f}$. Fix $r>0$ such that $\|\mu\|_{L^{\infty}} \leq r\|\mu\|_{L^{2}}$. Consider $z_{h} \in M_{h}$ a solution of

$$
\left\|T_{h} z_{h}\right\|_{V_{h}^{\prime}}=\alpha\left(T_{h}\right) \quad \text { with } \quad\left\|z_{h}\right\|_{M}=1
$$

Consider now $\mu_{h} \in M_{h}$ a solution of $\mu_{h}=\underset{m \in M_{h}}{\arg \min }\left\|T_{h} m-f_{h}\right\|_{V_{h}}$.

$$
\begin{gathered}
m \in M_{n} \\
m \mid z
\end{gathered}
$$

If $\beta\left(T_{h}\right)>0$, there exits $t \in \mathbb{R}$ such that $\mu_{h, t}:=t z_{h}+\mu_{h}$ satisfies
$\frac{\left\|\mu_{h, t}-\pi_{h} \mu\right\|_{L^{2}}}{\left\|\pi_{h} \mu\right\|_{L^{2}}} \leq \frac{4}{\beta\left(T_{h}\right)}\left[r \varepsilon_{h}^{o p}+\rho(T)\left(\varepsilon_{h}^{\text {rhs }}+\varepsilon_{h}^{i n t}(\mu)\right)+\frac{\alpha\left(T_{h}\right)}{2}\right]$

honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed blue, the triangular subdivision.

$$
M_{h}:=\mathbb{P}^{0}\left(\Omega_{h}^{\text {hex }}\right)=\left\{\mu \in L^{2}\left(\Omega_{h}\right)|\forall j \mu|_{\Omega_{h, j}^{\text {hex }}} \text { is constant }\right\} .
$$

$$
V_{h}:=\mathbb{P}_{0}^{1}\left(\Omega_{h}^{\text {tri }}, \mathbb{R}^{2}\right)=\left\{\mathbf{v} \in H_{0}^{1}\left(\Omega_{h}, \mathbb{R}^{d}\right)|\forall k \mathbf{v}|_{\Omega_{h, k}^{\text {tri }}} \text { is linear }\right\} .
$$

Figure: Support and graph of basis test function φ_{i}.

Why does it work?

Figure: Support and graph of basis test function φ_{i}.

Why does it work ?

- Case $T=\nabla$: We show that this pair satisfies the LBB condition.

Figure: Support and graph of basis test function φ_{i}.

Why does it work ?

- Case $T=\nabla$: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

Figure: Support and graph of basis test function φ_{i}.

Why does it work ?

- Case $T=\nabla$: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.
One value is given \Rightarrow all the other are fixed.

Figure: Support and graph of basis test function φ_{i}.

Why does it work ?

- Case $T=\nabla$: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.
One value is given \Rightarrow all the other are fixed. \Rightarrow null-space is at most of dimension 1

Figure: Support and graph of basis test function φ_{i}.

Why does it work ?

- Case $T=\nabla$: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.
One value is given \Rightarrow all the other are fixed. \Rightarrow null-space is at most of dimension $1 \Rightarrow \beta\left(T_{h}\right)>0$

Inverse gradient problem

$\ln \Omega=(0,1)^{2}$ we approach $-\nabla \mu=\mathbf{f}$. Here $T_{h}:=-\left.\nabla\right|_{M_{h}}$ and then $\varepsilon_{h}^{\mathrm{op}}=0$. Moreover $\rho(\nabla) \leq 1$. In the absence of noise, the result of Theorem 2 reads,

$$
\frac{\left\|\mu_{h}-\pi_{h} \mu\right\|_{L^{2}}}{\left\|\pi_{h} \mu\right\|_{L^{2}}} \leq \frac{4}{\beta\left(T_{h}\right)}\left(\frac{\left\|\mathbf{f}-\mathbf{f}_{h}\right\|_{V_{h}^{\prime}}}{\|\mathbf{f}\|_{H^{-1}}}+\frac{\left\|\mu-\pi_{h} \mu\right\|_{L^{2}}}{\|\mu\|_{L^{2}}}\right) .
$$

Note that we know $\beta(\nabla)=\sqrt{1 / 2-1 / \pi}$ as a conjecture.

Inverse gradient problem: behavior of $\beta\left(T_{h}\right)$

Inverse gradient problem: result

Figure: Numerical stability of the reconstruction of maps μ_{1} and μ_{2} using method given by Theorem 2 with resolution $h=0.01$. From left to right: column 1: exact map to recover, 2. reconstruction with no noise, column 3: reconstruction with noise level $\sigma=1$, column 4:
reconstruction with noise level $\sigma=2$.

Quasistatic elastography

Fig. 5. First line, from left to right: The exact map $\mu_{\text {exact }}$, the two components of the data field $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ computed via (5.6), the only data used to inverse the problem.

FIG. 6. Behavior of the contants $\alpha\left(T_{h}\right), \beta\left(T_{h}\right)$ and the ratio $\alpha\left(T_{h}\right) / \beta\left(T_{h}\right)$ for the inverse static elastography problem in the unit square $\Omega:=(0,1)^{2}$, for various choices of pair of discretization spaces.

Algorithm

Write T_{h} as a matrix \mathcal{T} in the basis of the chosen M_{h} and V_{h}. Define the matrix

$$
\mathcal{M}:=\mathcal{B}_{V}^{-1} \mathcal{T} \mathcal{B}_{M}^{-1}
$$

where \mathcal{B}_{M} and \mathcal{B}_{V} are the basis matrix of M_{h} and V_{h}. Then

Algorithm

Write T_{h} as a matrix \mathcal{T} in the basis of the chosen M_{h} and V_{h}. Define the matrix

$$
\mathcal{M}:=\mathcal{B}_{V}^{-1} \mathcal{T} \mathcal{B}_{M}^{-1}
$$

where \mathcal{B}_{M} and \mathcal{B}_{V} are the basis matrix of M_{h} and V_{h}. Then

- $\alpha\left(T_{h}\right)$ is the smallest singular value of \mathcal{M}

Algorithm

Write T_{h} as a matrix \mathcal{T} in the basis of the chosen M_{h} and V_{h}. Define the matrix

$$
\mathcal{M}:=\mathcal{B}_{V}^{-1} \mathcal{T} \mathcal{B}_{M}^{-1}
$$

where \mathcal{B}_{M} and \mathcal{B}_{V} are the basis matrix of M_{h} and V_{h}. Then

- $\alpha\left(T_{h}\right)$ is the smallest singular value of \mathcal{M}
- $\beta\left(T_{h}\right)$ is the second smallest singular value of \mathcal{M}

Algorithm

Write T_{h} as a matrix \mathcal{T} in the basis of the chosen M_{h} and V_{h}. Define the matrix

$$
\mathcal{M}:=\mathcal{B}_{V}^{-1} \mathcal{T} \mathcal{B}_{M}^{-1}
$$

where \mathcal{B}_{M} and \mathcal{B}_{V} are the basis matrix of M_{h} and V_{h}. Then

- $\alpha\left(T_{h}\right)$ is the smallest singular value of \mathcal{M}
- $\beta\left(T_{h}\right)$ is the second smallest singular value of \mathcal{M}
- μ is the first singular vector of \mathcal{M}.

Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map μ using the honeycomb pair.

Reconstruction for various pairs of spaces

Figure: Reconstruction of the shear modulus map μ using various pairs of finite element spaces in the subdomain of interest $(0.1,0.9)^{2}$.

Quasi-static elastography

Figure: Shear modulus image of phantom from quasi-static data (data from E. Brusseau and L. Pretrusca - CREATIS/INSA)

In vivo quasistatic elastography

Figure: Reconstruction of the shear modulus of in-vivo malignant breast tumor from quasi-static elastography (data from E. Brusseau INSA/CREATIS) $h=0.7 \mathrm{~mm}$.

Thank you for your attention

