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The reduced elastography problem

Find p such that

V- (uS)=f inQ,
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The reduced elastography problem

Find p such that
V- (uS)=f inQ,
Q is a Lipschitz domain of RY

S € L%®°(Q,R9¥9) is given

e f is a given vector field (can be zero)

i is the unknown parameter function
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Joint work with E. Bretin, P. Millien



Elastography from internal data

¢
MNeu 8 Original elastic object Deformed elastic object

SO YN Y Y

i Q i

[ Dir

Inverse problem in two steps

e step 1: Record the displacement field u(x) inside the domain
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Elastography from internal data

¢
MNeu 8 Original elastic object Deformed elastic object

SO YN Y Y

i Q i

[ Dir

Inverse problem in two steps

e step 1: Record the displacement field u(x) inside the domain
e step 2: Reconstruct the elastic properties of the medium
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Medical elastography

Measure the elastic parameters of soft biological tissues

Goal J

Advantages:
e High contrast (for the shear modulus)

e Good discrimination between pathological states

3/44



Medical elastography

Goal

Measure the elastic parameters of soft biological tissues

Advantages:

e High contrast (for the shear modulus)

e Good discrimination between pathological states
Difficulties:

e High contrast (multiple scattering of waves)

e High wavelength
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Medical elastography

Detect an characterize tumoral
and pre-tumoral tissues

Figure: X-rays image of
breast-tumor
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Medical elastography

Figure: X-rays image of
breast-tumor

Detect an characterize tumoral
and pre-tumoral tissues

e Scanner (X-rays imaging)
is harmful and expensive
(poor discrimination),

e Untrasound imaging fails
(no contrast),

e Shear modulus 1i(x) is very
high in tumoral tissues.
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Quasi-static deformation of a phantom
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Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)
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Shear wave imaging by fast-ultrasound
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Reconstruct the corresponding shear modulus

nodule mou | nodule due

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)
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An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a
high resolution imaging modality. Hopefully get some info from the
reaction of the medium.

e MRI Elastography
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An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a
high resolution imaging modality. Hopefully get some info from the
reaction of the medium.

e MRI Elastography
e US Elastography
e OCT Elastography

Different types of perturbations : static, dynamic, harmonic.
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Inversion step 2 : recover the shear modulus

Linear elasticity:

-V -(2uE(u)) —V(AV-u)=f Q
BC 0Q

with u € RY the displacement field, £(u) = (Vu+ VuT) and
(A, p) are the Lamé coefficients.

Inverse problem

Recover (A, ) from the knowledge of u in Q.

Remark

In soft tissues, \(x) ~ Ao and assumed known.
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Available inversion algorithms (1)

=V (u€(u)) = f

Solving a first order transport equation in y

10P Publshing
Inverse Probls 30 (2014) 125004 229p)

iverse Prabims
4010.108810200.5611/30 12725008

Reconstruction of constitutive parameters
in isotropic linear elasticity from noisy full-
Recovery of the Lamé parameter  in biological tissues field measurements

ce McLaughlin Guillaume Bal', Cédric Bellis’, Sébastien Imperiale’ and
o Poycchic I, Ty, NY 12180, USA Frangois Monard
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Inversion step 2 : recover the shear modulus

Transport : Assume that u is smooth and known near 02 and
remark that

V- (uVu) = VuVy + uV - Vu

assume that V*u is a.e. invertible p is solution of the transport
problem,

VA4 u(Vu) V- Vou = —(Vou)f
Vi +pb=—f
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Inversion step 2 : recover the shear modulus

Transport : Assume that u is smooth and known near 02 and
remark that

V- (uVu) = VuVy + uV - Vu

assume that V*u is a.e. invertible p is solution of the transport
problem,

VA4 u(Vu) V- Vou = —(Vou)f
Vi +pb=—f

(Proof of uniqueness and stability with several measurements and
strong smoothness hypothesis and boundary data)
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Available inversion algorithms (2)

Least squares : Assume knowledge of g the surface density of
force outside of Q and define

-V (,uvsu) =f (8““), in Q,

F:u— :
H u[,u]{ uVeu-v =g on 09,

defining F : L°(Q, [po, +00)) — HY(Q, RY) fréchet differentiable.
Then minimize

Il = [IF ] = Umes|3p(qy + res. term J
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Available inversion algorithms (2)

Least squares : Assume knowledge of g the surface density of
force outside of Q and define

-V (,uvsu) =f (8““), in Q,

F:u— :
H u[u]{ uVeu-v =g on 09,

defining F : L°(Q, [po, +00)) — HY(Q, RY) fréchet differentiable.
Then minimize

Il = [IF ] = Umes|3p(qy + res. term J

e Very slow (flat problem)
e needs knowledge of g and i on the boundary
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Available inversion algorithms (3)

Wave front traking : assuming that y is piecewise constant,

Onu—puV-Vux0, ae.,
the wave speed is ¢ = /1.
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Available inversion algorithms (4)

Algebraic inversion :

» _— ) Shear Modulus Imaging with 2-D Transient
Elastic modulus imaging: some exact solutions of the
compressible elastography inverse problem Elastography

Paul E Barbone! and Assad A Oberaf® Lanrent Sandrin, Mickadl Tanter, Stefan Catheline, and Mathias Fink

Example

|0l

If u is constant then pAu = pdyu = p ~ p Aul
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Current chalenges for medical elastography

e Increase the resolution
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Current chalenges for medical elastography

Increase the resolution

e Be more quantitative
e Be more stable

e Be more practical (quasi-static with acoustic probe ?)
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A general equation

The problem takes the general form

Reduced elastography problem
V. (uS)=f

in the cases

e \is known: S :=2&(u)
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A general equation

The problem takes the general form

Reduced elastography problem
V. (uS)=f

in the cases
e \is known: S :=2&(u)
e v (Poisson ratio) is known S := a&(u) + S(V - u)/
e in plane stress approximation (sliced 2D model)

But also for conductivity equation with two internal data:

—V - (o[Vur Vo)) =f

And other problems. ..
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The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p— =V - (uS)

18/44



The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p= =V - (uS)

or by the equivalent variational formulation

a(p,v) = (Tp, V>H*1,Hé = /S2u5 Vv, Yv e H3(Q,RI*9)

the problem takes the form

18/44



The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p= =V - (uS)
or by the equivalent variational formulation
a(p,v) = (Tp, V>H*1,Hé = / uS Vv, Yv e Hi(Q,RI*9)
Q
the problem takes the form

Find p € L?(Q) s.t.

a(v) = (Fv)y gy W € HEQR)

18/44



The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p= =V - (uS)
or by the equivalent variational formulation
a(p,v) = (Tp, V>H*1,Hé = / uS Vv, Yv e Hi(Q,RI*9)
Q
the problem takes the form

Find p € L?(Q) s.t.

a(v) = (Fv)y gy W € HEQR)

e No boundary data used

18/44



The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p= =V - (uS)
or by the equivalent variational formulation
a(p,v) = (Tp, V>H*1,H3 = / uS Vv, Vv e H(Q,RI*)
Q
the problem takes the form

Find p € L?(Q) s.t.

a(,u,v) = <f7V>H—1,Hé Vv e H&(Q7Rd><d)

e No boundary data used
e Only smoothness hypothesis: S € L>(Q, R9*9)
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The Reverse Weak Formulation

Define the operator
T:L°(Q) C [3(Q) - HY{Q,RY)
p= =V - (uS)
or by the equivalent variational formulation
a(p,v) = <T,LL,V)H,1,H6 = / uS Vv, Vv e H(Q,RI*)
Q
the problem takes the form

Find p € L?(Q) s.t.

a(v) = (Fv)y gy W € HEQR)

e No boundary data used
e Only smoothness hypothesis: S € L>(Q, R9*9)

e "Easy” to discretize through the Galerkin method
18/44



Reverse Weak Formulation: discretization

Find 1 € L?(Q) s.t.

(Ti V) = (FV)p g W € HE(QRY)

becomes
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Reverse Weak Formulation: discretization

Find 1 € L?(Q) s.t.

(T;L,V)H,1’H8 — <f,V>H—1’H(]). Y € H}(Q,RY)

becomes

Find up € M, s.t.

(Thin, VR g1 = (FnoVh) g1 WV E Vi

where
o (Mh, Vi) approaches (L*(Q), H5(Q,R?))
e Tp approaches T

e f, approaches f
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Approximation of the spaces

Let M be a Hilbert and M, C M a sub-Hilbert space and
7w © M — M), the orthogonal projection.

Definition

The sequence (Mp)p~o approaches M if for any € M,

li — =0.
lim [l — gy = O

For any non zero i € M, we define its relative error of
interpolation onto M, by

i e — pll g
ept(p) =
1l
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Approximation of the operator

The operator T : L?> — H™! given by

<T,u,v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)
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Hence

(Th— T)M’V>V,§,Vh = /Q,u(Sh —S): Vv
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Approximation of the operator

The operator T : L?> — H™! given by

<T,u,v)H,1,H& = /Q,uS Vv, Y e Hi(Q,RI*)

is approached by Ty : My — V/

<Th:u’av>V,:7Vh = /Q,uSh Vv, WeEV,
Hence
(o= Thuvhyyy, = [ (S =): Vv
< il 15— Sy IVl

The error Ty, — T is small for the L(L*°, V/) topology weaker than
the £(L?, V})) topology!
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

((Th— Tt Wy
e = || Th— Tl vy == sup sup o
T ewtvevs Nl VI
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

<(Th - T)H7V>V' V
ey = Th = Tllieo,ys := sup sup w2
n uemyvevy il IV

e This error contains both the data noise and the interpolation
error over (Mp, Vj).
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Approximation of the operator

Definition

The interpolation error €} between T and T}, is defined by

<(Th - T)M7V>V' V
ey = Th = Tllieo,ys := sup sup w2
n uemyvevy il IV

e This error contains both the data noise and the interpolation
error over (Mp, Vj).

e This particular norm does not allow us to use directly the
sensitivity analysis and discretization analysis for the
Moore-Penrose generalized inverse of T when T is a closed
range operator
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Approximation of the right-hand side

Definition

The relative error of interpolation 5;,h5 between f £ 0 and f}, is
defined by

1 (fn —f,v) Vi, Vs 15 — f||v,;
= sup =
Il vev,  llvllv €1l

E;]hs .
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Questions

e Is Ty = f invertible with stability ?
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Questions

e Is Ty = f invertible with stability ?
o Is Thup = fp invertible with stability ? (Condition on My, V},
and Tp)

o Is the solution yup, close to p in L%(Q)?

24 /44






A model problem

When S(x) =/, then Ty := -V - (uS) = —Vu. ie. T =-V
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exists C > 0 s.t.
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If Q is Lipschitz, then V : L?> — H™! has closed range. i.e. there

exists C > 0 s.t.

lalli2) < ClIVally-1@) Va € L3(),

(1)

equivalently

B := inf sup fﬂ(v v)q

>0
9ELF(Q) veHL(Q,RY) HVHHg(Q) HqHL2(Q)

Operator V satisfies the inf-sup condition.
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A model problem

When S(x) =/, then Ty := -V - (uS) = —Vu. ie. T =-V
Proposition

If Q is Lipschitz, then V : L?> — H™! has closed range. i.e. there
exists C > 0 s.t.

lalli2) < ClIVally-1@) Va € L3(), (1)

equivalently

B := inf sup fﬂ(v v)q

>0 (2)
9ELF(Q) veHL(Q,RY) HVHHg(Q) HqHL2(Q)

Operator V satisfies the inf-sup condition. It is invertible with
stability in L2(Q) N N(V)*.

25 /44



A model problem: discretization

Problem: the constant S may not behave well in finite element
spaces!

Take My, C L3(Q) and V}, C H3(Q,RY) the discrete inf-sup
constant

v -
By := inf sup fQ( v)q
9EMhvev, ||V||Hg(§z) HqHLZ(Q)

may not satisfy the discrete inf-sup condition (of LBB condition for
Ladyzhenskaya-Babuska-Brezzi):

Yh>0, B> B* >0 J
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A model problem: discretization

Problem: the constant S may not behave well in finite element
spaces!

Take My, C L3(Q) and V}, C H3(Q,RY) the discrete inf-sup
constant

v -
By := inf sup fQ( v)q
qEMs vev, ||V||H3(Q) HQHLz(Q)

may not satisfy the discrete inf-sup condition (of LBB condition for
Ladyzhenskaya-Babuska-Brezzi):

Yh>0, B> B* >0 J

Pairs of finite element spaces that satisfy the discrete inf-sup
condition are known as inf-sup stable elements and play an
important role in the stability of the Galerkin approximation for the
Stokes problem.
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Inf-sup constant for the operator T

Theoretical study of Tp := =V - (uS), with Ammari, Bretin and
Millien (2020):

If S€ WYP p>d and |det S(x)| > ¢ > 0 a.e, we have
e dmN(T) <1
e if dimN(T) =1, T has closed range.
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Inf-sup constant for the operator T

Theoretical study of Ty :=—V - (uS), with Ammari, Bretin and
Millien (2020):

If S€ WYP p>d and |det S(x)| > ¢ > 0 a.e, we have

dimN(T) < 1
if dimN(T) =1, T has closed range.

At worst T is a "gradient type” operator
works for S " piecewise” WP

minimal assumption on S to have closed range property is an
open question (as far as we know)

27/44



Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),

Definition (classic constants )

T, vy, T, V),
a(T) := inf sup M and p(T) := sup sup (Th vy A4 |
neMvev [l vl peMvev ey lvily
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Generalized inf-sup constant

M, V two Hilbert spaces and T € L(M, V'),

Definition (classic constants )

T, vy,
a(T) := inf supM and

HEM yev ||,U||M ||V||v

p(T) =

<T:u” V> V',V
sup sup ——————

nemveV [l lIvily
o

Definition (Generalized inf-sup constant)

The generalized inf-sup constant red3(T) is built as follows:

Be(T) := inf sup
¢ neMyev ||l vy
ple

(Tp,v) VvV

p(T) =

sup Be(T).
ecM
llelly=1
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Correspondance

Proposition

If N(T) # {0}, consider any z € N(T) such that ||z||,, = 1. Then
we have B(T) = B,(T).
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Correspondance

Proposition

If N(T) # {0}, consider any z € N(T) such that ||z||,, = 1. Then
we have B(T) = B,(T).

For example, if T =V, the classic definition of 5(V) given in the
literature matches the definition the generalized inf-sup constant.

Proposition

If there exists z € M such that ||z||,, =1 and || Tz||,,, = a(T),
Then we have 5(T) = ,(T).

True for any finite rank (and finite dimensional) operator

20/44



Discrete inf-sup constant

Definition (Discrete inf-sup constant)

(T/#L,V) /
B(Tp) == inf sup Vi Vi

h

neMyvev, il Ivily
plz

where

) <ThMaV>v,;7vh
zp = argmin sup —————>—,
zeM, vev, ”ZHM ||V||V
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Discrete inf-sup constant

Definition (Discrete inf-sup constant)

<Th“7v>V’ V,
ﬁ(Th) = inf sup _—
neMyev, [y lvily
plzy

where

) <ThMaV>v,;7vh
zp = argmin sup —————>—,
zeM, vev, ”ZHM ||V||V

What is the behavior of 5(Tp) with respect to (T) ?
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Upper semi-continuity of the inf-sup constant

Theorem

If e}? — 0 when h — 0, then

limsupa(Th) < a(T).
h—0
Moreover, if the problem Tz = 0 admits a non zero solution

z € L*°(Q) and if the sequence (Tp)n>0 Satisfies the discrete
inf-sup condition, then

0 <limsupB(Tp) < B(T).
h—0
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Upper semi-continuity of the inf-sup constant

Theorem

If e}? — 0 when h — 0, then

limsupa(Th) < a(T).
h—0
Moreover, if the problem Tz = 0 admits a non zero solution

z € L*°(Q) and if the sequence (Tp)n>0 Satisfies the discrete
inf-sup condition, then

0 <limsupB(Tp) < B(T).
h—0

e 3(Tp) is not asymptotically better than 5(T).
e |t might be a possible way to show that T as closed range.
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Discrete stability estimate (case f = 0)

Theorem (1)

Let z € L*°(Q2) be a solution of T z = 0 with ||z||,, = 1.. Fix
r > ||z||, and consider z;, € My, a solution of

HThzth,; =a(Ty) with |zs||y =1 and (zn,2)y >0. (3)

If 5(Th) > 0 we have
4 i
zh — 7zl 2(q) < m(\@fﬁ,}p +2p(T)ey(2)).

Moreover, if 3(Tp) > 5* > 0 and if i’ — 0, then z, — z.
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Discrete stability estimate general case

Theorem (2)

Consider 11 € L>°(Q2) a solution of Ty =f. Fix r > 0 such that
el oo < rllpll 2. Consider zy € My a solution of

I ThZhH\/,; =a(Ty) with |zp||y =1.

Consider now pp, € My, a solution of pp = arg min || Tpm — fp| v

meMp,
mJ_zh

If B(Th) > 0O, there exits t € R such that pp ¢ := tzj, + pup, satisfies

[ 12n,e = whpll 2
I7hulliz = B(Th)

2

[r e+ p(T) (e + el(w) + a(T”)}

V.
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honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal
subdivision and in dashed blue, the triangular subdivision.

M,, := PO (QP/;ex) — {N c LZ(Qh) ‘ Vj IU’|Q';7er Is constant} o J

Vi = P} (I R2) = {v € H3(Qp, RY) | Vk v]gu s nnear} :
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Figure: Support and graph of basis test function ¢;.

Why does it work ?
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Figure: Support and graph of basis test function ¢;.
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Figure: Support and graph of basis test function ¢;.

Why does it work ?

e Case T = V: We show that this pair satisfies the LBB
condition.

e General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

One value is given = all the other are fixed. = null-space is at
most of dimension 1 = 3(T,) >0
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Inverse gradient problem

In Q = (0,1)? we approach —Vu = f. Here T; := —V|p, and
then £3” = 0. Moreover p(V) < 1. In the absence of noise, the
result of Theorem 2 reads,

ln = mnpiliz 4 (IF=Fullyy i — a2
Imnullz = B(Tw) \ (Il Il 2

Note that we know 3(V) = 1/1/2 — 1/x as a conjecture.
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Inverse gradient problem: behavior of 5( T)

0.3

0.1

3

—— honeycomb pair

——
=
—h
——
——
—

1072

107t

37/44



Inverse gradient problem: result

S SR—
08 X A
05
0
04
02 ot
oy - . -2

02 04 06 08 1

1
1
0
02
-1

DU 02 04 06 08 1

Figure: Numerical stability of the reconstruction of maps i1 and po
using method given by Theorem 2 with resolution h = 0.01. From left to
right: column 1: exact map to recover, 2. reconstruction with no noise,
column 3: reconstruction with noise level ¢ = 1, column 4:
reconstruction with noise level o = 2.
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Quasistatic elastography

Hexact uy u2
2 1 1
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Fi1G. 5. First line, from left to right: The exact map fiezact, the two components of the data
field u = (u1,u2) computed via (5.6), the only data used to inverse the problem.
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F1G. 6. Behavior of the contants a(T}y), B(Th) and the ratio o(Ty)/B(Th) for the inverse static
elastography problem in the unit square Q := (0, 1)2, for various choices of pair of discretization
spaces.
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Algorithm

Write Tp as a matrix 7 in the basis of the chosen My, and V.
Define the matrix

M = BT B}

where By, and By are the basis matrix of My and V. Then
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Algorithm

Write Tp as a matrix 7 in the basis of the chosen My, and V.
Define the matrix

M = BT B}
where By, and By are the basis matrix of My and V. Then
e aTp) is the smallest singular value of M

e 3(Tp) is the second smallest singular value of M

e 4 is the first singular vector of M.
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Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map p using the honeycomb
pair.
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Reconstruction for various pairs of spaces
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Figure: Reconstruction of the shear modulus map p using various pairs of

finite element spaces in the subdomain of interest (0.1,0.9)2. i2/44



Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)

43/44



In vivo quasistatic elastography
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Figure: Reconstruction of the shear modulus of in-vivo malignant breast
tumor from quasi-static elastography (data from E. Brusseau -
INSA/CREATIS) h = 0.7 mm.

Thank you for your attention

44 /44



