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The reduced elastography problem

Find µ such that

−∇ · (µS) = f in Ω,

• Ω is a Lipschitz domain of Rd

• S ∈ L∞(Ω,Rd×d) is given

• f is a given vector field (can be zero)

• µ is the unknown parameter function
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Joint work with E. Bretin, P. Millien



Elastography from internal data

ΓNeu

ΓDir

Ω

g` Original elastic object Deformed elastic object

Inverse problem in two steps

• step 1: Record the displacement field u(x) inside the domain

• step 2: Reconstruct the elastic properties of the medium
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Medical elastography

Goal

Measure the elastic parameters of soft biological tissues

Advantages:

• High contrast (for the shear modulus)

• Good discrimination between pathological states

Difficulties:

• High contrast (multiple scattering of waves)

• High wavelength
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Medical elastography

Figure: X-rays image of
breast-tumor

Detect an characterize tumoral
and pre-tumoral tissues

• Scanner (X-rays imaging)
is harmful and expensive
(poor discrimination),

• Untrasound imaging fails
(no contrast),

• Shear modulus µ(x) is very
high in tumoral tissues.
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Quasi-static deformation of a phantom
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Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)
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Shear wave imaging by fast-ultrasound
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Reconstruct the corresponding shear modulus

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)
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An hybrid (multi-physics) imaging method

General idea

Mecanically perturbate a medium and track the response using a
high resolution imaging modality. Hopefully get some info from the
reaction of the medium.

• MRI Elastography

• US Elastography

• OCT Elastography

Different types of perturbations : static, dynamic, harmonic.
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Inversion step 2 : recover the shear modulus

Linear elasticity:

{
−∇ · (2µE(u))−∇(λ∇ · u) = f Ω

BC ∂Ω

with u ∈ Rd the displacement field, E(u) = 1
2 (∇u +∇uT ) and

(λ, µ) are the Lamé coefficients.

Inverse problem

Recover (λ, µ) from the knowledge of u in Ω.

Remark

In soft tissues, λ(x) ∼ λ0 and assumed known.
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Available inversion algorithms (1)

−∇ · (µE(u)) = f

Solving a first order transport equation in µ
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Inversion step 2 : recover the shear modulus

Transport : Assume that µ is smooth and known near ∂Ω and
remark that

∇ · (µ∇su) = ∇su∇µ+ µ∇ · ∇su

assume that ∇su is a.e. invertible µ is solution of the transport
problem,

∇µ+ µ(∇su)−1∇ · ∇su = −(∇su)−1f

∇µ+ µb = −f̃

(Proof of uniqueness and stability with several measurements and
strong smoothness hypothesis and boundary data)
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Available inversion algorithms (2)

Least squares : Assume knowledge of g the surface density of
force outside of Ω and define

F : µ 7→ u[µ] :

{
−∇ · (µ∇su) = f (∂ttu), in Ω,

µ∇su · ν = g on ∂Ω,

defining F : L∞(Ω, [µ0,+∞))→ H1(Ω,Rd) fréchet differentiable.
Then minimize

J[µ] = ‖F [µ]− umes‖2
H1(Ω) + reg. term

• Very slow (flat problem)

• needs knowledge of g and µ on the boundary

13/44



Available inversion algorithms (2)

Least squares : Assume knowledge of g the surface density of
force outside of Ω and define

F : µ 7→ u[µ] :

{
−∇ · (µ∇su) = f (∂ttu), in Ω,

µ∇su · ν = g on ∂Ω,

defining F : L∞(Ω, [µ0,+∞))→ H1(Ω,Rd) fréchet differentiable.
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Available inversion algorithms (3)

Wave front traking : assuming that µ is piecewise constant,

∂ttu− µ∇ · ∇su ≈ 0, a.e.,

the wave speed is c =
√
µ.

Remark

If µ is constant then one only needs one component of the
displacement field.
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Available inversion algorithms (4)

Algebraic inversion :

Example

If µ is constant then µ∆u = ρ∂ttu =⇒ µ ≈ ρ |∂ttu|
|∆u|
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Current chalenges for medical elastography

• Increase the resolution

• Be more quantitative

• Be more stable

• Be more practical (quasi-static with acoustic probe ?)
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A general equation

The problem takes the general form

Reduced elastography problem

−∇ · (µS) = f

in the cases

• λ is known: S := 2E(u)

• ν (Poisson ratio) is known S := αE(u) + β(∇ · u)I

• in plane stress approximation (sliced 2D model)

But also for conductivity equation with two internal data:

−∇ · (σ[∇u1 ∇u2]) = f

And other problems. . .
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The Reverse Weak Formulation

Define the operator

T : L∞(Ω) ⊂ L2(Ω)→ H−1(Ω,Rd)

µ 7→ −∇ · (µS)

or by the equivalent variational formulation

a(µ, v) := 〈Tµ, v〉H−1,H1
0

:=

∫
Ω
µS : ∇v, ∀v ∈ H1

0 (Ω,Rd×d)

the problem takes the form

Find µ ∈ L2(Ω) s.t.

a(µ, v) = 〈f, v〉H−1,H1
0
∀v ∈ H1

0 (Ω,Rd×d)

• No boundary data used
• Only smoothness hypothesis: S ∈ L∞(Ω,Rd×d)
• ”Easy” to discretize through the Galerkin method
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Reverse Weak Formulation: discretization

Find µ ∈ L2(Ω) s.t.

〈Tµ, v〉H−1,H1
0

= 〈f, v〉H−1,H1
0
∀v ∈ H1

0 (Ω,Rd)

becomes

Find µh ∈ Mh s.t.

〈Thµh, vh〉H−1,H1
0

= 〈fh, vh〉H−1,H1
0
∀v ∈ Vh

where

• (Mh,Vh) approaches (L2(Ω),H1
0 (Ω,Rd))

• Th approaches T

• fh approaches f

19/44
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Approximation of the spaces

Let M be a Hilbert and Mh ⊂ M a sub-Hilbert space and
πh : M → Mh the orthogonal projection.

Definition

The sequence (Mh)h>0 approaches M if for any µ ∈ M,

lim
h→0
‖πhµ− µ‖M = 0.

For any non zero µ ∈ M, we define its relative error of
interpolation onto Mh by

εint
h (µ) :=

‖πhµ− µ‖M
‖µ‖M

.
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Approximation of the operator

The operator T : L2 → H−1 given by

〈Tµ, v〉H−1,H1
0

:=

∫
Ω
µS : ∇v, ∀v ∈ H1

0 (Ω,Rd×d)

is approached by Th : Mh → V ′h

〈Thµ, v〉V ′h,Vh
:=

∫
Ω
µSh : ∇v, ∀v ∈ Vh.

Hence

〈(Th − T )µ, v〉V ′h,Vh
=

∫
Ω
µ(Sh − S) : ∇v

≤ ‖µ‖L∞ ‖Sh − S‖L2(Ω) ‖v‖H1
0

The error Th − T is small for the L(L∞,V ′h) topology weaker than
the L(L2,V ′h)) topology!
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Approximation of the operator

Definition

The interpolation error εop
h between T and Th is defined by

εop
h := ‖Th − T‖L∞,V ′h := sup

µ∈Mh

sup
v∈Vh

〈(Th − T )µ, v〉V ′h,Vh

‖µ‖L∞ ‖v‖H1
0

.

• This error contains both the data noise and the interpolation
error over (Mh,Vh).

• This particular norm does not allow us to use directly the
sensitivity analysis and discretization analysis for the
Moore-Penrose generalized inverse of T when T is a closed
range operator
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Approximation of the right-hand side

Definition

The relative error of interpolation εrhs
h between f 6= 0 and fh is

defined by

εrhs
h :=

1

‖f‖V ′
sup
v∈Vh

〈fh − f, v〉V ′h,Vh

‖v‖V
:=
‖fh − f‖V ′h
‖f‖V ′

23/44



Questions

• Is Tµ = f invertible with stability ?

• Is Thµh = fh invertible with stability ? (Condition on Mh,Vh

and Th)

• Is the solution µh close to µ in L2(Ω)?
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A model problem

When S(x) = I , then Tµ := −∇ · (µS) = −∇µ. i.e. T = −∇

Proposition

If Ω is Lipschitz, then ∇ : L2 → H−1 has closed range. i.e. there
exists C > 0 s.t.

‖q‖L2(Ω) ≤ C ‖∇q‖H−1(Ω) ∀q ∈ L2
0(Ω), (1)

equivalently

β := inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω,Rd )

∫
Ω(∇ · v)q

‖v‖H1
0 (Ω) ‖q‖L2(Ω)

> 0 (2)

Operator ∇ satisfies the inf-sup condition. It is invertible with
stability in L2(Ω) ∩ N(∇)⊥.
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0(Ω), (1)

equivalently

β := inf
q∈L2

0(Ω)
sup

v∈H1
0 (Ω,Rd )

∫
Ω(∇ · v)q

‖v‖H1
0 (Ω) ‖q‖L2(Ω)

> 0 (2)

Operator ∇ satisfies the inf-sup condition.

It is invertible with
stability in L2(Ω) ∩ N(∇)⊥.
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A model problem: discretization

Problem: the constant β may not behave well in finite element
spaces!
Take Mh ⊂ L2

0(Ω) and Vh ⊂ H1
0 (Ω,Rd) the discrete inf-sup

constant

βh := inf
q∈Mh

sup
v∈Vh

∫
Ω(∇ · v)q

‖v‖H1
0 (Ω) ‖q‖L2(Ω)

may not satisfy the discrete inf-sup condition (of LBB condition for
Ladyzhenskaya-Babuska-Brezzi):

∀h > 0, βh ≥ β∗ > 0

Pairs of finite element spaces that satisfy the discrete inf-sup
condition are known as inf-sup stable elements and play an
important role in the stability of the Galerkin approximation for the
Stokes problem.
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Inf-sup constant for the operator T

Theoretical study of Tµ := −∇ · (µS), with Ammari, Bretin and
Millien (2020):

If S ∈W 1,p p > d and | det S(x)| ≥ c > 0 a.e, we have

• dimN(T ) ≤ 1

• if dimN(T ) = 1, T has closed range.

• At worst T is a ”gradient type” operator

• works for S ”piecewise” W 1,p

• minimal assumption on S to have closed range property is an
open question (as far as we know)
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Generalized inf-sup constant

M, V two Hilbert spaces and T ∈ L(M,V ′),

Definition (classic constants )

α(T ) := inf
µ∈M

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

and ρ(T ) := sup
µ∈M

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

.

Definition (Generalized inf-sup constant)

The generalized inf-sup constant redβ(T ) is built as follows:

βe(T ) := inf
µ∈M
µ⊥e

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

β(T ) := sup
e∈M
‖e‖M=1

βe(T ).

28/44



Generalized inf-sup constant

M, V two Hilbert spaces and T ∈ L(M,V ′),

Definition (classic constants )

α(T ) := inf
µ∈M

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

and ρ(T ) := sup
µ∈M

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

.

Definition (Generalized inf-sup constant)

The generalized inf-sup constant redβ(T ) is built as follows:

βe(T ) := inf
µ∈M
µ⊥e

sup
v∈V

〈Tµ, v〉V ′,V
‖µ‖M ‖v‖V

β(T ) := sup
e∈M
‖e‖M=1

βe(T ).

28/44



Correspondance

Proposition

If N(T ) 6= {0}, consider any z ∈ N(T ) such that ‖z‖M = 1. Then
we have β(T ) = βz(T ).

For example, if T = ∇, the classic definition of β(∇) given in the
literature matches the definition the generalized inf-sup constant.

Proposition

If there exists z ∈ M such that ‖z‖M = 1 and ‖Tz‖V ′ = α(T ),
Then we have β(T ) = βz(T ).

True for any finite rank (and finite dimensional) operator
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Discrete inf-sup constant

Definition (Discrete inf-sup constant)

β(Th) := inf
µ∈Mh
µ⊥zh

sup
v∈Vh

〈Thµ, v〉V ′h,Vh

‖µ‖M ‖v‖V
.

where

zh = arg min
z∈Mh

sup
v∈Vh

〈Thµ, v〉V ′h,Vh

‖z‖M ‖v‖V
.

What is the behavior of β(Th) with respect to β(T ) ?
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Upper semi-continuity of the inf-sup constant

Theorem

If εoph → 0 when h→ 0, then

lim sup
h→0

α(Th) ≤ α(T ).

Moreover, if the problem Tz = 0 admits a non zero solution
z ∈ L∞(Ω) and if the sequence (Th)h>0 satisfies the discrete
inf-sup condition, then

0 < lim sup
h→0

β(Th) ≤ β(T ).

• β(Th) is not asymptotically better than β(T ).

• It might be a possible way to show that T as closed range.
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Discrete stability estimate (case f = 0)

Theorem (1)

Let z ∈ L∞(Ω) be a solution of T z = 0 with ‖z‖M = 1.. Fix
r ≥ ‖z‖∞ and consider zh ∈ Mh a solution of

‖Thzh‖V ′h = α(Th) with ‖zh‖M = 1 and 〈zh, z〉M ≥ 0. (3)

If β(Th) > 0 we have

‖zh − πhz‖L2(Ω) ≤
4

β(Th)

(√
2 r εoph + 2ρ(T )εinth (z)

)
.

Moreover, if β(Th) ≥ β∗ > 0 and if εoph → 0, then zh → z.
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Discrete stability estimate general case

Theorem (2)

Consider µ ∈ L∞(Ω) a solution of Tµ = f. Fix r > 0 such that
‖µ‖L∞ ≤ r ‖µ‖L2 . Consider zh ∈ Mh a solution of

‖Thzh‖V ′h = α(Th) with ‖zh‖M = 1.

Consider now µh ∈ Mh a solution of µh = arg min
m∈Mh
m⊥zh

‖Thm − fh‖V ′h .

If β(Th) > 0, there exits t ∈ R such that µh,t := tzh + µh satisfies

‖µh,t − πhµ‖L2

‖πhµ‖L2

≤ 4

β (Th)

[
r εoph + ρ(T )

(
εrhsh + εinth (µ)

)
+
α (Th)

2

]
.
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honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal
subdivision and in dashed blue, the triangular subdivision.

Mh := P0
(
Ωhex
h

)
=
{
µ ∈ L2(Ωh) | ∀j µ|Ωhex

h,j
is constant

}
.

Vh := P1
0

(
Ωtri
h ,R2

)
=
{
v ∈ H1

0 (Ωh,Rd) | ∀k v|Ωtri
h,k

is linear
}
.
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pi•

ϕi (x)

Figure: Support and graph of basis test function ϕi .

Why does it work ?

• Case T = ∇: We show that this pair satisfies the LBB
condition.

• General case: We show that for each internal node, we have a
system of 2 independent equations for 3 values of the
parameters.

One value is given ⇒ all the other are fixed. ⇒ null-space is at
most of dimension 1 ⇒ β(Th) > 0
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Inverse gradient problem

In Ω = (0, 1)2 we approach −∇µ = f. Here Th := −∇|Mh
and

then εop
h = 0. Moreover ρ(∇) ≤ 1. In the absence of noise, the

result of Theorem 2 reads,

‖µh − πhµ‖L2

‖πhµ‖L2

≤ 4

β (Th)

(
‖f − fh‖V ′h
‖f‖H−1

+
‖µ− πhµ‖L2

‖µ‖L2

)
.

Note that we know β(∇) =
√

1/2− 1/π as a conjecture.
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Inverse gradient problem: behavior of β(Th)
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Inverse gradient problem: result
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Figure: Numerical stability of the reconstruction of maps µ1 and µ2

using method given by Theorem 2 with resolution h = 0.01. From left to
right: column 1: exact map to recover, 2. reconstruction with no noise,
column 3: reconstruction with noise level σ = 1, column 4:
reconstruction with noise level σ = 2.
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Quasistatic elastography
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Algorithm

Write Th as a matrix T in the basis of the chosen Mh and Vh.
Define the matrix

M := B−1
V T B

−1
M

where BM and BV are the basis matrix of Mh and Vh. Then

• α(Th) is the smallest singular value of M
• β(Th) is the second smallest singular value of M
• µ is the first singular vector of M.
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Reconstruction for the honeycomb
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Figure: Reconstruction of the shear modulus map µ using the honeycomb
pair.
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Reconstruction for various pairs of spaces
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Figure: Reconstruction of the shear modulus map µ using various pairs of
finite element spaces in the subdomain of interest (0.1, 0.9)2.
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Quasi-static elastography
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Figure: Shear modulus image of phantom from quasi-static data (data
from E. Brusseau and L. Pretrusca - CREATIS/INSA)
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In vivo quasistatic elastography
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Figure: Reconstruction of the shear modulus of in-vivo malignant breast
tumor from quasi-static elastography (data from E. Brusseau -
INSA/CREATIS) h = 0.7 mm.

Thank you for your attention
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