Stability an discretization for some elliptic inverse parameter problems from internal data application to elastography

> Laurent Seppecher École Centrale de Lyon

> > June 9, 2021

One World Imagine Seminars

The reduced elastography problem

Find μ such that

$$-\nabla \cdot (\mu S) = \mathbf{f}$$
 in Ω ,

Find μ such that

$$-\nabla \cdot (\mu S) = \mathbf{f} \quad \text{ in } \Omega,$$

- Ω is a Lipschitz domain of \mathbb{R}^d
- $S \in L^{\infty}(\Omega, \mathbb{R}^{d imes d})$ is given
- **f** is a given vector field (can be zero)
- μ is the unknown parameter function

Joint work with E. Bretin, P. Millien

Elastography from internal data

Inverse problem in two steps

• step 1: Record the displacement field $\mathbf{u}(x)$ inside the domain

Elastography from internal data

Inverse problem in two steps

- step 1: Record the displacement field **u**(x) inside the domain
- step 2: Reconstruct the elastic properties of the medium

Goal

Measure the elastic parameters of soft biological tissues

Advantages:

- High contrast (for the shear modulus)
- Good discrimination between pathological states

Goal

Measure the elastic parameters of soft biological tissues

Advantages:

- High contrast (for the shear modulus)
- Good discrimination between pathological states

Difficulties:

- High contrast (multiple scattering of waves)
- High wavelength

Detect an characterize tumoral and pre-tumoral tissues

Detect an characterize tumoral and pre-tumoral tissues

 Scanner (X-rays imaging) is harmful and expensive (poor discrimination),

Detect an characterize tumoral and pre-tumoral tissues

- Scanner (X-rays imaging) is harmful and expensive (poor discrimination),
- Untrasound imaging fails (no contrast),

Detect an characterize tumoral and pre-tumoral tissues

- Scanner (X-rays imaging) is harmful and expensive (poor discrimination),
- Untrasound imaging fails (no contrast),
- Shear modulus μ(x) is very high in tumoral tissues.

Quasi-static deformation of a phantom

Quasi-static elastography

Figure: Shear modulus image of phantom from quasi-static data (data from E. Brusseau and L. Pretrusca - CREATIS/INSA)

Shear wave imaging by fast-ultrasound

Reconstruct the corresponding shear modulus

Figure: Thyroid nodules image by UF Ultrasound elatography (soft/hard)

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

• MRI Elastography

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography
- OCT Elastography

General idea

Mecanically perturbate a medium and track the response using a high resolution imaging modality. Hopefully get some info from the reaction of the medium.

- MRI Elastography
- US Elastography
- OCT Elastography

Different types of perturbations : static, dynamic, harmonic.

Linear elasticity:

$$\begin{cases} -\nabla \cdot (2\mu \mathcal{E}(\mathbf{u})) - \nabla (\lambda \nabla \cdot \mathbf{u}) = \mathbf{f} \quad \Omega \\ BC \quad \partial \Omega \end{cases}$$

with $\mathbf{u} \in \mathbb{R}^d$ the displacement field, $\mathcal{E}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$ and (λ, μ) are the Lamé coefficients.

Inverse problem

Recover (λ, μ) from the knowledge of **u** in Ω .

Remark

In soft tissues, $\lambda(x) \sim \lambda_0$ and assumed known.

Available inversion algorithms (1)

$$-\nabla \cdot (\mu \mathcal{E}(\mathbf{u})) = \mathbf{f}$$

Solving a first order transport equation in μ

INSTITUTE OF PHYSICS PUBLISHING Inverse Problems 20 (2004) 1-24 INVERSE PROBLEMS PIE: \$0266-5611/04/62168-X

Recovery of the Lamé parameter μ in biological tissues

Lin Ji and Joyce McLaughlin

Department of Mathematics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

IOP Publishing

Inverse Problems 30 (2014) 125004 (22pp)

Inverse Problems doi:10.1083/0265-5611/30/12/125004

Reconstruction of constitutive parameters in isotropic linear elasticity from noisy fullfield measurements

> Guillaume Bal¹, Cédric Bellis², Sébastien Imperiale³ and François Monard⁴

 $\mbox{Transport}$: Assume that μ is smooth and known near $\partial\Omega$ and remark that

$$abla \cdot (\mu
abla^{s} \mathbf{u}) =
abla^{s} \mathbf{u}
abla \mu + \mu
abla \cdot
abla^{s} \mathbf{u}$$

assume that $\nabla^{s}\mathbf{u}$ is a.e. invertible μ is solution of the transport problem,

$$abla \mu + \mu (
abla^s \mathbf{u})^{-1}
abla \cdot
abla^s \mathbf{u} = -(
abla^s \mathbf{u})^{-1} \mathbf{f}$$
 $abla \mu + \mu \mathbf{b} = -\widetilde{\mathbf{f}}$

Transport : Assume that μ is smooth and known near $\partial \Omega$ and remark that

$$abla \cdot (\mu
abla^{s} \mathbf{u}) =
abla^{s} \mathbf{u}
abla \mu + \mu
abla \cdot
abla^{s} \mathbf{u}$$

assume that $\nabla^{s}\mathbf{u}$ is a.e. invertible μ is solution of the transport problem,

$$abla \mu + \mu (
abla^s \mathbf{u})^{-1}
abla \cdot
abla^s \mathbf{u} = -(
abla^s \mathbf{u})^{-1} \mathbf{f}$$
 $abla \mu + \mu \mathbf{b} = -\widetilde{\mathbf{f}}$

(Proof of uniqueness and stability with several measurements and strong smoothness hypothesis and boundary data)

Least squares : Assume knowledge of ${\bf g}$ the surface density of force outside of Ω and define

$$F: \mu \mapsto \mathbf{u}[\mu]: \begin{cases} -\nabla \cdot (\mu \nabla^{s} \mathbf{u}) = \mathbf{f} \ (\partial_{tt} \mathbf{u}), & \text{in } \Omega, \\ \mu \nabla^{s} \mathbf{u} \cdot \nu = \mathbf{g} & \text{on } \partial\Omega, \end{cases}$$

defining $F: L^{\infty}(\Omega, [\mu_0, +\infty)) \to H^1(\Omega, \mathbb{R}^d)$ fréchet differentiable. Then minimize

$$J[\mu] = \|F[\mu] - \mathbf{u}_{mes}\|^2_{H^1(\Omega)} + ext{ reg. term}$$

Least squares : Assume knowledge of ${\bf g}$ the surface density of force outside of Ω and define

$$F: \mu \mapsto \mathbf{u}[\mu]: \begin{cases} -\nabla \cdot (\mu \nabla^{s} \mathbf{u}) = \mathbf{f} \ (\partial_{tt} \mathbf{u}), & \text{in } \Omega, \\ \mu \nabla^{s} \mathbf{u} \cdot \nu = \mathbf{g} & \text{on } \partial\Omega, \end{cases}$$

defining $F: L^{\infty}(\Omega, [\mu_0, +\infty)) \to H^1(\Omega, \mathbb{R}^d)$ fréchet differentiable. Then minimize

$$J[\mu] = \|F[\mu] - \mathbf{u}_{mes}\|_{H^1(\Omega)}^2 + \text{ reg. term}$$

• Very slow (flat problem)

Least squares : Assume knowledge of ${\bf g}$ the surface density of force outside of Ω and define

$$F: \mu \mapsto \mathbf{u}[\mu]: \begin{cases} -\nabla \cdot (\mu \nabla^{s} \mathbf{u}) = \mathbf{f} \ (\partial_{tt} \mathbf{u}), & \text{in } \Omega, \\ \mu \nabla^{s} \mathbf{u} \cdot \nu = \mathbf{g} & \text{on } \partial\Omega, \end{cases}$$

defining $F: L^{\infty}(\Omega, [\mu_0, +\infty)) \to H^1(\Omega, \mathbb{R}^d)$ fréchet differentiable. Then minimize

$$J[\mu] = \|F[\mu] - \mathbf{u}_{mes}\|_{H^1(\Omega)}^2 + \text{ reg. term}$$

- Very slow (flat problem)
- needs knowledge of ${f g}$ and μ on the boundary

Available inversion algorithms (3)

Wave front traking : assuming that μ is piecewise constant,

$$\partial_{tt} \mathbf{u} - \mu \nabla \cdot \nabla^s \mathbf{u} \approx \mathbf{0}, \quad a.e.,$$

the wave speed is $c = \sqrt{\mu}$.

Available inversion algorithms (4)

Algebraic inversion :

Press is Marsen and Bracon \$2,030(1371-193) doi:10.1080/0011-0155522,0003

Elastic modulus imaging: some exact solutions of the compressible elastography inverse problem

Paul E Barbone¹ and Assad A Oberai²

Shear Modulus Imaging with 2-D Transient Elastography

Laurent Sandrin, Mickaël Tanter, Stefan Catheline, and Mathias Fink

Example

IOP PUBLISHING

If μ is constant then $\mu \Delta \mathbf{u} = \rho \partial_{tt} \mathbf{u} \Longrightarrow \mu \approx \rho \frac{|\partial_{tt} \mathbf{u}|}{|\Delta \mathbf{u}|}$

Current chalenges for medical elastography

• Increase the resolution

Current chalenges for medical elastography

- Increase the resolution
- Be more quantitative

- Increase the resolution
- Be more quantitative
- Be more stable

- Increase the resolution
- Be more quantitative
- Be more stable
- Be more practical (quasi-static with acoustic probe ?)

A general equation

The problem takes the general form

Reduced elastography problem

 $-\nabla\cdot(\mu S) = \mathbf{f}$

in the cases

• λ is known: $S := 2\mathcal{E}(\mathbf{u})$

A general equation

The problem takes the general form

Reduced elastography problem

 $-\nabla\cdot(\mu S) = \mathbf{f}$

in the cases

- λ is known: $S := 2\mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S := \alpha \mathcal{E}(\mathbf{u}) + \beta (\nabla \cdot \mathbf{u}) I$

A general equation

The problem takes the general form

Reduced elastography problem

 $-\nabla \cdot (\mu S) = \mathbf{f}$

in the cases

- λ is known: $S := 2\mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S := \alpha \mathcal{E}(\mathbf{u}) + \beta (\nabla \cdot \mathbf{u}) I$
- in plane stress approximation (sliced 2D model)
A general equation

The problem takes the general form

Reduced elastography problem

 $-\nabla \cdot (\mu S) = \mathbf{f}$

in the cases

- λ is known: $S := 2\mathcal{E}(\mathbf{u})$
- ν (Poisson ratio) is known $S := \alpha \mathcal{E}(\mathbf{u}) + \beta (\nabla \cdot \mathbf{u}) I$
- in plane stress approximation (sliced 2D model)

But also for conductivity equation with two internal data:

$$-\nabla\cdot\left(\sigma[\nabla u_1\ \nabla u_2]\right)=\mathbf{f}$$

And other problems. . .

Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

Define the operator

$$egin{aligned} T: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu S:
abla\mathbf{v},\quad orall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t. $a(\mu, \mathbf{v}) = \langle \mathbf{f}, \mathbf{v} \rangle_{H^{-1}, H_0^1} \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^{d \times d})$

Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t. $a(\mu, \mathbf{v}) = \langle \mathbf{f}, \mathbf{v} \rangle_{H^{-1}, H_0^1} \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^{d \times d})$

• No boundary data used

Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t.

$$a(\mu, \mathbf{v}) = \langle \mathbf{f}, \mathbf{v}
angle_{H^{-1}, H^1_0} \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^{\infty}(\Omega, \mathbb{R}^{d imes d})$

Define the operator

$$egin{aligned} \mathcal{T}: L^\infty(\Omega) \subset L^2(\Omega) & o H^{-1}(\Omega, \mathbb{R}^d) \ \mu &\mapsto -
abla \cdot (\mu \mathcal{S}) \end{aligned}$$

or by the equivalent variational formulation

$$\mathsf{a}(\mu,\mathbf{v}):=\langle T\mu,\mathbf{v}
angle_{H^{-1},H^1_0}:=\int_\Omega\mu\mathcal{S}:
abla\mathbf{v},\quadorall\mathbf{v}\in H^1_0(\Omega,\mathbb{R}^{d imes d})$$

the problem takes the form

Find $\mu \in L^2(\Omega)$ s.t.

$$\mathsf{a}(\mu, \mathbf{v}) = \langle \mathbf{f}, \mathbf{v}
angle_{H^{-1}, H^1_0} \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

- No boundary data used
- Only smoothness hypothesis: $S \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$
- "Easy" to discretize through the Galerkin method

Reverse Weak Formulation: discretization

Find $\mu \in L^2(\Omega)$ s.t. $\langle T\mu, \mathbf{v} \rangle_{H^{-1}, H^1_0} = \langle \mathbf{f}, \mathbf{v} \rangle_{H^{-1}, H^1_0} \quad \forall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^d)$

becomes

Reverse Weak Formulation: discretization

Find $\mu \in L^2(\Omega)$ s.t. $\langle T\mu, \mathbf{v} \rangle_{H^{-1}, H_0^1} = \langle \mathbf{f}, \mathbf{v} \rangle_{H^{-1}, H_0^1} \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^d)$ becomes Find $\mu_h \in M_h$ s.t.

$$\langle T_h \mu_h, \mathbf{v}_h \rangle_{H^{-1}, H^1_0} = \langle \mathbf{f}_h, \mathbf{v}_h \rangle_{H^{-1}, H^1_0} \quad \forall \mathbf{v} \in V_h$$

where

Reverse Weak Formulation: discretization

Find $\mu \in L^2(\Omega)$ s.t. $\langle T\mu, \mathbf{v} \rangle_{H^{-1}, H_0^1} = \langle \mathbf{f}, \mathbf{v} \rangle_{H^{-1}, H_0^1} \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^d)$ becomes Find $\mu_h \in M_h$ s.t.

$$\langle \mathcal{T}_{h}\mu_{h}, \mathbf{v}_{h}
angle_{H^{-1}, H_{0}^{1}} = \langle \mathbf{f}_{h}, \mathbf{v}_{h}
angle_{H^{-1}, H_{0}^{1}} \quad \forall \mathbf{v} \in V_{h}$$

where

- (M_h, V_h) approaches $(L^2(\Omega), H^1_0(\Omega, \mathbb{R}^d))$
- T_h approaches T
- **f**_h approaches **f**

Let M be a Hilbert and $M_h \subset M$ a sub-Hilbert space and $\pi_h : M \to M_h$ the orthogonal projection.

Definition

The sequence $(M_h)_{h>0}$ approaches M if for any $\mu \in M$,

$$\lim_{h\to 0} \|\pi_h\mu-\mu\|_M=0.$$

For any non zero $\mu \in M$, we define its relative error of interpolation onto M_h by

$$\varepsilon_h^{\text{int}}(\mu) := \frac{\|\pi_h \mu - \mu\|_M}{\|\mu\|_M}$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle \mathcal{T}\mu, \mathbf{v}
angle_{H^{-1}, \mathcal{H}_0^1} := \int_\Omega \mu S :
abla \mathbf{v}, \quad orall \mathbf{v} \in \mathcal{H}_0^1(\Omega, \mathbb{R}^{d imes d})$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle T\mu, \mathbf{v}
angle_{H^{-1}, H_0^1} := \int_{\Omega} \mu S : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in H_0^1(\Omega, \mathbb{R}^{d imes d})$$

is approached by $T_h: M_h \to V'_h$

$$\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h} := \int_{\Omega} \mu S_h : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_h.$$

Hence

The operator $T: L^2 \to H^{-1}$ given by

$$\langle {\mathcal T} \mu, {f v}
angle_{H^{-1}, H^1_0} := \int_\Omega \mu {\mathcal S} :
abla {f v}, \quad orall {f v} \in H^1_0(\Omega, {\mathbb R}^{d imes d})$$

is approached by $T_h: M_h \to V'_h$

$$\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h} := \int_{\Omega} \mu S_h : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_h.$$

Hence

$$\langle (T_h - T)\mu, \mathbf{v} \rangle_{V'_h, V_h} = \int_{\Omega} \mu(S_h - S) : \nabla \mathbf{v}$$

$$\leq \|\mu\|_{L^{\infty}} \|S_h - S\|_{L^2(\Omega)} \|\mathbf{v}\|_{H^1_0}$$

The operator $T: L^2 \to H^{-1}$ given by

$$\langle \mathcal{T}\mu, \mathbf{v}
angle_{H^{-1}, H^1_0} := \int_{\Omega} \mu \mathcal{S} :
abla \mathbf{v}, \quad orall \mathbf{v} \in H^1_0(\Omega, \mathbb{R}^{d imes d})$$

is approached by $T_h: M_h \to V'_h$

$$\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h} := \int_{\Omega} \mu S_h : \nabla \mathbf{v}, \quad \forall \mathbf{v} \in V_h.$$

Hence

$$\langle (T_h - T)\mu, \mathbf{v} \rangle_{V'_h, V_h} = \int_{\Omega} \mu(S_h - S) : \nabla \mathbf{v}$$

$$\leq \|\mu\|_{L^{\infty}} \|S_h - S\|_{L^2(\Omega)} \|\mathbf{v}\|_{H^1_0}$$

The error $T_h - T$ is small for the $\mathcal{L}(L^{\infty}, V'_h)$ topology weaker than the $\mathcal{L}(L^2, V'_h)$ topology!

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

• This error contains both the data noise and the interpolation error over (M_h, V_h) .

Definition

The interpolation error $\varepsilon_h^{\text{op}}$ between T and T_h is defined by

$$\varepsilon_h^{\mathsf{op}} := \|T_h - T\|_{L^{\infty}, V_h'} := \sup_{\mu \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle (T_h - T)\mu, \mathbf{v} \rangle_{V_h', V_h}}{\|\mu\|_{L^{\infty}} \|\mathbf{v}\|_{H_0^1}}$$

- This error contains both the data noise and the interpolation error over (M_h, V_h) .
- This particular norm does not allow us to use directly the sensitivity analysis and discretization analysis for the Moore-Penrose generalized inverse of *T* when *T* is a closed range operator

Approximation of the right-hand side

Definition

The relative error of interpolation $\varepsilon_h^{\mathsf{rhs}}$ between $\mathbf{f} \neq \mathbf{0}$ and \mathbf{f}_h is defined by

$$\varepsilon_h^{\mathsf{rhs}} := \frac{1}{\|\mathbf{f}\|_{V'}} \sup_{\mathbf{v} \in V_h} \frac{\langle \mathbf{f}_h - \mathbf{f}, \mathbf{v} \rangle_{V'_h, V_h}}{\|\mathbf{v}\|_{V}} := \frac{\|\mathbf{f}_h - \mathbf{f}\|_{V'_h}}{\|\mathbf{f}\|_{V'}}$$

• Is $T\mu = \mathbf{f}$ invertible with stability ?

- Is $T\mu = \mathbf{f}$ invertible with stability ?
- Is $T_h\mu_h = \mathbf{f}_h$ invertible with stability ? (Condition on M_h , V_h and T_h)

- Is $T\mu = \mathbf{f}$ invertible with stability ?
- Is T_hµ_h = f_h invertible with stability ? (Condition on M_h, V_h and T_h)
- Is the solution μ_h close to μ in $L^2(\Omega)$?

When S(x) = I, then $T\mu := -\nabla \cdot (\mu S) = -\nabla \mu$. i.e. $T = -\nabla$

When
$$S(x) = I$$
, then $T\mu := -\nabla \cdot (\mu S) = -\nabla \mu$. i.e. $T = -\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^2 \to H^{-1}$ has closed range. i.e. there exists C > 0 s.t.

$$\|q\|_{L^{2}(\Omega)} \leq C \|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L^{2}_{0}(\Omega),$$

$$(1)$$

equivalently

When
$$S(x) = I$$
, then $T\mu := -\nabla \cdot (\mu S) = -\nabla \mu$. i.e. $T = -\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^2 \to H^{-1}$ has closed range. i.e. there exists C > 0 s.t.

$$\|q\|_{L^2(\Omega)} \le C \|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L^2_0(\Omega), \tag{1}$$

equivalently

$$\beta := \inf_{q \in L^2_0(\Omega)} \sup_{\mathbf{v} \in H^1_0(\Omega, \mathbb{R}^d)} \frac{\int_{\Omega} (\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H^1_0(\Omega)} \|q\|_{L^2(\Omega)}} > 0$$
(2)

Operator ∇ satisfies the inf-sup condition.

When
$$S(x) = I$$
, then $T\mu := -\nabla \cdot (\mu S) = -\nabla \mu$. i.e. $T = -\nabla$

Proposition

If Ω is Lipschitz, then $\nabla: L^2 \to H^{-1}$ has closed range. i.e. there exists C > 0 s.t.

$$\|q\|_{L^2(\Omega)} \le C \|\nabla q\|_{H^{-1}(\Omega)} \quad \forall q \in L^2_0(\Omega), \tag{1}$$

equivalently

$$\beta := \inf_{q \in L^2_0(\Omega)} \sup_{\mathbf{v} \in H^1_0(\Omega, \mathbb{R}^d)} \frac{\int_{\Omega} (\nabla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H^1_0(\Omega)} \|q\|_{L^2(\Omega)}} > 0$$
(2)

Operator ∇ satisfies the inf-sup condition. It is invertible with stability in $L^2(\Omega) \cap N(\nabla)^{\perp}$.

Problem: the constant β may not behave well in finite element spaces!

Take $M_h \subset L^2_0(\Omega)$ and $V_h \subset H^1_0(\Omega, \mathbb{R}^d)$ the discrete *inf-sup* constant

$$eta_h := \inf_{q \in M_h} \sup_{\mathbf{v} \in V_h} rac{\int_\Omega (
abla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_0^1(\Omega)} \|q\|_{L^2(\Omega)}}$$

may not satisfy the discrete *inf-sup* condition (of LBB condition for Ladyzhenskaya-Babuska-Brezzi):

$$\forall h > 0, \ \beta_h \ge \beta^* > 0$$

Problem: the constant β may not behave well in finite element spaces!

Take $M_h \subset L^2_0(\Omega)$ and $V_h \subset H^1_0(\Omega, \mathbb{R}^d)$ the discrete *inf-sup* constant

$$eta_h := \inf_{q \in M_h} \sup_{\mathbf{v} \in V_h} rac{\int_\Omega (
abla \cdot \mathbf{v}) q}{\|\mathbf{v}\|_{H_0^1(\Omega)} \|q\|_{L^2(\Omega)}}$$

may not satisfy the discrete *inf-sup* condition (of LBB condition for Ladyzhenskaya-Babuska-Brezzi):

$$\forall h > 0, \ \beta_h \ge \beta^* > 0$$

Pairs of finite element spaces that satisfy the discrete *inf-sup* condition are known as *inf-sup* stable elements and play an important role in the stability of the Galerkin approximation for the Stokes problem.

If $S \in W^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- if dimN(T) = 1, T has closed range.

If $S \in \mathcal{W}^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- if dimN(T) = 1, T has closed range.
- At worst T is a "gradient type" operator

If $S \in W^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- if dimN(T) = 1, T has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1,p}$

If $S \in \mathcal{W}^{1,p}$ p > d and $|\det S(x)| \ge c > 0$ a.e, we have

- $dimN(T) \leq 1$
- if dimN(T) = 1, T has closed range.
- At worst T is a "gradient type" operator
- works for S "piecewise" $W^{1,p}$
- minimal assumption on S to have closed range property is an open question (as far as we know)

Generalized inf-sup constant

M, V two Hilbert spaces and $T \in \mathcal{L}(M, V')$,

Definition (classic constants)

$$\alpha(T) := \inf_{\mu \in M} \sup_{\mathbf{v} \in V} \frac{\langle T\mu, \mathbf{v} \rangle_{V', V}}{\|\mu\|_M \|\mathbf{v}\|_V} \text{ and } \rho(T) := \sup_{\mu \in M} \sup_{\mathbf{v} \in V} \frac{\langle T\mu, \mathbf{v} \rangle_{V', V}}{\|\mu\|_M \|\mathbf{v}\|_V}$$

Generalized inf-sup constant

M, V two Hilbert spaces and $T \in \mathcal{L}(M, V')$,

Definition (classic constants)

$$\alpha(T) := \inf_{\mu \in \mathcal{M}} \sup_{\mathbf{v} \in V} \frac{\langle T\mu, \mathbf{v} \rangle_{V', V}}{\|\mu\|_{\mathcal{M}} \|\mathbf{v}\|_{V}} \quad \text{and} \quad \rho(T) := \sup_{\mu \in \mathcal{M}} \sup_{\mathbf{v} \in V} \frac{\langle T\mu, \mathbf{v} \rangle_{V', V}}{\|\mu\|_{\mathcal{M}} \|\mathbf{v}\|_{V}}$$

Definition (Generalized inf-sup constant)

The generalized *inf-sup* constant $red\beta(T)$ is built as follows:

$$\beta_e(T) := \inf_{\substack{\mu \in M \\ \mu \perp e}} \sup_{\mathbf{v} \in V} \frac{\langle T\mu, \mathbf{v} \rangle_{V', V}}{\|\mu\|_M \|\mathbf{v}\|_V} \quad \beta(T) := \sup_{\substack{e \in M \\ \|e\|_M = 1}} \beta_e(T).$$
Correspondance

Proposition

If $N(T) \neq \{0\}$, consider any $z \in N(T)$ such that $||z||_M = 1$. Then we have $\beta(T) = \beta_z(T)$.

Proposition

If $N(T) \neq \{0\}$, consider any $z \in N(T)$ such that $||z||_M = 1$. Then we have $\beta(T) = \beta_z(T)$.

For example, if $T = \nabla$, the classic definition of $\beta(\nabla)$ given in the literature matches the definition the generalized inf-sup constant.

Proposition

If $N(T) \neq \{0\}$, consider any $z \in N(T)$ such that $||z||_M = 1$. Then we have $\beta(T) = \beta_z(T)$.

For example, if $T = \nabla$, the classic definition of $\beta(\nabla)$ given in the literature matches the definition the generalized inf-sup constant.

Proposition

If there exists $z \in M$ such that $||z||_M = 1$ and $||Tz||_{V'} = \alpha(T)$, Then we have $\beta(T) = \beta_z(T)$.

True for any finite rank (and finite dimensional) operator

Definition (Discrete inf-sup constant)

$$\beta(T_h) := \inf_{\substack{\mu \in \mathcal{M}_h \\ \mu \perp z_h}} \sup_{\mathbf{v} \in \mathcal{V}_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|\mu\|_M \|\mathbf{v}\|_V}$$

where

$$z_h = \operatorname*{arg\,min}_{z \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|z\|_M \|\mathbf{v}\|_V}.$$

Definition (Discrete inf-sup constant)

$$\beta(T_h) := \inf_{\substack{\mu \in M_h \\ \mu \perp z_h}} \sup_{\mathbf{v} \in V_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|\mu\|_M \|\mathbf{v}\|_V}$$

where

$$z_h = \operatorname*{arg\,min}_{z \in M_h} \sup_{\mathbf{v} \in V_h} \frac{\langle T_h \mu, \mathbf{v} \rangle_{V'_h, V_h}}{\|z\|_M \|\mathbf{v}\|_V}.$$

What is the behavior of $\beta(T_h)$ with respect to $\beta(T)$?

Upper semi-continuity of the inf-sup constant

Theorem

If
$$\varepsilon_h^{op} \to 0$$
 when $h \to 0$, then

$$\limsup_{h\to 0} \alpha(T_h) \leq \alpha(T).$$

Moreover, if the problem $Tz = \mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $(T_h)_{h>0}$ satisfies the discrete inf-sup condition, then

$$0 < \limsup_{h \to 0} \beta(T_h) \le \beta(T).$$

Upper semi-continuity of the inf-sup constant

Theorem

If
$$\varepsilon_h^{op} \to 0$$
 when $h \to 0$, then

$$\limsup_{h\to 0} \alpha(T_h) \leq \alpha(T).$$

Moreover, if the problem $Tz = \mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $(T_h)_{h>0}$ satisfies the discrete inf-sup condition, then

$$0 < \limsup_{h \to 0} \beta(T_h) \le \beta(T).$$

• $\beta(T_h)$ is not asymptotically better than $\beta(T)$.

Upper semi-continuity of the inf-sup constant

Theorem

If
$$\varepsilon_h^{op} \to 0$$
 when $h \to 0$, then

$$\limsup_{h\to 0} \alpha(T_h) \leq \alpha(T).$$

Moreover, if the problem $Tz = \mathbf{0}$ admits a non zero solution $z \in L^{\infty}(\Omega)$ and if the sequence $(T_h)_{h>0}$ satisfies the discrete inf-sup condition, then

$$0 < \limsup_{h \to 0} \beta(T_h) \le \beta(T).$$

- $\beta(T_h)$ is not asymptotically better than $\beta(T)$.
- It might be a possible way to show that T as closed range.

Discrete stability estimate (case $\mathbf{f} = \mathbf{0}$)

Theorem (1)

- Let $z \in L^{\infty}(\Omega)$ be a solution of $T z = \mathbf{0}$ with $||z||_{M} = 1$.. Fix $r \geq ||z||_{\infty}$ and consider $z_{h} \in M_{h}$ a solution of
 - $\|T_h z_h\|_{V'_h} = \alpha(T_h)$ with $\|z_h\|_M = 1$ and $\langle z_h, z \rangle_M \ge 0$. (3)

If $\beta(T_h) > 0$ we have

$$\|z_h - \pi_h z\|_{L^2(\Omega)} \leq \frac{4}{\beta(T_h)} \left(\sqrt{2} \, r \, \varepsilon_h^{op} + 2\rho(T) \varepsilon_h^{int}(z)\right).$$

Moreover, if $\beta(T_h) \ge \beta^* > 0$ and if $\varepsilon_h^{op} \to 0$, then $z_h \to z$.

Theorem (2)

Consider $\mu \in L^{\infty}(\Omega)$ a solution of $T\mu = \mathbf{f}$. Fix r > 0 such that $\|\mu\|_{L^{\infty}} \leq r \|\mu\|_{L^2}$. Consider $z_h \in M_h$ a solution of

$$\|T_h z_h\|_{V'_h} = \alpha(T_h) \quad \text{with} \quad \|z_h\|_M = 1.$$

Consider now $\mu_h \in M_h$ a solution of $\mu_h = \underset{\substack{m \in M_h \\ m \perp z_h}}{\arg \min} \|T_h m - f_h\|_{V'_h}$. If $\beta(T_h) > 0$, there exits $t \in \mathbb{R}$ such that $\mu_{h,t} := tz_h + \mu_h$ satisfies $\frac{\|\mu_{h,t} - \pi_h \mu\|_{L^2}}{\|\pi_h \mu\|_{L^2}} \le \frac{4}{\beta(T_h)} \left[r \varepsilon_h^{op} + \rho(T) \left(\varepsilon_h^{rhs} + \varepsilon_h^{int}(\mu) \right) + \frac{\alpha(T_h)}{2} \right]$

honeycomb finite element

Figure: Honeycomb space discretization. In plain black, the hexagonal subdivision and in dashed blue, the triangular subdivision.

$$M_h := \mathbb{P}^0\left(\Omega_h^{\mathsf{hex}}
ight) = \left\{ \mu \in L^2(\Omega_h) \mid orall j \mid \mu|_{\Omega_{h,j}^{\mathsf{hex}}} \text{ is constant}
ight\}.$$

$$V_h := \mathbb{P}_0^1\left(\Omega_h^{\operatorname{tri}}, \mathbb{R}^2\right) = \left\{ \mathbf{v} \in H_0^1(\Omega_h, \mathbb{R}^d) \mid \forall k \, \, \mathbf{v}|_{\Omega_{h,k}^{\operatorname{tri}}} \, \text{ is linear} \right\}.$$

Why does it work ?

Why does it work ?

Case T = ∇: We show that this pair satisfies the LBB condition.

Why does it work ?

- Case T = ∇: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

Why does it work ?

- Case T = ∇: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

One value is given \Rightarrow all the other are fixed.

Why does it work ?

- Case T = ∇: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

One value is given \Rightarrow all the other are fixed. \Rightarrow null-space is at most of dimension 1

Why does it work ?

- Case T = ∇: We show that this pair satisfies the LBB condition.
- General case: We show that for each internal node, we have a system of 2 independent equations for 3 values of the parameters.

One value is given \Rightarrow all the other are fixed. \Rightarrow null-space is at most of dimension $1 \Rightarrow \beta(T_h) > 0$

In $\Omega = (0,1)^2$ we approach $-\nabla \mu = \mathbf{f}$. Here $T_h := -\nabla|_{M_h}$ and then $\varepsilon_h^{\text{op}} = 0$. Moreover $\rho(\nabla) \leq 1$. In the absence of noise, the result of Theorem 2 reads,

$$\frac{\|\mu_h - \pi_h \mu\|_{L^2}}{\|\pi_h \mu\|_{L^2}} \le \frac{4}{\beta(T_h)} \left(\frac{\|\mathbf{f} - \mathbf{f}_h\|_{V'_h}}{\|\mathbf{f}\|_{H^{-1}}} + \frac{\|\mu - \pi_h \mu\|_{L^2}}{\|\mu\|_{L^2}} \right).$$

Note that we know $eta(
abla)=\sqrt{1/2-1/\pi}$ as a conjecture.

Inverse gradient problem: behavior of $\beta(T_h)$

Inverse gradient problem: result

Figure: Numerical stability of the reconstruction of maps μ_1 and μ_2 using method given by Theorem 2 with resolution h = 0.01. From left to right: column 1: exact map to recover, 2. reconstruction with no noise, column 3: reconstruction with noise level $\sigma = 1$, column 4: reconstruction with noise level $\sigma = 2$.

Quasistatic elastography

FIG. 5. First line, from left to right: The exact map μ_{exact} , the two components of the data field $\mathbf{u} = (u_1, u_2)$ computed via (5.6), the only data used to inverse the problem.

FIG. 6. Behavior of the contants $\alpha(T_h)$, $\beta(T_h)$ and the ratio $\alpha(T_h)/\beta(T_h)$ for the inverse static elastography problem in the unit square $\Omega := (0, 1)^2$, for various choices of pair of discretization spaces.

 $\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

• $\alpha(T_h)$ is the smallest singular value of \mathcal{M}

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

- $\alpha(T_h)$ is the smallest singular value of \mathcal{M}
- $\beta(T_h)$ is the second smallest singular value of \mathcal{M}

$$\mathcal{M} := \mathcal{B}_V^{-1} \mathcal{T} \mathcal{B}_M^{-1}$$

where \mathcal{B}_M and \mathcal{B}_V are the basis matrix of M_h and V_h . Then

- $\alpha(T_h)$ is the smallest singular value of \mathcal{M}
- $\beta(T_h)$ is the second smallest singular value of \mathcal{M}
- μ is the first singular vector of \mathcal{M} .

Reconstruction for the honeycomb

Figure: Reconstruction of the shear modulus map μ using the honeycomb pair.

Reconstruction for various pairs of spaces

Figure: Reconstruction of the shear modulus map μ using various pairs of finite element spaces in the subdomain of interest $(0.1, 0.9)^2$.

Quasi-static elastography

Figure: Shear modulus image of phantom from quasi-static data (data from E. Brusseau and L. Pretrusca - CREATIS/INSA)

In vivo quasistatic elastography

Figure: Reconstruction of the shear modulus of *in-vivo* malignant breast tumor from quasi-static elastography (data from E. Brusseau - INSA/CREATIS) h = 0.7 mm.

Thank you for your attention