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General model

r

Lsource s(r)

receivers rk

Ω

receivers rk

D
c(r)

source s(r)

Time{
−∆U(r, t) + c−2(r)∂ttU(r, t) = s(r)f (t), r ∈ Rd , t ∈ [0,+∞)

outgoing condition in Rd

Frequency∆u(r, ω) +
ω2

c2(r)
u(r, ω) = −s(r), r ∈ Rd , t ∈ [0,+∞)

outgoing condition in Rd
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Interferomtric data (time)

r

Lsource s(r)

receivers rk

Ω

receivers rk

D
c(r)

source s(r)

Linear Data

dk(ω) := u(rk , ω), rk receivers positions, ω ∈ [0,+∞).

Linear inversion problem:

Find the source s(r) from the knowledge of all dk(ω).
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Interferometric data

Time Interferometric Data (cross-correlations)

Dk`(τ) :=

∫
R
U(rk , t)U(r`, t − τ)dt, t ∈ [0,+∞)

We call dk(ω) := u(rk , ω) then

Frequency Interferometric Data

Dk`(ω) := dk(ω)d`(ω), ω ∈ [0,+∞)

and more generally

Dk`(ω, ω
′) := dk(ω)d`(ω

′), ω, ω′ ∈ [0,+∞).

How these data can be used to increase stability?
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Interferomtric source inversion problem

r

L

Γ

source s(r)

receivers

Ω

Γ receivers

D
c(r)

source s(r)

Interferometric inversion problem:

Find the source s(r)
from the knowledge of some Dk`(ω, ω

′) := dk(ω)d`(ω
′).
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• Advantage of interferometric data

• Coherent Interferometric imaging (back propagation)

• Non convex interferometric inversion

• Regularization is needed

• Algorithm for non convex descent

• Numerical exemples
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Phase shift uncertainty

Under far field approximation, and with constant wave speed c0

dex
k (ω) := uex(rk , ω) = G ex

ω (rk)ŝ

(
ω

c0

rk
|rk |

)

where

G ex
ω (rk) :=

e
iω
c0
|rk |

4π|rk |
.

Smooth uncertainties over wavespeed leads at first order to an
error on the travel time:

τk :=
1

c0
|rk |+ϕk .

Available linear data: dk(ω) = dex
k (ω)e iωϕk .

In general,
• ϕk is not small (to compare to 2π/ω) ⇒ linear inversion fails!
• ϕk is smooth (ϕk ≈ ϕk+1).

6/24



Phase shift uncertainty

Under far field approximation, and with constant wave speed c0

dex
k (ω) := uex(rk , ω) = G ex

ω (rk)ŝ
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Phase uncertainties

Figure: Phase uncertainty on the receivers/frequencies domain.
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Why interferometric data are interesting?

Available linear data

dk(ω) = dex
k (ω)e iωϕk .

Available interferometric data

dk(ω)d`(ω
′) = dex

k (ω)dex
` (ω′)e i(ωϕk−ω′ϕ`).

One can choose receivers k , ` and frequencies ω and ω′ such that

|ωϕk − ω′ϕ`| ≤ ε

for ε small. Then

dk(ω)d`(ω
′) ≈ dex

k (ω)dex
` (ω′).

8/24



Why interferometric data are interesting?

Available linear data

dk(ω) = dex
k (ω)e iωϕk .

Available interferometric data

dk(ω)d`(ω
′) = dex

k (ω)dex
` (ω′)e i(ωϕk−ω′ϕ`).

One can choose receivers k , ` and frequencies ω and ω′ such that

|ωϕk − ω′ϕ`| ≤ ε

for ε small. Then

dk(ω)d`(ω
′) ≈ dex

k (ω)dex
` (ω′).

8/24



Why interferometric data are interesting?

Available linear data

dk(ω) = dex
k (ω)e iωϕk .

Available interferometric data

dk(ω)d`(ω
′) = dex

k (ω)dex
` (ω′)e i(ωϕk−ω′ϕ`).

One can choose receivers k , ` and frequencies ω and ω′ such that

|ωϕk − ω′ϕ`| ≤ ε

for ε small. Then

dk(ω)d`(ω
′) ≈ dex

k (ω)dex
` (ω′).

8/24



Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

ICINT∆ω ,∆x
(r) :=∫

|ω−ω′|<∆ω

∑
|rk−r`|<∆x

Gω(r − rk)dk(ω)Gω′(r − r`)d`(ω
′)dωdω′.

Imaging formed by back propagation applied on interferometric
data for close-by frequencies and receivers.

• It forms a smoothed version of the exact source.

• Resistant to random medium noise (wavespeed uncertainties)

• Difficult setting of ∆ω,∆x . To small ⇒ to smooth, To large
⇒ defocusing.
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Classic linear inversion

After discretization of the source x ∈ Cn, and the frequencies,

Discrete linear problem

Find x ∈ Cn s.t. Ax = b b ∈ Cp.

where the forward operator matrix A ∈ Cpn is such that

(Ax)k := G ex
ωk

(rk)Fx
(
ωk

c0

rk
|rk |

)
, ∀x ∈ Cn.

and

bex
k := G ex

ωk
(rk)Fxex

(
ωk

c0

rk
|rk |

)
bk := bex

k e iϕk

• A Fourier-type matrix (well-conditioned), one can take n = p.
• b − bex is not small.

⇒ solution xLS = A−1b is a bad solution (xLS − xex is large).
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Numerics LS
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Interferometric inversion problem

For all x ∈ Cn, call x∗ := xT .

Ax = b ⇒ Ax(Ax)∗ = bb∗.

bb∗ is the inferometric data matrix. We only want to consider
products bkb` with |k − `| small.

Selector matrix

E ∈ Sn({0, 1}) we denote E (bb∗) := Ek`bkb`,

Interferometric inversion problem

Find x ∈ Cn s.t. E (Ax(Ax)∗) = E (bb∗).

• Case E = I is eq. to |Ax | = |b|. (amplitude inversion pb.)
• Case E = 1 is eq. to Ax = b. (up to a multiplication by e iθ).
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Interferometric inversion problem

Least squares cost functional

xLS := arg min JLS(x), JLS(x) := ‖Ax − b‖2
2 .

Interferometric cost functional

x int ∈ arg min J int
E (x), J int

E (x) := |Ax(Ax)∗ − bb∗|2E .

where |M|2E :=
∑

k` Ek`|Mk`|2.

• Are these two problems equivalent ?
• What’s the influence of the selector matrix E on the solutions?
• Is the second problem numerically solvable?

• If x int is a solution, then e iαx int is solution.
• xLS is a global minimizer of J int

E .
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Graph laplacian an phase recovery 1

Graph laplacian matrix

Take E ∈ Sn({0, 1}), the graph laplatian matrix of E is the matrix

(∆E )ii :=
∑
j 6=i

Eij and (∆E )ij := −Eij for i 6= j .

∆E is symetric positive semi-definite and λ1(∆E ) = 0 and λ2(∆E )
measures the connection of the graph E .

Theorem (Phase recovery from cross-products)

Consider x ∈ Cn such that |xk | = 1 for all k . For any x ′ ∈ Cn

satisfying |x ′k | = 1, there exists α ∈ [0, 2π) such that

∥∥x − e iαx ′
∥∥

2
≤ π

√
2

4
√
λ2(∆E )

∣∣xx∗ − x ′x ′∗
∣∣
E
.
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Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)

Consider x ∈ Cn such that |xk | = 1 for all k . For any x ′ ∈ Cn

satisfying |x ′k | = 1, there exists α ∈ [0, 2π) such that

∥∥x − e iαx ′
∥∥

2
≤ π

√
2

4
√
λ2(∆E )

∣∣xx∗ − x ′x ′∗
∣∣
E
.

Idea for the proof:

• If E is a connected graph, then Ek`xkx` contains enough phase
differences to recover all phases up to a constant phase shift.

• The more E is a connected, the more this phase recovery is
stable.
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Data-graph laplacian and vector recovery 1

If the general case x ∈ Cn, a similar result is possible.
Problem: if xi = 0 for some i , that can kill the connectivity
between the phases.

Data-graph laplacian

Take E ∈ Sn({0, 1}) and x ∈ Cn\{0}, the data-graph laplacian
matrix of E is the matrix

∆E ,|x | := diag(d)− S where Sij := Eij
|xi |2|xj |2

|xx∗|2E
.

and di :=
∑

j Sij . This matrix is also symmetric positive
semi-definite.

∆E ,|x |: is a weighted-graph laplacian.
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Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)

Consider x ∈ Cn and assume that for some η > 0, we have

min
k

(|xk |) ≥ η ‖x‖2 .

For any x ′ ∈ Cn satisfying, there exists α ∈ [0, 2π) such that∥∥x − e iαx ′
∥∥

2

‖x‖2

≤

 π√
λ2(∆E ,|x |)

+

√
2

η

 |xx∗ − x ′x ′∗|E
|xx∗|E

.

Consequence on the linear system Ax = b:

∥∥e iαAx − b
∥∥2

2
≤ 2

(
π2

λ2(∆E ,|b|)
+

2

η2

)
|(Ax)(Ax)∗ − bb∗|2E .
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Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)

Consider x ∈ Cn and assume that for some η > 0, we have

min
k

(|xk |) ≥ η ‖x‖2 .
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Consequence on objective functions

Corollary

If b satisfies mink(|bk |) ≥ η ‖b‖2, then for all x ∈ Cn, ∃α ∈ [0, 2π)

JLS(e iαx) ≤ 2

‖x‖2
2

(
π2

λ2(∆E ,|b|)
+

2

η2

)
J intE (x).

Consequence: Under this hypothesis, the interferometric inversion
is equivalent to the least squares inversion! Remember: that xLS

minimizes J int
E .
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What can be done?

We have the following situation :

Vectors xex and xLS are very different and

JLS(xLS) = 0 J int
E (xLS) = 0

JLS(xex) large J int
E (xex) < ε.

⇒ minimizing J int
E is ill-posed.

⇒ a discrimination between xLS

and xex is needed. We numerically remark that, is xLS is sparse

then

‖xex‖1 <<
∥∥∥xLS∥∥∥

1
.

`1-penalized interferometric inversion

x int ∈ arg min |Ax(Ax)∗ − bb∗|2E + λ ‖x‖1 .
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Algorithm

`1-penalized interferometric inversion

x int ∈ arg min |Ax(Ax)∗ − bb∗|2E + λ ‖x‖1 .

We use optimal step descent: ∇J int
E (x) = A∗E (Axx∗A∗ − bb∗)Ax

• Initialize x ∈ Cn\{0}.
• Compute g = ∇J int

E (x) + λ( xi
|xi |)

n
i=1

• Compute The order 4, polynomial P(t) = J int
E (x + tg).

• Solve
t∗ = arg min

t
P(t) + λ ‖x + tg‖1

.
• Iterate x = x + t∗g
• Threshold xi = 0 if |xi | < ε.
• Loop.
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Numerics 1

Figure: Line 1: no noise, Line 2: max noise amplitude = 2.
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Numerics 2

We choose E tri diagonal.

Figure: Line 1: max noise amplitude = 4, Line 2: max noise amplitude
= 8. 22/24



Numerics 3

Figure: Line 1: max noise amplitude = 16, Line 2: max noise amplitude
= 32.
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Numerics 4

Figure: Line 1: max noise amplitude = 64, Line 2: max noise amplitude
= 128.

Thank you for your attention!
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