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Interferomtric data (time)
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dk(w) := u(rk,w), rg receivers positions, w € [0, +00).

Linear inversion problem:

Find the source s(r) from the knowledge of all dj(w).
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Interferometric data
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We call di(w) := u(rg,w) then

3/24



Interferometric data

Time Interferometric Data (cross-correlations)

Deo(7) = /R U(re, )U(re, £ — 7)dt, ¢ € [0, +00)

We call di(w) := u(rg,w) then
Frequency Interferometric Data

Die(w) 1= di(w)dp(w), w € [0, 400)
and more generally

Dio(w,w') = di(w)dp(«), w,w’ € [0,+00).

3/24



Interferometric data

Time Interferometric Data (cross-correlations)

Deo(7) = /R U(re, )U(re, £ — 7)dt, ¢ € [0, +00)

We call di(w) := u(rg,w) then
Frequency Interferometric Data
Die(w) 1= di(w)dp(w), w € [0, 400)

and more generally

Dio(w,w') = di(w)dp(«), w,w’ € [0,+00).

How these data can be used to increase stability?
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Interferomtric source inversion problem
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Interferometric inversion problem:

Find the source s(r) B
from the knowledge of some Dyy(w,w’) := dy(w)dp(w’).
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Phase shift uncertainty

Under far field approximation, and with constant wave speed ¢y

(W) = u™(rg, w) = GX(r)$ (”’k)
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Phase shift uncertainty

Under far field approximation, and with constant wave speed ¢y
fwr
d(w) = u™(re, w) = G(ry)8 (k)
()] |I’k|
where ,
o Il
e
G (r
(rd) = 4rlre]’

Smooth uncertainties over wavespeed leads at first order to an
error on the travel time:

S+
Tk = — .
k o k| TPk

Available linear data: di(w) = d;x(w)eiww‘ J

In general,
e oy is not small (to compare to 27 /w) = linear inversion fails!

e ¢ is smooth (vx =~ pii1)- 6/24
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Why interferometric data are interesting?

Available linear data
di(w) = dP(w)e™#*. J
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Why interferometric data are interesting?

Available linear data

di(w) = dP(w)e™#*.

Available interferometric data

(1) () = o () (') 0r =90,

One can choose receivers k, ¢ and frequencies w and w’ such that

|lwok — w'pe| < e
for € small. Then

di(w)dy(w') = dg(w)df ().
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Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:
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Imaging formed by back propagation applied on interferometric
data for close-by frequencies and receivers.
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Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

ICINT (r) o

w,Bx

/| <A Z G‘”(r rk)dk(w) Gw’(r re)de(w/)dwdw’.
w—w'|<
W |rk

—l’g|<Ax

Imaging formed by back propagation applied on interferometric
data for close-by frequencies and receivers.

e |t forms a smoothed version of the exact source.

e Resistant to random medium noise (wavespeed uncertainties)

e Difficult setting of Ay, Ax. To small = to smooth, To large
= defocusing.
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Classic linear inversion

After discretization of the source x € C”, and the frequencies,

Discrete linear problem
Find x e C" st. Ax=b beCP. J
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Classic linear inversion

After discretization of the source x € C”, and the frequencies,

Discrete linear problem

FindxeC" st. Ax=b beCP.

where the forward operator matrix A € CP" is such that

(Ax)k = GE(ri) Fx <“’“k> . VxeC"
[@)) \rk|
and

ex ex ex [ Wk Yk

bk = ka(rk)fx (CO |rk|>

by = bixei"gk

e A Fourier-type matrix (well-conditioned), one can take n = p.

e b — b is not small.

= solution x:> = A=1b is a bad solution (x:° — x®

is large).
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Interferometric inversion problem

For all x € C", call x* :=x".

Ax=b = Ax(Ax)* = bb".

bb* is the inferometric data matrix. We only want to consider
products by by with |k — £| small.
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Interferometric inversion problem

For all x € C", call x* :=x".

Ax=b = Ax(Ax)* = bb".

bb* is the inferometric data matrix. We only want to consider
products by by with |k — £| small.

Selector matrix

E € S,({0,1}) we denote E(bb*) := Exsbyby,

Interferometric inversion problem

Find x € C" st E(Ax(Ax)*) = E(bb").

e Case E =/ is eq. to |Ax| = |b|. (amplitude inversion pb.)

o Case E =11iseq. to Ax = b. (up to a multiplication by e’?).
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Interferometric inversion problem

Least squares cost functional
x5 = argmin JH(x),  JH5(x) == ||Ax — b|3. }
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Interferometric inversion problem

Least squares cost functional

x5 = argmin JH(x),  JH5(x) == ||Ax — b|3.

Interferometric cost functional
X" € argmin ST (x),  JIM(x) := |Ax(Ax)* — bb*|%.
where |M|2 o= Zké Ekg|ng| 5

Are these two problems equivalent ?
What's the influence of the selector matrix E on the solutions?
Is the second problem numerically solvable?

e If x" is a solution, then e’®x™" is solution.
xL5 is a global minimizer of Jit.
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Graph laplacian an phase recovery 1

Graph laplacian matrix
Take E € S,({0,1}), the graph laplatian matrix of E is the matrix

(Dp)i = Ej and (Ag)y:=—E; fori#j.
J#i

Ag is symetric positive semi-definite and A1(Ag) = 0 and A\2(Ag)
measures the connection of the graph E.
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Graph laplacian an phase recovery 1

Graph laplacian matrix
Take E € S,({0,1}), the graph laplatian matrix of E is the matrix

(Dp)i = Ej and (Ag)y:=—E; fori#j.
J#i

Ag is symetric positive semi-definite and A1(Ag) = 0 and A\2(Ag)
measures the connection of the graph E.

Theorem (Phase recovery from cross-products)

Consider x € C" such that |xx| =1 for all k. For any x' € C"
satisfying |x,.| =1, there exists o € [0,27) such that

* X/X/*

Hzﬁmw - e
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Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)

Consider x € C" such that |xx| = 1 for all k. For any x' € C"
satisfying |x;| =1, there exists a € [0,27) such that

*
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E-
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Idea for the proof:
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Idea for the proof:

e If E is a connected graph, then Expxix; contains enough phase
differences to recover all phases up to a constant phase shift.
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Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)

Consider x € C" such that |xx| =1 for all k. For any x' € C"
satisfying |x;| =1, there exists a € [0,27) such that

* / />k
XX X X ‘E

HX B eiaX/H2 = \/W |

Idea for the proof:

e If E is a connected graph, then Expxix; contains enough phase
differences to recover all phases up to a constant phase shift.

e The more E is a connected, the more this phase recovery is
stable.
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Data-graph laplacian and vector recovery 1

If the general case x € C”, a similar result is possible.
Problem: if x; = 0 for some i, that can kill the connectivity
between the phases.
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Data-graph laplacian and vector recovery 1

If the general case x € C”, a similar result is possible.
Problem: if x; = 0 for some /, that can kill the connectivity
between the phases.

Data-graph laplacian

Take E € §,({0,1}) and x € C"\{0}, the data-graph laplacian
matrix of E is the matrix

2]y 12
Ag |y = diag(d) — S where S;i = EUM'
, oc |2
and d; := ZJ- Sjj. This matrix is also symmetric positive
semi-definite.

AEg |y is a weighted-graph laplacian.
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Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)

Consider x € C" and assume that for some n > 0, we have
min([xk[) = 7|l -
For any x' € C" satisfying, there exists « € [0,2m) such that

Ix = e™x'll m V2| ot = x'xg

[ P— Mo(Bey) T [xx*| g
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Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)

Consider x € C" and assume that for some n > 0, we have
min([xk[) = 7|l -

For any x' € C" satisfying, there exists « € [0,2m) such that

[l — el m V2| ot = x'xg

[ P— Mo(Bey) T [xx*| g

Consequence on the linear system Ax = b:

2

i 2
"““Ax — b||, <2| ———
%< = bl < <)‘2(AE,|b|) U

+ 22> |(Ax)(Ax)* — bb*|,2_:.

v

17/24



Consequence on objective functions

Corollary
If b satisfies miny(|bk|) > n1bl|,, then for all x € C", 3a € [0, 27)
JLS(eiax) < 2 ( 2 ) Jmt )
= e (B
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Consequence on objective functions

Corollary
If b satisfies mink(|bk|) > n ||b|

5, then for all x € C", Ja € [0, 27)

JLS(eiax) < 2 ( 7T2 )Jmt )
= 2 \NeBe ) '

Consequence: Under this hypothesis, the interferometric inversion
is equivalent to the least squares inversion! Remember: that x-°
minimizes Jt.
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What can be done?

We have the following situation :

Vectors x® and x1° are very different and
JLS(xLSy = 0 Jint(xLS) = 0
JES (x™) large JPH(x®) < e.

= minimizing JI' is ill-posed.
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What can be done?

We have the following situation :

Vectors x* and x1° are very different and
JLS(XLS) -0 Jint( LS) -0
JES(x®) large St (x®) < €.

= m|n|m|zmg J'“t is ill-posed. = a discrimination between x
and x* is needed. We numerically remark that, is x° is sparse

LS

then

el << x|,

¢ -penalized interferometric inversion

X" € arg min |Ax(Ax)* — bb*|Z + A |Ix|; -
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Algorithm

(*-penalized interferometric inversion J

X" € arg min |Ax(Ax)* — bb*|Z + A |Ix|; -

We use optimal step descent: VJiI'(x) = A*E(Axx*A* — bb*)Ax
e Initialize x € C"\{0}.
e Compute g = VJP(x) + A( ‘Z‘ )
o Compute The order 4, polynomial P(t) = JI'(x + tg).
e Solve

t* = argmin P(t) + \||x + tg||;
t

Iterate x = x + t*g
Threshold x; = 0 if |x;| < e.
e Loop.
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Numerics 1
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Figure: Line 1: no noise, Line 2: max noise amplitude = 2.
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Numerics 2

We choose E tri diagonal.

s xexact . LSinversion . Qinversion
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Figure: Line 1. max noise amplitude = 4, Line 2: max noise amplitude
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Numerics 3
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Figure: Line 1: max noise amplitude = 16, Line 2: max noise amplitude
= 32.
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Numerics 4
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Figure: Line 1: max noise amplitude

= 128.

LS inversion

g

Thank you for your attention!

= 64, Line 2: max noise amplitude
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