Regularization for seismic sources inversion from interferometric data

Laurent Seppecher
École Centrale de Lyon
joint work with Laurent Demanet (MIT).

May 27, 2022

10th IPMS Conference - Malta 2022

General model

General model

Time
$\left\{\begin{array}{l}-\Delta U(\mathbf{r}, t)+c^{-2}(\mathbf{r}) \partial_{t t} U(\mathbf{r}, t)=s(\mathbf{r}) f(t), \mathbf{r} \in \mathbb{R}^{d}, t \in[0,+\infty) \\ \text { outgoing condition in } \mathbb{R}^{d}\end{array}\right.$

General model

Time
$\left\{\begin{array}{l}-\Delta U(\mathbf{r}, t)+c^{-2}(\mathbf{r}) \partial_{t t} U(\mathbf{r}, t)=s(\mathbf{r}) f(t), \mathbf{r} \in \mathbb{R}^{d}, t \in[0,+\infty) \\ \text { outgoing condition in } \mathbb{R}^{d}\end{array}\right.$

Frequency

$$
\left\{\begin{array}{l}
\Delta u(\mathbf{r}, \omega)+\frac{\omega^{2}}{c^{2}(\mathbf{r})} u(\mathbf{r}, \omega)=-s(\mathbf{r}), \quad \mathbf{r} \in \mathbb{R}^{d}, \quad t \in[0,+\infty) \\
\text { outgoing condition in } \mathbb{R}^{d}
\end{array}\right.
$$

Interferomtric data (time)

Linear Data
$d_{k}(\omega):=u\left(\mathbf{r}_{k}, \omega\right), \quad \mathbf{r}_{k}$ receivers positions, $\quad \omega \in[0,+\infty)$.

Linear inversion problem:
Find the source $s(\mathbf{r})$ from the knowledge of all $d_{k}(\omega)$.

Interferometric data

Time Interferometric Data (cross-correlations)

$$
D_{k \ell}(\tau):=\int_{\mathbb{R}} U\left(\mathbf{r}_{k}, t\right) U\left(\mathbf{r}_{\ell}, t-\tau\right) \mathrm{d} t, \quad t \in[0,+\infty)
$$

We call $d_{k}(\omega):=u\left(\mathbf{r}_{k}, \omega\right)$ then

Interferometric data

Time Interferometric Data (cross-correlations)

$$
D_{k \ell}(\tau):=\int_{\mathbb{R}} U\left(\mathbf{r}_{k}, t\right) U\left(\mathbf{r}_{\ell}, t-\tau\right) \mathrm{d} t, \quad t \in[0,+\infty)
$$

We call $d_{k}(\omega):=u\left(\mathbf{r}_{k}, \omega\right)$ then
Frequency Interferometric Data

$$
D_{k \ell}(\omega):=d_{k}(\omega) \bar{d}_{\ell}(\omega), \omega \in[0,+\infty)
$$

and more generally

$$
D_{k \ell}\left(\omega, \omega^{\prime}\right):=d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right), \quad \omega, \omega^{\prime} \in[0,+\infty)
$$

Interferometric data

Time Interferometric Data (cross-correlations)

$$
D_{k \ell}(\tau):=\int_{\mathbb{R}} U\left(\mathbf{r}_{k}, t\right) U\left(\mathbf{r}_{\ell}, t-\tau\right) \mathrm{d} t, \quad t \in[0,+\infty)
$$

We call $d_{k}(\omega):=u\left(\mathbf{r}_{k}, \omega\right)$ then
Frequency Interferometric Data

$$
D_{k \ell}(\omega):=d_{k}(\omega) \bar{d}_{\ell}(\omega), \omega \in[0,+\infty)
$$

and more generally

$$
D_{k \ell}\left(\omega, \omega^{\prime}\right):=d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right), \quad \omega, \omega^{\prime} \in[0,+\infty) .
$$

How these data can be used to increase stability?

Interferomtric source inversion problem

Interferometric inversion problem:
Find the source $s(\mathbf{r})$
from the knowledge of some $D_{k \ell}\left(\omega, \omega^{\prime}\right):=d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right)$.

Contents

- Advantage of interferometric data
- Coherent Interferometric imaging (back propagation)
- Non convex interferometric inversion
- Regularization is needed
- Algorithm for non convex descent
- Numerical exemples

Phase shift uncertainty

Under far field approximation, and with constant wave speed c_{0}

$$
d_{k}^{\mathrm{ex}}(\omega):=u^{\mathrm{ex}}\left(\mathbf{r}_{k}, \omega\right)=G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \hat{s}\left(\frac{\omega}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right)
$$

Phase shift uncertainty

Under far field approximation, and with constant wave speed c_{0}

$$
d_{k}^{\mathrm{ex}}(\omega):=u^{\mathrm{ex}}\left(\mathbf{r}_{k}, \omega\right)=G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \hat{s}\left(\frac{\omega}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right)
$$

where

$$
G_{\omega}^{e x}\left(\mathbf{r}_{k}\right):=\frac{e^{\frac{i \omega}{\omega_{0}}\left|\mathbf{r}_{k}\right|}}{4 \pi\left|\mathbf{r}_{k}\right|}
$$

Smooth uncertainties over wavespeed leads at first order to an error on the travel time:

$$
\tau_{k}:=\frac{1}{c_{0}}\left|\mathbf{r}_{k}\right|+\varphi_{k} .
$$

Phase shift uncertainty

Under far field approximation, and with constant wave speed c_{0}

$$
d_{k}^{\mathrm{ex}}(\omega):=u^{\mathrm{ex}}\left(\mathbf{r}_{k}, \omega\right)=G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \hat{s}\left(\frac{\omega}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right)
$$

where

$$
G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right):=\frac{e^{\frac{i \omega}{\omega_{0}}\left|\mathbf{r}_{k}\right|}}{4 \pi\left|\mathbf{r}_{k}\right|}
$$

Smooth uncertainties over wavespeed leads at first order to an error on the travel time:

$$
\tau_{k}:=\frac{1}{c_{0}}\left|\mathbf{r}_{k}\right|+\varphi_{k} .
$$

Available linear data:

$$
d_{k}(\omega)=d_{k}^{e x}(\omega) e^{i \omega \varphi_{k}}
$$

Phase shift uncertainty

Under far field approximation, and with constant wave speed c_{0}

$$
d_{k}^{\mathrm{ex}}(\omega):=u^{\mathrm{ex}}\left(\mathbf{r}_{k}, \omega\right)=G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \hat{s}\left(\frac{\omega}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right)
$$

where

$$
G_{\omega}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right):=\frac{e^{\frac{i \omega}{\omega_{0}}\left|\mathbf{r}_{k}\right|}}{4 \pi\left|\mathbf{r}_{k}\right|}
$$

Smooth uncertainties over wavespeed leads at first order to an error on the travel time:

$$
\tau_{k}:=\frac{1}{c_{0}}\left|\mathbf{r}_{k}\right|+\varphi_{k} .
$$

Available linear data:
 $$
d_{k}(\omega)=d_{k}^{e x}(\omega) e^{i \omega \varphi_{k}}
$$

In general,

- φ_{k} is not small (to compare to $2 \pi / \omega$) \Rightarrow linear inversion fails!
- φ_{k} is smooth $\left(\varphi_{k} \approx \varphi_{k+1}\right)$.

Phase uncertainties

Figure: Phase uncertainty on the receivers/frequencies domain.

Why interferometric data are interesting?

Available linear data

$$
d_{k}(\omega)=d_{k}^{e x}(\omega) e^{i \omega \varphi_{k}}
$$

Why interferometric data are interesting?

Available linear data

$$
d_{k}(\omega)=d_{k}^{\mathrm{ex}}(\omega) e^{i \omega \varphi_{\mathrm{k}}} .
$$

Available interferometric data

$$
d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right)=d_{k}^{\text {ex }}(\omega) \overline{d_{\ell}^{\text {ex }}}\left(\omega^{\prime}\right) e^{i\left(\omega \varphi_{k}-\omega^{\prime} \varphi_{\ell}\right)} .
$$

Why interferometric data are interesting?

Available linear data

$$
d_{k}(\omega)=d_{k}^{e x}(\omega) e^{i \omega \varphi_{k}}
$$

Available interferometric data

$$
d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right)=d_{k}^{\mathrm{ex}}(\omega) \overline{d_{\ell}^{\mathrm{ex}}}\left(\omega^{\prime}\right) e^{i\left(\omega \varphi_{k}-\omega^{\prime} \varphi_{\ell}\right)}
$$

One can choose receivers k, ℓ and frequencies ω and ω^{\prime} such that

$$
\left|\omega \varphi_{k}-\omega^{\prime} \varphi_{\ell}\right| \leq \varepsilon
$$

for ε small. Then

$$
d_{k}(\omega) \overline{d_{\ell}}\left(\omega^{\prime}\right) \approx d_{k}^{\mathrm{ex}}(\omega) \overline{d_{\ell}^{\mathrm{ex}}}\left(\omega^{\prime}\right)
$$

Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

$$
\begin{aligned}
& \int_{\left|\omega-\omega^{\prime}\right|<\Delta_{\omega}}^{I_{\Delta_{\omega}, \Delta_{x}}^{C \operatorname{INT}}(\mathbf{r})} \sum_{\left|\mathbf{r}_{k}-\mathbf{r}_{\ell}\right|<\Delta_{x}} \overline{G_{\omega}}\left(\mathbf{r}-\mathbf{r}_{k}\right) d_{k}(\omega) G_{\omega^{\prime}}\left(\mathbf{r}-\mathbf{r}_{\ell}\right) \overline{d_{\ell}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} .
\end{aligned}
$$

Imaging formed by back propagation applied on interferometric data for close-by frequencies and receivers.

Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

$$
\begin{aligned}
& \int_{\left|\omega-\omega^{\prime}\right|<\Delta_{\omega}}^{I_{\Delta_{\omega}, \Delta_{x}}^{C I N T}(\mathbf{r})} \sum_{\left|\mathbf{r}_{k}-\mathbf{r}_{\ell}\right|<\Delta_{x}} \overline{G_{\omega}}\left(\mathbf{r}-\mathbf{r}_{k}\right) d_{k}(\omega) G_{\omega^{\prime}}\left(\mathbf{r}-\mathbf{r}_{\ell}\right) \overline{d_{\ell}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} .
\end{aligned}
$$

Imaging formed by back propagation applied on interferometric data for close-by frequencies and receivers.

- It forms a smoothed version of the exact source.

Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

$$
\begin{aligned}
& \int_{\left|\omega-\omega^{\prime}\right|<\Delta_{\omega}}^{I_{\Delta_{\omega}, \Delta_{x}}^{C \operatorname{INT}}(\mathbf{r})} \sum_{\left|\mathbf{r}_{k}-\mathbf{r}_{\ell}\right|<\Delta_{x}} \overline{G_{\omega}}\left(\mathbf{r}-\mathbf{r}_{k}\right) d_{k}(\omega) G_{\omega^{\prime}}\left(\mathbf{r}-\mathbf{r}_{\ell}\right) \overline{d_{\ell}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} .
\end{aligned}
$$

Imaging formed by back propagation applied on interferometric data for close-by frequencies and receivers.

- It forms a smoothed version of the exact source.
- Resistant to random medium noise (wavespeed uncertainties)

Coherent Interferometric Imaging

Borcea, Garnier, Papanicolaou, Tsogka:

$$
\begin{aligned}
& \int_{\left|\omega-\omega^{\prime}\right|<\Delta_{\omega}}^{I_{\Delta_{\omega}, \Delta_{x}}^{C \operatorname{INT}}(\mathbf{r})} \sum_{\left|\mathbf{r}_{k}-\mathbf{r}_{\ell}\right|<\Delta_{x}} \overline{G_{\omega}}\left(\mathbf{r}-\mathbf{r}_{k}\right) d_{k}(\omega) G_{\omega^{\prime}}\left(\mathbf{r}-\mathbf{r}_{\ell}\right) \overline{d_{\ell}}\left(\omega^{\prime}\right) \mathrm{d} \omega \mathrm{~d} \omega^{\prime} .
\end{aligned}
$$

Imaging formed by back propagation applied on interferometric data for close-by frequencies and receivers.

- It forms a smoothed version of the exact source.
- Resistant to random medium noise (wavespeed uncertainties)
- Difficult setting of $\Delta_{\omega}, \Delta_{x}$. To small \Rightarrow to smooth, To large \Rightarrow defocusing.

Classic linear inversion

After discretization of the source $x \in \mathbb{C}^{n}$, and the frequencies,

Discrete linear problem

Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad A x=b \quad b \in \mathbb{C}^{p}$.
where the forward operator matrix $A \in \mathbb{C}^{p n}$ is such that

Classic linear inversion

After discretization of the source $x \in \mathbb{C}^{n}$, and the frequencies,

Discrete linear problem

Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad A x=b \quad b \in \mathbb{C}^{p}$.
where the forward operator matrix $A \in \mathbb{C}^{p n}$ is such that

$$
(A x)_{k}:=G_{\omega_{k}}^{e x}\left(\mathbf{r}_{k}\right) \mathcal{F} x\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right), \quad \forall x \in \mathbb{C}^{n}
$$

and

$$
\begin{aligned}
b_{k}^{\mathrm{ex}} & :=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x^{\mathrm{ex}}\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right) \\
b_{k} & :=b_{k}^{\mathrm{ex}} e^{i \varphi_{k}}
\end{aligned}
$$

Classic linear inversion

After discretization of the source $x \in \mathbb{C}^{n}$, and the frequencies,

Discrete linear problem

Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad A x=b \quad b \in \mathbb{C}^{p}$.
where the forward operator matrix $A \in \mathbb{C}^{p n}$ is such that

$$
(A x)_{k}:=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right), \quad \forall x \in \mathbb{C}^{n}
$$

and

$$
\begin{aligned}
b_{k}^{\mathrm{ex}} & :=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x^{\mathrm{ex}}\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right) \\
b_{k} & :=b_{k}^{\mathrm{ex}} e^{i \varphi_{k}}
\end{aligned}
$$

- A Fourier-type matrix (well-conditioned), one can take $n=p$.

Classic linear inversion

After discretization of the source $x \in \mathbb{C}^{n}$, and the frequencies,

Discrete linear problem

Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad A x=b \quad b \in \mathbb{C}^{p}$.
where the forward operator matrix $A \in \mathbb{C}^{p n}$ is such that

$$
(A x)_{k}:=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right), \quad \forall x \in \mathbb{C}^{n}
$$

and

$$
\begin{aligned}
b_{k}^{\mathrm{ex}} & :=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x^{\mathrm{ex}}\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right) \\
b_{k} & :=b_{k}^{\mathrm{ex}} e^{i \varphi_{k}}
\end{aligned}
$$

- A Fourier-type matrix (well-conditioned), one can take $n=p$.
- $b-b^{\text {ex }}$ is not small.

Classic linear inversion

After discretization of the source $x \in \mathbb{C}^{n}$, and the frequencies,

Discrete linear problem

Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad A x=b \quad b \in \mathbb{C}^{p}$.
where the forward operator matrix $A \in \mathbb{C}^{p n}$ is such that

$$
(A x)_{k}:=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right), \quad \forall x \in \mathbb{C}^{n}
$$

and

$$
\begin{aligned}
b_{k}^{\mathrm{ex}} & :=G_{\omega_{k}}^{\mathrm{ex}}\left(\mathbf{r}_{k}\right) \mathcal{F} x^{\mathrm{ex}}\left(\frac{\omega_{k}}{c_{0}} \frac{\mathbf{r}_{k}}{\left|\mathbf{r}_{k}\right|}\right) \\
b_{k} & :=b_{k}^{\mathrm{ex}} e^{i \varphi_{k}}
\end{aligned}
$$

- A Fourier-type matrix (well-conditioned), one can take $n=p$.
- $b-b^{\mathrm{ex}}$ is not small.
\Rightarrow solution $x^{L S}=A^{-1} b$ is a bad solution $\left(x^{L S}-x^{e x}\right.$ is large $)$.

Numerics LS

Interferometric inversion problem

For all $x \in \mathbb{C}^{n}$, call $x^{*}:=\bar{x}^{\top}$.

$$
A x=b \quad \Rightarrow \quad A x(A x)^{*}=b b^{*}
$$

$b b^{*}$ is the inferometric data matrix. We only want to consider products $b_{k} \overline{b_{\ell}}$ with $|k-\ell|$ small.

Interferometric inversion problem

For all $x \in \mathbb{C}^{n}$, call $x^{*}:=\bar{x}^{\top}$.

$$
A x=b \quad \Rightarrow \quad A x(A x)^{*}=b b^{*}
$$

$b b^{*}$ is the inferometric data matrix. We only want to consider products $b_{k} \overline{b_{\ell}}$ with $|k-\ell|$ small.

Selector matrix

$$
E \in \mathcal{S}_{n}(\{0,1\}) \text { we denote } E\left(b b^{*}\right):=E_{k \ell} b_{k} \overline{b_{\ell}},
$$

Interferometric inversion problem

For all $x \in \mathbb{C}^{n}$, call $x^{*}:=\bar{x}^{\top}$.

$$
A x=b \quad \Rightarrow \quad A x(A x)^{*}=b b^{*}
$$

$b b^{*}$ is the inferometric data matrix. We only want to consider products $b_{k} \overline{b_{\ell}}$ with $|k-\ell|$ small.

Selector matrix

$$
E \in \mathcal{S}_{n}(\{0,1\}) \text { we denote } E\left(b b^{*}\right):=E_{k \ell} b_{k} \overline{b_{\ell}},
$$

Interferometric inversion problem
Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad E\left(A x(A x)^{*}\right)=E\left(b b^{*}\right)$.

Interferometric inversion problem

For all $x \in \mathbb{C}^{n}$, call $x^{*}:=\bar{x}^{\top}$.

$$
A x=b \quad \Rightarrow \quad A x(A x)^{*}=b b^{*}
$$

$b b^{*}$ is the inferometric data matrix. We only want to consider products $b_{k} \overline{b_{\ell}}$ with $|k-\ell|$ small.

Selector matrix

$$
E \in \mathcal{S}_{n}(\{0,1\}) \text { we denote } E\left(b b^{*}\right):=E_{k \ell} b_{k} \overline{b_{\ell}},
$$

Interferometric inversion problem
Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad E\left(A x(A x)^{*}\right)=E\left(b b^{*}\right)$.

- Case $E=I$ is eq. to $|A x|=|b|$. (amplitude inversion pb.)

Interferometric inversion problem

For all $x \in \mathbb{C}^{n}$, call $x^{*}:=\bar{x}^{\top}$.

$$
A x=b \quad \Rightarrow \quad A x(A x)^{*}=b b^{*}
$$

$b b^{*}$ is the inferometric data matrix. We only want to consider products $b_{k} \overline{b_{\ell}}$ with $|k-\ell|$ small.

Selector matrix

$$
E \in \mathcal{S}_{n}(\{0,1\}) \text { we denote } E\left(b b^{*}\right):=E_{k \ell} b_{k} \overline{b_{\ell}},
$$

Interferometric inversion problem
Find $x \in \mathbb{C}^{n} \quad$ s.t. $\quad E\left(A x(A x)^{*}\right)=E\left(b b^{*}\right)$.

- Case $E=I$ is eq. to $|A x|=|b|$. (amplitude inversion pb.)
- Case $E=1$ is eq. to $A x=b$. (up to a multiplication by $e^{i \theta}$).

Interferometric inversion problem

Least squares cost functional

$$
x^{L S}:=\arg \min J^{L S}(x), \quad J^{L S}(x):=\|A x-b\|_{2}^{2}
$$

Interferometric inversion problem

Least squares cost functional

$$
x^{L S}:=\arg \min J^{L S}(x), \quad J^{L S}(x):=\|A x-b\|_{2}^{2}
$$

Interferometric cost functional

$$
x^{\mathrm{int}} \in \arg \min J_{E}^{\text {int }}(x), \quad J_{E}^{\text {int }}(x):=\left|A x(A x)^{*}-b b^{*}\right|_{E}^{2} .
$$

where $|M|_{E}^{2}:=\sum_{k \ell} E_{k \ell}\left|M_{k \ell}\right|^{2}$.

Interferometric inversion problem

Least squares cost functional

$$
x^{L S}:=\arg \min J^{L S}(x), \quad J^{L S}(x):=\|A x-b\|_{2}^{2} .
$$

Interferometric cost functional

$$
x^{\mathrm{int}} \in \arg \min J_{E}^{\text {int }}(x), \quad J_{E}^{\text {int }}(x):=\left|A x(A x)^{*}-b b^{*}\right|_{E}^{2} .
$$

where $|M|_{E}^{2}:=\sum_{k \ell} E_{k \ell}\left|M_{k \ell}\right|^{2}$.

- Are these two problems equivalent ?
- What's the influence of the selector matrix E on the solutions?
- Is the second problem numerically solvable?

Interferometric inversion problem

Least squares cost functional

$$
x^{L S}:=\arg \min J^{L S}(x), \quad J^{L S}(x):=\|A x-b\|_{2}^{2} .
$$

Interferometric cost functional

$$
x^{\mathrm{int}} \in \arg \min J_{E}^{\text {int }}(x), \quad J_{E}^{\text {int }}(x):=\left|A x(A x)^{*}-b b^{*}\right|_{E}^{2} .
$$

where $|M|_{E}^{2}:=\sum_{k \ell} E_{k \ell}\left|M_{k \ell}\right|^{2}$.

- Are these two problems equivalent ?
- What's the influence of the selector matrix E on the solutions?
- Is the second problem numerically solvable?
- If $x^{\text {int }}$ is a solution, then $e^{i \alpha} x^{\text {int }}$ is solution.
- $x^{L S}$ is a global minimizer of $J_{E}^{\text {int }}$.

Graph laplacian an phase recovery 1

Graph laplacian matrix

Take $E \in \mathcal{S}_{n}(\{0,1\})$, the graph laplatian matrix of E is the matrix

$$
\left(\Delta_{E}\right)_{i i}:=\sum_{j \neq i} E_{i j} \quad \text { and } \quad\left(\Delta_{E}\right)_{i j}:=-E_{i j} \quad \text { for } i \neq j
$$

Δ_{E} is symetric positive semi-definite and $\lambda_{1}\left(\Delta_{E}\right)=0$ and $\lambda_{2}\left(\Delta_{E}\right)$ measures the connection of the graph E.

Graph laplacian an phase recovery 1

Graph laplacian matrix

Take $E \in \mathcal{S}_{n}(\{0,1\})$, the graph laplatian matrix of E is the matrix

$$
\left(\Delta_{E}\right)_{i i}:=\sum_{j \neq i} E_{i j} \quad \text { and } \quad\left(\Delta_{E}\right)_{i j}:=-E_{i j} \quad \text { for } i \neq j
$$

Δ_{E} is symetric positive semi-definite and $\lambda_{1}\left(\Delta_{E}\right)=0$ and $\lambda_{2}\left(\Delta_{E}\right)$ measures the connection of the graph E.

Theorem (Phase recovery from cross-products)

Consider $x \in \mathbb{C}^{n}$ such that $\left|x_{k}\right|=1$ for all k. For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying $\left|x_{k}^{\prime}\right|=1$, there exists $\alpha \in[0,2 \pi)$ such that

$$
\left\|x-e^{i \alpha} x^{\prime}\right\|_{2} \leq \frac{\pi \sqrt{2}}{4 \sqrt{\lambda_{2}\left(\Delta_{E}\right)}}\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}
$$

Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)
Consider $x \in \mathbb{C}^{n}$ such that $\left|x_{k}\right|=1$ for all k. For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying $\left|x_{k}^{\prime}\right|=1$, there exists $\alpha \in[0,2 \pi)$ such that

$$
\left\|x-e^{i \alpha} x^{\prime}\right\|_{2} \leq \frac{\pi \sqrt{2}}{4 \sqrt{\lambda_{2}\left(\Delta_{E}\right)}}\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}
$$

Idea for the proof:

Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)

Consider $x \in \mathbb{C}^{n}$ such that $\left|x_{k}\right|=1$ for all k. For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying $\left|x_{k}^{\prime}\right|=1$, there exists $\alpha \in[0,2 \pi)$ such that

$$
\left\|x-e^{i \alpha} x^{\prime}\right\|_{2} \leq \frac{\pi \sqrt{2}}{4 \sqrt{\lambda_{2}\left(\Delta_{E}\right)}}\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}
$$

Idea for the proof:

- If E is a connected graph, then $E_{k \ell} x_{k} \overline{\chi_{\ell}}$ contains enough phase differences to recover all phases up to a constant phase shift.

Graph laplacian an phase recovery 2

Theorem (Phase recovery from cross-products)

Consider $x \in \mathbb{C}^{n}$ such that $\left|x_{k}\right|=1$ for all k. For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying $\left|x_{k}^{\prime}\right|=1$, there exists $\alpha \in[0,2 \pi)$ such that

$$
\left\|x-e^{i \alpha} x^{\prime}\right\|_{2} \leq \frac{\pi \sqrt{2}}{4 \sqrt{\lambda_{2}\left(\Delta_{E}\right)}}\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}
$$

Idea for the proof:

- If E is a connected graph, then $E_{k \ell} x_{k} \overline{\chi_{\ell}}$ contains enough phase differences to recover all phases up to a constant phase shift.
- The more E is a connected, the more this phase recovery is stable.

Data-graph laplacian and vector recovery 1

If the general case $x \in \mathbb{C}^{n}$, a similar result is possible.
Problem: if $x_{i}=0$ for some i, that can kill the connectivity between the phases.

Data-graph laplacian and vector recovery 1

If the general case $x \in \mathbb{C}^{n}$, a similar result is possible.
Problem: if $x_{i}=0$ for some i, that can kill the connectivity between the phases.

Data-graph laplacian

Take $E \in \mathcal{S}_{n}(\{0,1\})$ and $x \in \mathbb{C}^{n} \backslash\{0\}$, the data-graph laplacian matrix of E is the matrix

$$
\Delta_{E,|x|}:=\operatorname{diag}(d)-S \quad \text { where } \quad S_{i j}:=E_{i j} \frac{\left|x_{i}\right|^{2}\left|x_{j}\right|^{2}}{\left|x x^{*}\right|_{E}^{2}}
$$

and $d_{i}:=\sum_{j} S_{i j}$. This matrix is also symmetric positive semi-definite.
$\Delta_{E,|x|}$: is a weighted-graph laplacian.

Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)
Consider $x \in \mathbb{C}^{n}$ and assume that for some $\eta>0$, we have

$$
\min _{k}\left(\left|x_{k}\right|\right) \geq \eta\|x\|_{2} .
$$

For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying, there exists $\alpha \in[0,2 \pi)$ such that

$$
\frac{\left\|x-e^{i \alpha} x^{\prime}\right\|_{2}}{\|x\|_{2}} \leq\left(\frac{\pi}{\sqrt{\lambda_{2}\left(\Delta_{E,|x|}\right)}}+\frac{\sqrt{2}}{\eta}\right) \frac{\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}}{\left|x x^{*}\right|_{E}}
$$

Data-graph laplacian and vector recovery 2

Theorem (Vector recovery from cross-products)

Consider $x \in \mathbb{C}^{n}$ and assume that for some $\eta>0$, we have

$$
\min _{k}\left(\left|x_{k}\right|\right) \geq \eta\|x\|_{2} .
$$

For any $x^{\prime} \in \mathbb{C}^{n}$ satisfying, there exists $\alpha \in[0,2 \pi)$ such that

$$
\frac{\left\|x-e^{i \alpha} x^{\prime}\right\|_{2}}{\|x\|_{2}} \leq\left(\frac{\pi}{\sqrt{\lambda_{2}\left(\Delta_{E,|x|}\right)}}+\frac{\sqrt{2}}{\eta}\right) \frac{\left|x x^{*}-x^{\prime} x^{\prime *}\right|_{E}}{\left|x x^{*}\right|_{E}} .
$$

Consequence on the linear system $A x=b$:

$$
\left\|e^{i \alpha} A x-b\right\|_{2}^{2} \leq 2\left(\frac{\pi^{2}}{\lambda_{2}\left(\Delta_{E,|b|}\right)}+\frac{2}{\eta^{2}}\right)\left|(A x)(A x)^{*}-b b^{*}\right|_{E}^{2} .
$$

Consequence on objective functions

Corollary
If b satisfies $\min _{k}\left(\left|b_{k}\right|\right) \geq \eta\|b\|_{2}$, then for all $x \in \mathbb{C}^{n}, \exists \alpha \in[0,2 \pi)$

$$
J^{L S}\left(e^{i \alpha} x\right) \leq \frac{2}{\|x\|_{2}^{2}}\left(\frac{\pi^{2}}{\lambda_{2}\left(\Delta_{E,|b|}\right)}+\frac{2}{\eta^{2}}\right) J_{E}^{i n t}(x) .
$$

Consequence on objective functions

Corollary
If b satisfies $\min _{k}\left(\left|b_{k}\right|\right) \geq \eta\|b\|_{2}$, then for all $x \in \mathbb{C}^{n}, \exists \alpha \in[0,2 \pi)$

$$
J^{L S}\left(e^{i \alpha} x\right) \leq \frac{2}{\|x\|_{2}^{2}}\left(\frac{\pi^{2}}{\lambda_{2}\left(\Delta_{E,|b|}\right)}+\frac{2}{\eta^{2}}\right) J_{E}^{i n t}(x) .
$$

Consequence: Under this hypothesis, the interferometric inversion is equivalent to the least squares inversion! Remember: that $x^{L S}$ minimizes $J_{E}^{\text {int }}$.

What can be done?

We have the following situation :
Vectors $x^{e x}$ and $x^{L S}$ are very different and

$$
\begin{array}{ll}
J^{L S}\left(x^{L S}\right)=0 & j_{E}^{\text {int }}\left(x^{L S}\right)=0 \\
J^{L S}\left(x^{e x}\right) \text { large } & J_{E}^{\text {int }}\left(x^{e x}\right)<\varepsilon .
\end{array}
$$

\Rightarrow minimizing $J_{E}^{\text {int }}$ is ill-posed.

What can be done?

We have the following situation :
Vectors $x^{e x}$ and $x^{L S}$ are very different and

$$
\begin{array}{ll}
J^{L S}\left(x^{L S}\right)=0 & J_{E}^{\text {int }}\left(x^{L S}\right)=0 \\
J^{L S}\left(x^{e x}\right) \text { large } & J_{E}^{\text {int }}\left(x^{e x}\right)<\varepsilon .
\end{array}
$$

\Rightarrow minimizing $J_{E}^{\text {int }}$ is ill-posed. \Rightarrow a discrimination between $x^{L S}$ and x^{ex} is needed.

What can be done?

We have the following situation :
Vectors $x^{e x}$ and $x^{L S}$ are very different and

$$
\begin{array}{ll}
J^{L S}\left(x^{L S}\right)=0 & J_{E}^{\text {int }}\left(x^{L S}\right)=0 \\
J^{L S}\left(x^{e x}\right) \text { large } & J_{E}^{\text {int }}\left(x^{e x}\right)<\varepsilon .
\end{array}
$$

\Rightarrow minimizing $J_{E}^{\text {int }}$ is ill-posed. \Rightarrow a discrimination between $x^{L S}$ and $x^{\text {ex }}$ is needed. We numerically remark that, is $x^{L S}$ is sparse then

$$
\left\|x^{\mathrm{ex}}\right\|_{1} \ll\left\|x^{L S}\right\|_{1} .
$$

What can be done?

We have the following situation :
Vectors $x^{e x}$ and $x^{L S}$ are very different and

$$
\begin{array}{ll}
J^{L S}\left(x^{L S}\right)=0 & J_{E}^{\text {int }}\left(x^{L S}\right)=0 \\
J^{L S}\left(x^{e x}\right) \text { large } & J_{E}^{\text {int }}\left(x^{e x}\right)<\varepsilon .
\end{array}
$$

\Rightarrow minimizing $J_{E}^{\text {int }}$ is ill-posed. \Rightarrow a discrimination between $x^{L S}$ and $x^{\text {ex }}$ is needed. We numerically remark that, is $x^{L S}$ is sparse then

$$
\left\|x^{\mathrm{ex}}\right\|_{1} \ll\left\|x^{L S}\right\|_{1} .
$$

ℓ^{1}-penalized interferometric inversion

$$
x^{\text {int }} \in \arg \min \left|A x(A x)^{*}-b b^{*}\right|_{E}^{2}+\lambda\|x\|_{1} .
$$

Algorithm

ℓ^{1}-penalized interferometric inversion

$$
x^{\mathrm{int}} \in \arg \min \left|A x(A x)^{*}-b b^{*}\right|_{E}^{2}+\lambda\|x\|_{1}
$$

We use optimal step descent: $\nabla J_{E}^{\text {int }}(x)=A^{*} E\left(A x x^{*} A^{*}-b b^{*}\right) A x$

- Initialize $x \in \mathbb{C}^{n} \backslash\{0\}$.
- Compute $g=\nabla J_{E}^{\text {int }}(x)+\lambda\left(\frac{x_{i}}{\left|x_{i}\right|}\right)_{i=1}^{n}$
- Compute The order 4, polynomial $P(t)=J_{E}^{\text {int }}(x+t g)$.
- Solve

$$
t^{*}=\underset{t}{\arg \min } P(t)+\lambda\|x+t g\|_{1}
$$

- Iterate $x=x+t^{*} g$
- Threshold $x_{i}=0$ if $\left|x_{i}\right|<\varepsilon$.
- Loop.

Numerics 1

Figure: Line 1: no noise, Line 2: \max noise amplitude $=2$.

Numerics 2

We choose E tri diagonal.

Figure: Line 1: \max noise amplitude $=4$, Line 2: max noise amplitude $=8$

Numerics 3

Figure: Line 1: \max noise amplitude $=16$, Line 2: max noise amplitude $=32$.

Numerics 4

Figure: Line 1: \max noise amplitude $=64$, Line 2: max noise amplitude $=128$.

Thank you for your attention!

