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Abstract. The ring of cyclic quasi-symmetric functions is introduced in this paper.
A natural basis consists of fundamental cyclic quasi-symmetric functions; they arise
as toric P-partition enumerators, for toric posets P with a total cyclic order. The as-
sociated structure constants are determined by cyclic shuffles of permutations. For
every non-hook shape A, the coefficients in the expansion of the Schur function s, in
terms of fundamental cyclic quasi-symmetric functions are nonnegative. The theory
has applications to the enumeration of cyclic shuffles and SYT by cyclic descents.

1 Introduction

The graded rings Sym and QSym, of symmetric and quasi-symmetric functions, respec-
tively, have many applications to enumerative combinatorics, as well as to other branches
of mathematics; see, e.g., [11, Ch. 7]. This paper introduces two intermediate objects: the
graded ring cQSym of cyclic quasi-symmetric functions, and its subring cQSym ™.

The rings Sym, QSym and cQSym may be defined via invariance properties. A formal
power series f € Z[[x1,xy,...]] of bounded degree is symmetric if for any t > 1, any two
sequences iy, ...,1; and ji, ..., of distinct positive integers (indices), and any sequence
my, ..., m; of positive integers (exponents), the coefficients of x?jl e xZ” and x]r.';l e x}’:t
in f are equal. We call f quasi-symmetric if for any t > 1, any two increasing sequences
i1 < - < irand j; < --- < j; of positive integers, and any sequence my,...,m; of

m

positive integers, the coefficients of x;'* - - - x" and x" - - - x!" in f are equal.
1 It J1 Jt

Definition 1.1. A cyclic quasi-symmetric function is a formal power series f € Z[[x1, x, .. .]]
of bounded degree such that, for any t > 1, any two increasing sequences i} < --- < it
and i} < --- < i} of positive integers, any sequence m = (my, ..., m;) of positive integers,
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and any cyclic shift m" = (m}, ..., m}) of m, the coefficients of x?fl ---x;" and lel e x?f’*
1 t
in f are equal.
Denote by cQSym the set of all cyclic quasi-symmetric functions, and by cQSym,, the
set of all cyclic quasi-symmetric functions which are homogeneous of degree n. It will

be shown that cQSym is a graded ring; see Proposition 3.18.

Toric posets were recently introduced by Develin, Macauley and Reiner [4]. A toric
analogue of P-partitions is presented in Section 3.1. Toric P-partition enumerators, in the
special case of total cyclic orders, form a convenient Q-basis for a ring cQSym™, which
is a subring of cQSym. A slightly extended set actually forms a Q-basis for cQSym
itself. The elements of this basis are called fundamental cyclic quasi-symmetric functions, are
indexed by cyclic compositions of a positive integer n (equivalently, by cyclic equivalence

classes of nonempty subsets | C [n]), and are denoted F;yﬁ]. Normalized versions of

them actually form Z-bases for cQSym and cQSym™; see Proposition 2.4.

A toric analogue of Stanley’s fundamental decomposition lemma for P-partitions [12,
Lemma 3.15.3], given in Lemma 3.11 below, is applied to provide a combinatorial inter-
pretation of the resulting structure constants in terms of shuffles of cyclic permutations
(more accurately, cyclic words), as follows.

For a finite set A of size a, let S4 be the set of all bijections u: [a] — A, viewed as
words u = (uy,...,u,). Elements of & 4 will be called bijective words, or simply words. If
A is a finite set of integers, or any finite totally ordered set, define the cyclic descent set of
ue Sy by

cDes(u) :={1<i<a:u >u}Cla, (1.1)

with the convention u,,1 := u3. The cyclic descent number of u is cdes(u) := |cDes(u)]|.
A cyclic word [u] € G4/Z, is an equivalence class of elements of G4 under the cyclic
equivalence relation (uy,...,us) ~ (Ujr1...,Ugu1,...,u;) for all i. A cyclic shuffle of
two cyclic words [u] and [v] with disjoint supports is the cyclic equivalence class [w]
represented by any shuffle w of a representative of [1] and a representative of [v]. The
set of all cyclic shuffles of [u] and [0] is denoted [u] Lcye [0], and is clearly a union of
cyclic equivalence classes.

The following cyclic analogue of Stanley’s shuffling theorem [11, Ex. 7.93] provides a
combinatorial interpretation for the structure constants of cQSym™.

Theorem 1.2. Let C = A LI B be a disjoint union of finite sets of integers. For each u € & 4 and
v € Gp, one has the following expansion:

cyc . peyc _ cyc
A ieesto] " Fipiepes(o)] = & B jeesta”

[w] € [1)teye[0]

Recall that a skew shape is called a ribbon if it does not contain a 2 x 2 square.
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Theorem 1.3. For every skew shape A/u which is not a connected ribbon, all the coefficients
in the expansion of the skew Schur function s, in terms of normalized fundamental cyclic
quasi-symmetric functions are nonnegative integers.

A more precise statement, which provides a combinatorial interpretation of the co-
efficients, is given in Theorem 4.4 below. The proof relies on the existence of a cyclic
extension of the descent map on standard Young tableaux (SYT) of shape A/u, which
was proved in [2]. Using Postnikov’s result regarding toric Schur functions, one deduces
that the coefficients in the expansion of a non-hook Schur function s, in terms of funda-
mental cyclic quasi-symmetric functions are equal to certain Gromov-Witten invariants.

Applications to the enumeration of SYT and cyclic shuffles of permutations with
prescribed cyclic descent set or number follow from this theory. Using a ring homomor-
phism from cQSym to the ring of formal power series Z[[q]]», with product defined by
qi ® qj = qmax(i'j ), Theorem 1.2 implies the following result.

Theorem 1.4. Let A and B be two disjoint sets of integers with |A| = m and |B| = n. For each
u € &4 and v € Sp the following holds.

1. If des(u) = i and des(v) = j then the number of shuffles of u and v with descent number

k is equal to
m+j—1i\[(n+i—j
k—i k—j )’

2. If cdes(u) = i and cdes(v) = j then the number of cyclic shuffles of [u] and [v] with
cyclic descent number k is equal to

e )

The group ring Z[S,] has a distinguished subring, Solomon’s descent algebra ©,,, with
basis elements

Di:= Y, nm (IC[n-1)).

eSS,
Des(m)=I

Cellini [3] and others looked for an appropriate cyclic analogue. We provide a partial
answer, using an operation dual to the product in ©, — the internal coproduct A, on
QSym,,.

Theorem 1.5. cCQSym, and cQSym_ are right coideals of QSym, with respect to the internal
coproduct:

Ay (cQSym,) C cQSym,, ® QSym,,
and
Ay (cQSym,, ) C cQSym, ® QSym,, .
The structure constants for cQSym = are nonnegative integers.
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Corollary 1.6. For n > 1 let CZ([) ., be the set of equivalence classes, under cyclic rotations, of
subsets @ C ] C [n]. Defining

n

cDa:= ), 7 (Ac c2([)”1]1),
TeES, ’
cDes(mr)cA

the additive free abelian group
D, :=span,{cDy : A€ CZ([)Z]Z}
is a left module for Solomon's descent algebra ©,,.

This is an extended abstract. Proofs and more details are given in the full version of
the paper [1].

2 The fundamental cyclic quasi-symmetric functions

Definition 2.1. For n > 1 and a subset | C [n], denote by P;,yc the set of all pairs (w, k)
consisting of a word w = (wy, ..., w,) € IN" and an index k € [n] satisfying

(l) Wi < W41 <...< Wy < w1 <...< Wi—1-
(i) If j € J\ {k — 1} then w; < wj;1, where indices are computed modulo 7.

Example 2.2. Let n = 5 and | = {1,3}. The pairs (12345,1), (23312,4) and (23122, 3) are

in P;’}ﬁﬁ} (see Figure 1), but the pairs (12354,1), (22312,4) and (23112, 3) are not.

1 2 2

Figure 1: The pairs (12345, 1), (23312,4) and (23122,3) in ng{j 5)-



Cyclic quasi-symmetric functions 5

Definition 2.3. Let c2["l be the set of equivalence classes, under cyclic rotations, of sub-
sets @ C ] C [n]. For any subset | C [1] and orbit A € c2["] define the fundamental cyclic
quasi-symmetric function corresponding to | or A by

F]/CZ,y]C — 2 xw1 wa Ce an and F;ZZ = PCyC (VI (= A)

n,J
CyC
(w, k)ePny]

The corresponding normalized fundamental cyclic quasi-symmetric function is

Acyc _ Z Fcyc
] €A

It is shown that these are all well-defined (i.e., independent of the choice of | € A).
Proposition 2.4. For each n > 1, the set {F A e\ {[@ ]}} is a Z-basis for cCQSym.,,.

For many combinatorial applications it is natural to consider a certain subring cQSym_
of cQSym, . Define

cQSym,, = span, {F%; - Ac 2"\ {[@],[(n]]}}  (n>1),

as well as cQSym; := span, { [1] } cQSym; :=Z, and cQSym™ := @, >(cQSym,, .

3 Toric posets and cyclic P-partitions

We recall toric posets from [4], and develop for them a theory of cyclic P-partitions. In par-
ticular, we provide a cyclic analogue of Stanley’s fundamental decomposition lemma for
P-partitions. Just as fundamental quasi-symmetric functions F, ; are P-partition enumer-
ators for certain (labeled) total orders, the fundamental cyclic quasi-symmetric functions
F }} are cyclic P-partition enumerators for certain (labeled) total cyclic orders. This is

used to prove that cQSym ™ is a ring and to study its structure constants.

3.1 Toric DAGs, toric posets, and toric P-partitions

In this section, D denotes a directed acyclic graph (DAG) with vertex set [n] := {1,2,...,n}.
Usual P-partitions use posets instead of DAGs, but the toric analogue will require DAGs.

A D-partition is a function f: {1,2,...,n} — {0,1,2,...} for which
e f(i) < f(j) whenever i — j in D, and

e f(i) < f(j) whenever i — j in D but i >7 .
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Denote by A(D ) the set of all D-part1t1ons f.

Lemma 3.1. (Fundamental lemma of D—partitions [12, Lemma 3.15.3]) For any DAG D, one
has a decomposition of A(D) as the following disjoint union:

AD) = || A@)
weL(D)

where E(B) is the set of all linear (total) orders which extend D.

Definition 3.2. (i) iy € [n] is a source (respectively, sink) in D if D contains no arrows of
the form j — i (respectlvely, of the form iy — j).

(ii) D’ is obtained from D by a flip at iy if iy is either a source or a sink of D and one
obtains D’ by reversing all the arrows in D incident with i io.
(iii) Define the equivalence relation = on DAGs to be the reflexive-transitive closure of

the flips, that is, D =D if and only if there exists a (possibly empty) sequence of flips
one can apply starting with D to obtain D'.
(iv) A toric DAG is the =-equivalence class [D] of a DAG D.

Example 3.3. Here is an example of a toric DAG [Dl]:
4 1 2 3
\ . \ \ \ 1 \ ,
} | ! !
2 3 4 1
1 / 2 / 3 / 4 /

Here is another toric DAG [132]:

1 2 4 2 3 1 3
N, XKL TN LT, XL e N
\3/ \4/ \1/ \ /
Definition 3.4. Say that [ o] torically extends [ 1] if there exist D’ € [D ] fori =1,2 with
D] C D;,.

A certain toric extension, called the toric transitive closure, will be particularly im-
portant.
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Definition 3.5. (i) Say thati — j is implied from toric transitivity in a DAG D if there exist
in D both a chain ip = ip = -+ — ip and a direct arrow i; — i such thati =i,,j = i}
forsomel <a < b <k

(ii) The toric transitive closure of D is the DAG P obtained by adding in all arrows i — j
implied from toric transitivity in D.

(iii) A DAG D is toric transitively closed if it equals its toric transitive closure.

Proposition 3.6. If 51 = 52, then 131 is toric transitively closed if and only if so is 132.

Definition 3.7. A toric DAG [5] is a toric poset if D is toric transitively closed for one of
its =-class representatives D, or equivalently, by Proposition 3.6, for all such D.

Definition 3.8. A total cyclic order is a toric poset with at least one (equivalently, all) of
its =-class representatives being a total (linear) order. B
Denote by £°7([D]) the set of all total cyclic orders [w] which torically extend [D].

Remark 3.9. Total cyclic orders may be geometrically visualized as n dots in a directed
cycle labeled by 1, ...,n with no repeats. These configurations are called cyclic permuta-
tions, and will be used in the study of cyclic shuffles, see Figure 2.

Definition 3.10. A foric [5]—partition is a function f: {1,2,...,n} — {0,1,2,...} which is
a D'-partition for at least one DAG D’ in [D]. Let A*"([D]) denote the set of all toric
[ D]-partitions

Lemma 3.11. (Fundamental lemma of toric 5—partitions) For any DAG D, one has a decompo-
sition of A" ([D]) as the following disjoint union:

A(D) = ] A ([w]).

[w]eLtor([D])

3.2 Cyclic P-partition enumerators

N

Definition 3.12. Given a toric poset [D] on {1,2,...,n}, define its cyclic P-partition enu-
merator

Fo = L %) X
fewr (D)

A special case yields the fundamental cyclic quasi-symmetric functions from Defini-
tion 2.3.

Proposition 3.13. If w € &, has cDes(w) = ], then F[%C =F,J.

An immediate consequence of Lemma 3.11 is then the following.
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Figure 2: [(8,4,5,1,2,3,6,7,9)] € [(3,7,8,5,1)] Weyc [(6,9,4,2)].

N

Proposition 3.14. For any toric poset [D], one has the following expansion

cyc cyc
P[B} - N Z Fn,cDes(w)'

[w)e.Ltor([D])

We now use this fact to expand products of of basis elements {F;S}}C} back in the same
basis. The key notion is that of a cyclic shuffle of two total cyclic orders.

First recall the notion of a shuffle of permutations. For a finite set A of size a, let G4
be the set of all bijections w: [a] — A, viewed as words w = (wy,...,w,). Elements of
S 4 will be called bijective words, a formal extension of permutations. Given two bijective
words u = (Uy,...,u;) € Sy and v = (vy,...,vp) € Sp, where A and B are disjoint
finite sets of integers, a bijective word w € G4 g is a shuffle of u and v if u and v are
subwords of w. Denote the set of all shuffles of u and v by u L.

Definition 3.15. Let C = A LI B be a disjoint union of finite sets. Fix two total cyclic
orders [u] and [0], with representatives u = (uy,...,1;) € G4 and v = (vy,...,v;) € Gp.
A total cyclic order [w], with w € G, is a cyclic shuffle of [u] and [v] if there exists a
representative w’ € G¢ of [w] which is (equivalently, every representative of [w] is) a
shuffle of cyclic shifts of # and v, namely,

w eu wo

for some cyclic shift u” of u and cyclic shift v’ of v.
Denote the set of all cyclic shuffles of [u] and [0] by [u] Licyc [0].

Example 3.16. Let A = {1,3,5,7,8} and B = {2,4,6,9}, and fix u = (3,7,8,5,1) € &4
and v = (6,9,4,2) € &p. An example of [w] € [u] Wy [0] is [(8,4,5,1,2,3,6,7,9)],
since w’' = (1,2,3,6,7,9,8,4,5) is a shuffle of (1,3,7,8,5) € [u] and (2,6,9,4) € [0]. See
Figure 2.
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Observation 3.17. Let A and B be disjoint sets of integers, of cardinalities 2 and b re-
spectively. For each u = (uq,uy,...,u;) € 64 and v = (v1,v2,...,v,) € Sp there are

% cyclic shuffles in [u] LWeye [0].

We apply this setting to prove Theorem 1.2 and deduce the following consequences.
Proposition 3.18. cQSym and cQSym ™ are graded rings.

Proposition 3.19. The structure constants of cCQSym and cQSym ™, with respect to the normal-
ized fundamental basis, are nonnegative integers.

4 Expansion of Schur functions in terms of fundamental
cyclic quasi-symmetric functions

Theorem 1.3 follows from Theorem 4.4 below. The cyclic descent map on SYT of a given
shape plays a key role in the proof; let us recall the relevant definition and main result
from [2].

Definition 4.1 ([2, Definition 2.1]). Let 7 be a finite set, equipped with a descent map
Des: T — 2["~1, where n > 1. A cyclic extension of Des is a pair (cDes, p), where
cDes: T — 2" isamap and p: T — T is a bijection, satisfying the following axioms:

forall Tin T
(extension) cDes(T) N [n—1] = Des(T),

(equivariance) cDes(p(T)) =1+ cDes(T),
(non-Escher) @ C cDes(T) C [n].

Example 4.2. Let 7 be &,,, the symmetric group on n letters equipped with the classical
descent map. The pair (cDes, p), with cDes defined as in (1.1) and p the cyclic shift,
satisfies the axioms of Definition 4.1.

The notion of a descent set for a standard Young tableau T of skew shape A/ is well
established (see, e.g., [11, p. 361]) . For the special case of rectangular shapes, Rhoades [10]
constructed a cyclic extension satisfying the axioms of Definition 4.1. For almost all skew
shapes there is a general existence result, as follows.

Theorem 4.3 ([2, Theorem 1.1]). Let A/ be a skew shape with n cells. The descent map Des
on SYT(A/u) has a cyclic extension (cDes, p) if and only if A/u is not a connected ribbon.
Furthermore, for all ] C [n], all such cyclic extensions share the same cardinalities #cDes ™ (]).

A constructive combinatorial proof of Theorem 4.3 was recently given in [8].
We shall now provide a cyclic analogue of the classical result [11, Theorem 7.19.7]
(first proved in [6, Theorem 7]).



10 Ron M. Adin, Ira M. Gessel, Victor Reiner, and Yuval Roichman

Theorem 4.4. For every skew shape A/ u of size n, which is not a connected ribbon, and for any
cyclic extension (cDes, p) of Des on SYT(A /),

s/\/]/t — Z mCyC(A I/:\CYC
Accal!

where
meY(A) = mY(]) = #{T € SYT(A/p) : cDes(T) = J} (V] € Acc2fl)).
Recall Postnikov’s toric Schur functions from [9].

Proposition 4.5. For every non-hook shape A, the coefficient of F e ] in sy is equal to the coeffi-
cient of s in the Schur expansion of Postnikov'’s toric Schur functzon Su(1)/1/u())-

By [9, Theorem 5.3] these coefficients are equal to certain Gromov-Witten invariants.

5 Enumerative applications

Theorem 1.2 implies the following analogue of the shuffling theorem [12, Ex. 3.161] (see
also [7, section 2.4]).

Proposition 5.1. Let A and B be two disjoint sets of integers. For each u € &4 and v € Gp,
the distribution of the cyclic descent set over all cyclic shuffles of [u] and [0] depends only on
cDes([u]) and cDes([]).

Consider now Z[[g]], the ring of formal power series in g, as a (free abelian) additive
group with generators (¢")5_,, and define a new product by

max(i, ])

goq:=q

extended linearly. We obtain a (commutative and associative) ring, to be denoted Z|[[g]] .
Consider also the ring Z|[[x]] = Z[[x1, x2,...]], and its subring Z[[x|],q consisting of
bounded-degree power series. Define a map ¥ : Z[[x]|,qa — Z|[q]]c by

‘P(x:.’fl . -x;:") = gk (k>0,ip <--- <ig, my,...,m>0)
and ¥ (1) := 1, extended linearly.
Observation 5.2. Y is a ring (Z-algebra) homomorphism.

Lemma 5.3. For any positive integer n,

04 (n— 7D+ rn—|J| -
T(Fily]c):mq Jr(l(_q)|£|)q * :(1_q)2(+ | 1)rqr (V] C [n]).
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Using Theorem 1.2 and Lemma 5.3 we prove

Theorem 5.4. Let A and B be two disjoint sets of integers with |A| = m and |B| = n. For each
u € Gy and v € Gp, the distribution of the cyclic descent number over all cyclic shuffles of [u]
and [v] is given by

> gedes() — (1 _ gymt Y (r +m — cdes(u) — 1) (r +n — cdes(v) — 1) '

o] [u]Leye o) f el ned

Theorem 5.4 implies Theorem 1.4. For other applications see the full version [1].

6 Open problems and final remarks

A Schur-positivity phenomenon, involving cyclic quasi-symmetric functions, was pre-
sented in Section 4. It is desired to find more results of this type. For example, it was
proved in [5, Cor. 7.7] that, for any 0 < k < n, the cyclic quasi-symmetric function

Z F n,Des(71)

mEG, :cdes(n—1)=k

is symmetric and Schur-positive. Computational experiments suggest the following re-
fined cyclic version.

Conjecture 6.1. For every @ C | C [n] the cyclic quasi-symmetric function

cyc . cyc
Z Fn,cDes( ) Z Fn,cDes(n)
ne6, eSS,
[cDes(m—1)]=[]] (3i) cDes(m1)=]+i

is symmetric and Schur-positive.

Cyclic descents were introduced by Cellini [3] in the search for subalgebras of Solomon’s
descent algebra. An important subalgebra of the descent algebra is the peak algebra.

Problem 6.2. Define and study cyclic peaks and a cyclic peak algebra.
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