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Abstract. The ring of cyclic quasi-symmetric functions is introduced in this paper.
A natural basis consists of fundamental cyclic quasi-symmetric functions; they arise
as toric P-partition enumerators, for toric posets P with a total cyclic order. The as-
sociated structure constants are determined by cyclic shuffles of permutations. For
every non-hook shape λ, the coefficients in the expansion of the Schur function sλ in
terms of fundamental cyclic quasi-symmetric functions are nonnegative. The theory
has applications to the enumeration of cyclic shuffles and SYT by cyclic descents.

1 Introduction

The graded rings Sym and QSym, of symmetric and quasi-symmetric functions, respec-
tively, have many applications to enumerative combinatorics, as well as to other branches
of mathematics; see, e.g., [11, Ch. 7]. This paper introduces two intermediate objects: the
graded ring cQSym of cyclic quasi-symmetric functions, and its subring cQSym−.

The rings Sym, QSym and cQSym may be defined via invariance properties. A formal
power series f ∈ Z[[x1, x2, . . .]] of bounded degree is symmetric if for any t ≥ 1, any two
sequences i1, . . . , it and j1, . . . , jt of distinct positive integers (indices), and any sequence
m1, . . . , mt of positive integers (exponents), the coefficients of xm1

i1
· · · xmt

it
and xm1

j1
· · · xmt

jt
in f are equal. We call f quasi-symmetric if for any t ≥ 1, any two increasing sequences
i1 < · · · < it and j1 < · · · < jt of positive integers, and any sequence m1, . . . , mt of
positive integers, the coefficients of xm1

i1
· · · xmt

it
and xm1

j1
· · · xmt

jt
in f are equal.

Definition 1.1. A cyclic quasi-symmetric function is a formal power series f ∈ Z[[x1, x2, . . .]]
of bounded degree such that, for any t ≥ 1, any two increasing sequences i1 < · · · < it
and i′1 < · · · < i′t of positive integers, any sequence m = (m1, . . . , mt) of positive integers,
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and any cyclic shift m′ = (m′1, . . . , m′t) of m, the coefficients of xm1
i1
· · · xmt

it
and xm′1

i′1
· · · xm′t

i′t
in f are equal.

Denote by cQSym the set of all cyclic quasi-symmetric functions, and by cQSymn the
set of all cyclic quasi-symmetric functions which are homogeneous of degree n. It will
be shown that cQSym is a graded ring; see Proposition 3.18.

Toric posets were recently introduced by Develin, Macauley and Reiner [4]. A toric
analogue of P-partitions is presented in Section 3.1. Toric P-partition enumerators, in the
special case of total cyclic orders, form a convenient Q-basis for a ring cQSym−, which
is a subring of cQSym. A slightly extended set actually forms a Q-basis for cQSym
itself. The elements of this basis are called fundamental cyclic quasi-symmetric functions, are
indexed by cyclic compositions of a positive integer n (equivalently, by cyclic equivalence
classes of nonempty subsets J ⊆ [n]), and are denoted Fcyc

n,[J]. Normalized versions of

them actually form Z-bases for cQSym and cQSym−; see Proposition 2.4.
A toric analogue of Stanley’s fundamental decomposition lemma for P-partitions [12,

Lemma 3.15.3], given in Lemma 3.11 below, is applied to provide a combinatorial inter-
pretation of the resulting structure constants in terms of shuffles of cyclic permutations
(more accurately, cyclic words), as follows.

For a finite set A of size a, let SA be the set of all bijections u : [a] → A, viewed as
words u = (u1, . . . , ua). Elements of SA will be called bijective words, or simply words. If
A is a finite set of integers, or any finite totally ordered set, define the cyclic descent set of
u ∈ SA by

cDes(u) := {1 ≤ i ≤ a : ui > ui+1} ⊆ [a], (1.1)

with the convention ua+1 := u1. The cyclic descent number of u is cdes(u) := |cDes(u)|.
A cyclic word [

⇀u] ∈ SA/Za is an equivalence class of elements of SA under the cyclic
equivalence relation (u1, . . . , ua) ∼ (ui+1 . . . , ua, u1, . . . , ui) for all i. A cyclic shuffle of
two cyclic words [

⇀u] and [
⇀v] with disjoint supports is the cyclic equivalence class [

⇀w]
represented by any shuffle w of a representative of [⇀u] and a representative of [⇀v]. The
set of all cyclic shuffles of [

⇀u] and [
⇀v] is denoted [

⇀u]�cyc [
⇀v], and is clearly a union of

cyclic equivalence classes.
The following cyclic analogue of Stanley’s shuffling theorem [11, Ex. 7.93] provides a

combinatorial interpretation for the structure constants of cQSym−.

Theorem 1.2. Let C = At B be a disjoint union of finite sets of integers. For each u ∈ SA and
v ∈ SB, one has the following expansion:

Fcyc
|A|,[cDes(u)] · F

cyc
|B|,[cDes(v)] = ∑

[
⇀
w] ∈ [

⇀
u]�cyc[

⇀
v]

Fcyc
|C|,[cDes(w)]

.

Recall that a skew shape is called a ribbon if it does not contain a 2× 2 square.
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Theorem 1.3. For every skew shape λ/µ which is not a connected ribbon, all the coefficients
in the expansion of the skew Schur function sλ/µ in terms of normalized fundamental cyclic
quasi-symmetric functions are nonnegative integers.

A more precise statement, which provides a combinatorial interpretation of the co-
efficients, is given in Theorem 4.4 below. The proof relies on the existence of a cyclic
extension of the descent map on standard Young tableaux (SYT) of shape λ/µ, which
was proved in [2]. Using Postnikov’s result regarding toric Schur functions, one deduces
that the coefficients in the expansion of a non-hook Schur function sλ in terms of funda-
mental cyclic quasi-symmetric functions are equal to certain Gromov-Witten invariants.

Applications to the enumeration of SYT and cyclic shuffles of permutations with
prescribed cyclic descent set or number follow from this theory. Using a ring homomor-
phism from cQSym to the ring of formal power series Z[[q]]�, with product defined by
qi � qj := qmax(i,j), Theorem 1.2 implies the following result.

Theorem 1.4. Let A and B be two disjoint sets of integers with |A| = m and |B| = n. For each
u ∈ SA and v ∈ SB the following holds.

1. If des(u) = i and des(v) = j then the number of shuffles of u and v with descent number
k is equal to (

m + j− i
k− i

)(
n + i− j

k− j

)
.

2. If cdes(u) = i and cdes(v) = j then the number of cyclic shuffles of [⇀u] and [
⇀v] with

cyclic descent number k is equal to

k(m− i)(n− j) + (m + n− k)ij
(m + j− i)(n + i− j)

(
m + j− i

k− i

)(
n + i− j

k− j

)
.

The group ring Z[Sn] has a distinguished subring, Solomon’s descent algebra Dn, with
basis elements

DI := ∑
π∈Sn

Des(π)=I

π (I ⊆ [n− 1]).

Cellini [3] and others looked for an appropriate cyclic analogue. We provide a partial
answer, using an operation dual to the product in Dn — the internal coproduct ∆n on
QSymn.

Theorem 1.5. cQSymn and cQSym−n are right coideals of QSymn with respect to the internal
coproduct:

∆n(cQSymn) ⊆ cQSymn⊗QSymn

and
∆n(cQSym−n ) ⊆ cQSym−n ⊗QSymn .

The structure constants for cQSym−n are nonnegative integers.
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Corollary 1.6. For n > 1 let c2[n]0,n be the set of equivalence classes, under cyclic rotations, of
subsets ∅ ( J ( [n]. Defining

cDA := ∑
π∈Sn

cDes(π)∈A

π (A ∈ c2[n]0,n),

the additive free abelian group

cDn := span Z{cDA : A ∈ c2[n]0,n}

is a left module for Solomon’s descent algebra Dn.

This is an extended abstract. Proofs and more details are given in the full version of
the paper [1].

2 The fundamental cyclic quasi-symmetric functions

Definition 2.1. For n ≥ 1 and a subset J ⊆ [n], denote by Pcyc
n,J the set of all pairs (w, k)

consisting of a word w = (w1, . . . , wn) ∈Nn and an index k ∈ [n] satisfying

(i) wk ≤ wk+1 ≤ . . . ≤ wn ≤ w1 ≤ . . . ≤ wk−1.

(ii) If j ∈ J \ {k− 1} then wj < wj+1, where indices are computed modulo n.

Example 2.2. Let n = 5 and J = {1, 3}. The pairs (12345, 1), (23312, 4) and (23122, 3) are
in Pcyc

5,{1,3} (see Figure 1), but the pairs (12354, 1), (22312, 4) and (23112, 3) are not.

1

2

3
4

5

∧

2

3

3
1

2

∧

2

3

1
2

2

∧

Figure 1: The pairs (12345, 1), (23312, 4) and (23122, 3) in Pcyc
5,{1,3}.
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Definition 2.3. Let c2[n] be the set of equivalence classes, under cyclic rotations, of sub-
sets ∅ ⊆ J ⊆ [n]. For any subset J ⊆ [n] and orbit A ∈ c2[n] define the fundamental cyclic
quasi-symmetric function corresponding to J or A by

Fcyc
n,J := ∑

(w,k)∈Pcyc
n,J

xw1 xw2 · · · xwn and Fcyc
n,A := Fcyc

n,J (∀J ∈ A).

The corresponding normalized fundamental cyclic quasi-symmetric function is

F̂cyc
n,A :=

1
n ∑

J∈A
Fcyc

n,J .

It is shown that these are all well-defined (i.e., independent of the choice of J ∈ A).

Proposition 2.4. For each n ≥ 1, the set
{

F̂cyc
n,A : A ∈ c2[n] \ {[∅]}

}
is a Z-basis for cQSymn.

For many combinatorial applications it is natural to consider a certain subring cQSym−n
of cQSymn. Define

cQSym−n := spanZ

{
F̂cyc

n,A : A ∈ c2[n] \ {[∅], [[n]]}
}

(n > 1),

as well as cQSym−1 := spanZ

{
F̂cyc

1,[[1]]

}
, cQSym−0 := Z, and cQSym− :=

⊕
n≥0 cQSym−n .

3 Toric posets and cyclic P-partitions

We recall toric posets from [4], and develop for them a theory of cyclic P-partitions. In par-
ticular, we provide a cyclic analogue of Stanley’s fundamental decomposition lemma for
P-partitions. Just as fundamental quasi-symmetric functions Fn,J are P-partition enumer-
ators for certain (labeled) total orders, the fundamental cyclic quasi-symmetric functions
Fcyc

n,J are cyclic P-partition enumerators for certain (labeled) total cyclic orders. This is
used to prove that cQSym− is a ring and to study its structure constants.

3.1 Toric DAGs, toric posets, and toric P-partitions

In this section,
⇀

D denotes a directed acyclic graph (DAG) with vertex set [n] := {1, 2, . . . , n}.
Usual P-partitions use posets instead of DAGs, but the toric analogue will require DAGs.

A
⇀

D-partition is a function f : {1, 2, . . . , n} → {0, 1, 2, . . .} for which

• f (i) ≤ f (j) whenever i→ j in
⇀

D, and

• f (i) < f (j) whenever i→ j in
⇀

D but i >Z j.
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Denote by A(
⇀

D) the set of all
⇀

D-partitions f .

Lemma 3.1. (Fundamental lemma of
⇀

D-partitions [12, Lemma 3.15.3]) For any DAG
⇀

D, one
has a decomposition of A(

⇀

D) as the following disjoint union:

A(
⇀

D) =
⊔

w∈L(
⇀
D)

A(⇀w),

where L(
⇀

D) is the set of all linear (total) orders which extend
⇀

D.

Definition 3.2. (i) i0 ∈ [n] is a source (respectively, sink) in
⇀

D if
⇀

D contains no arrows of
the form j→ i0 (respectively, of the form i0 → j).
(ii)

⇀

D′ is obtained from
⇀

D by a flip at i0 if i0 is either a source or a sink of
⇀

D and one
obtains

⇀

D′ by reversing all the arrows in
⇀

D incident with i0.
(iii) Define the equivalence relation ≡ on DAGs to be the reflexive-transitive closure of
the flips, that is,

⇀

D ≡
⇀

D′ if and only if there exists a (possibly empty) sequence of flips
one can apply starting with

⇀

D to obtain
⇀

D′.
(iv) A toric DAG is the ≡-equivalence class [

⇀

D] of a DAG
⇀

D.

Example 3.3. Here is an example of a toric DAG [
⇀

D1]:

4

3

cc

2

OO

1

;;

OO 1

4

cc

3

OO

2

;;

OO 2

1

cc

4

OO

3

;;

OO 3

2

cc

1

OO

4

;;

OO

Here is another toric DAG [
⇀

D2]:

1

2

::

4

dd

3

::dd

2 4

1

OO ::

3

OOdd 2

1

::

3

dd

4

::dd

3

2

::

4

dd

1

::dd

1 3

2

OO ::

4

OOdd 4

1

::

3

dd

2

::dd

Definition 3.4. Say that [
⇀

D2] torically extends [
⇀

D1] if there exist
⇀

D′i ∈ [
⇀

Di] for i = 1, 2 with
⇀

D′1 ⊆
⇀

D′2.

A certain toric extension, called the toric transitive closure, will be particularly im-
portant.
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Definition 3.5. (i) Say that i→ j is implied from toric transitivity in a DAG
⇀

D if there exist
in

⇀

D both a chain i1 → i2 → · · · → ik and a direct arrow i1 → ik such that i = ia, j = ib
for some 1 ≤ a < b ≤ k.
(ii) The toric transitive closure of

⇀

D is the DAG
⇀

P obtained by adding in all arrows i → j
implied from toric transitivity in

⇀

D.
(iii) A DAG

⇀

D is toric transitively closed if it equals its toric transitive closure.

Proposition 3.6. If
⇀

D1 ≡
⇀

D2, then
⇀

D1 is toric transitively closed if and only if so is
⇀

D2.

Definition 3.7. A toric DAG [
⇀

D] is a toric poset if
⇀

D is toric transitively closed for one of
its ≡-class representatives

⇀

D, or equivalently, by Proposition 3.6, for all such
⇀

D.

Definition 3.8. A total cyclic order is a toric poset with at least one (equivalently, all) of
its ≡-class representatives being a total (linear) order.

Denote by Ltor([
⇀

D]) the set of all total cyclic orders [
⇀w] which torically extend [

⇀

D].

Remark 3.9. Total cyclic orders may be geometrically visualized as n dots in a directed
cycle labeled by 1, . . . , n with no repeats. These configurations are called cyclic permuta-
tions, and will be used in the study of cyclic shuffles, see Figure 2.

Definition 3.10. A toric [
⇀

D]-partition is a function f : {1, 2, . . . , n} → {0, 1, 2, . . .} which is
a

⇀

D′-partition for at least one DAG
⇀

D′ in [
⇀

D]. Let Ator([
⇀

D]) denote the set of all toric
[
⇀

D]-partitions

Lemma 3.11. (Fundamental lemma of toric
⇀

D-partitions) For any DAG
⇀

D, one has a decompo-
sition of Ator([

⇀

D]) as the following disjoint union:

Ator([
⇀

D]) =
⊔

[
⇀
w]∈Ltor([

⇀
D])

Ator([
⇀w]).

3.2 Cyclic P-partition enumerators

Definition 3.12. Given a toric poset [
⇀

D] on {1, 2, . . . , n}, define its cyclic P-partition enu-
merator

Fcyc

[
⇀
D]

:= ∑
f∈Ator([

⇀
D])

x f (1)x f (2) · · · x f (n).

A special case yields the fundamental cyclic quasi-symmetric functions from Defini-
tion 2.3.

Proposition 3.13. If w ∈ Sn has cDes(w) = J, then Fcyc
[
⇀
w]

= Fcyc
n,J .

An immediate consequence of Lemma 3.11 is then the following.
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8
4

5

1

23

6

7

9

∧ ∈

3

7

85

1
∧

6

94

2

∧�cyc

Figure 2: [(8, 4, 5, 1, 2, 3, 6, 7, 9)] ∈ [(3, 7, 8, 5, 1)]�cyc [(6, 9, 4, 2)].

Proposition 3.14. For any toric poset [
⇀

D], one has the following expansion

Fcyc

[
⇀
D]

= ∑
[
⇀
w]∈Ltor([

⇀
D])

Fcyc
n,cDes(w)

.

We now use this fact to expand products of of basis elements {Fcyc
n,J } back in the same

basis. The key notion is that of a cyclic shuffle of two total cyclic orders.

First recall the notion of a shuffle of permutations. For a finite set A of size a, let SA
be the set of all bijections w : [a] → A, viewed as words w = (w1, . . . , wa). Elements of
SA will be called bijective words, a formal extension of permutations. Given two bijective
words u = (u1, . . . , ua) ∈ SA and v = (v1, . . . , vb) ∈ SB, where A and B are disjoint
finite sets of integers, a bijective word w ∈ SAtB is a shuffle of u and v if u and v are
subwords of w. Denote the set of all shuffles of u and v by u� v.

Definition 3.15. Let C = A t B be a disjoint union of finite sets. Fix two total cyclic
orders [⇀u] and [

⇀v], with representatives u = (u1, . . . , ua) ∈ SA and v = (v1, . . . , vb) ∈ SB.
A total cyclic order [

⇀w], with w ∈ SC, is a cyclic shuffle of [⇀u] and [
⇀v] if there exists a

representative w′ ∈ SC of [
⇀w] which is (equivalently, every representative of [

⇀w] is) a
shuffle of cyclic shifts of u and v, namely,

w′ ∈ u′� v′

for some cyclic shift u′ of u and cyclic shift v′ of v.
Denote the set of all cyclic shuffles of [⇀u] and [

⇀v] by [
⇀u]�cyc [

⇀v].

Example 3.16. Let A = {1, 3, 5, 7, 8} and B = {2, 4, 6, 9}, and fix u = (3, 7, 8, 5, 1) ∈ SA
and v = (6, 9, 4, 2) ∈ SB. An example of [

⇀w] ∈ [
⇀u]�cyc [

⇀v] is [(8, 4, 5, 1, 2, 3, 6, 7, 9)],
since w′ = (1, 2, 3, 6, 7, 9, 8, 4, 5) is a shuffle of (1, 3, 7, 8, 5) ∈ [

⇀u] and (2, 6, 9, 4) ∈ [
⇀v]. See

Figure 2.
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Observation 3.17. Let A and B be disjoint sets of integers, of cardinalities a and b re-
spectively. For each u = (u1, u2, . . . , ua) ∈ SA and v = (v1, v2, . . . , vb) ∈ SB there are
(a+b−1)!

(a−1)!(b−1)! cyclic shuffles in [
⇀u]�cyc [

⇀v].

We apply this setting to prove Theorem 1.2 and deduce the following consequences.

Proposition 3.18. cQSym and cQSym− are graded rings.

Proposition 3.19. The structure constants of cQSym and cQSym−, with respect to the normal-
ized fundamental basis, are nonnegative integers.

4 Expansion of Schur functions in terms of fundamental
cyclic quasi-symmetric functions

Theorem 1.3 follows from Theorem 4.4 below. The cyclic descent map on SYT of a given
shape plays a key role in the proof; let us recall the relevant definition and main result
from [2].

Definition 4.1 ([2, Definition 2.1]). Let T be a finite set, equipped with a descent map
Des : T −→ 2[n−1], where n > 1. A cyclic extension of Des is a pair (cDes, p), where
cDes : T −→ 2[n] is a map and p : T −→ T is a bijection, satisfying the following axioms:
for all T in T :

(extension) cDes(T) ∩ [n− 1] = Des(T),
(equivariance) cDes(p(T)) = 1 + cDes(T),

(non-Escher) ∅ ( cDes(T) ( [n].

Example 4.2. Let T be Sn, the symmetric group on n letters equipped with the classical
descent map. The pair (cDes, p), with cDes defined as in (1.1) and p the cyclic shift,
satisfies the axioms of Definition 4.1.

The notion of a descent set for a standard Young tableau T of skew shape λ/µ is well
established (see, e.g., [11, p. 361]) . For the special case of rectangular shapes, Rhoades [10]
constructed a cyclic extension satisfying the axioms of Definition 4.1. For almost all skew
shapes there is a general existence result, as follows.

Theorem 4.3 ([2, Theorem 1.1]). Let λ/µ be a skew shape with n cells. The descent map Des
on SYT(λ/µ) has a cyclic extension (cDes, p) if and only if λ/µ is not a connected ribbon.
Furthermore, for all J ⊆ [n], all such cyclic extensions share the same cardinalities #cDes−1(J).

A constructive combinatorial proof of Theorem 4.3 was recently given in [8].
We shall now provide a cyclic analogue of the classical result [11, Theorem 7.19.7]

(first proved in [6, Theorem 7]).
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Theorem 4.4. For every skew shape λ/µ of size n, which is not a connected ribbon, and for any
cyclic extension (cDes, p) of Des on SYT(λ/µ),

sλ/µ = ∑
A∈c2[n]0,n

mcyc(A) F̂cyc
n,A

where

mcyc(A) := mcyc(J) = #{T ∈ SYT(λ/µ) : cDes(T) = J}
(
∀J ∈ A ∈ c2[n]0,n

)
.

Recall Postnikov’s toric Schur functions from [9].

Proposition 4.5. For every non-hook shape λ, the coefficient of F̂cyc
n,[J] in sλ is equal to the coeffi-

cient of sλ in the Schur expansion of Postnikov’s toric Schur function sµ(J)/1/µ(J).

By [9, Theorem 5.3] these coefficients are equal to certain Gromov-Witten invariants.

5 Enumerative applications

Theorem 1.2 implies the following analogue of the shuffling theorem [12, Ex. 3.161] (see
also [7, section 2.4]).

Proposition 5.1. Let A and B be two disjoint sets of integers. For each u ∈ SA and v ∈ SB,
the distribution of the cyclic descent set over all cyclic shuffles of [⇀u] and [

⇀v] depends only on
cDes([⇀u]) and cDes([⇀v]).

Consider now Z[[q]], the ring of formal power series in q, as a (free abelian) additive
group with generators (qn)∞

n=0, and define a new product by

qi � qj := qmax(i,j),

extended linearly. We obtain a (commutative and associative) ring, to be denoted Z[[q]]�.
Consider also the ring Z[[x]] = Z[[x1, x2, . . .]], and its subring Z[[x]]bd consisting of

bounded-degree power series. Define a map Ψ : Z[[x]]bd → Z[[q]]� by

Ψ(xm1
i1
· · · xmk

ik
) := qik (k > 0, i1 < · · · < ik, m1, . . . , mk > 0)

and Ψ(1) := 1, extended linearly.

Observation 5.2. Ψ is a ring (Z-algebra) homomorphism.

Lemma 5.3. For any positive integer n,

Ψ(Fcyc
n,J ) =

|J|q|J| + (n− |J|)q|J|+1

(1− q)n = (1− q)∑
r

(
r + n− |J| − 1

n− 1

)
rqr (∀J ⊆ [n]).
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Using Theorem 1.2 and Lemma 5.3 we prove

Theorem 5.4. Let A and B be two disjoint sets of integers with |A| = m and |B| = n. For each
u ∈ SA and v ∈ SB, the distribution of the cyclic descent number over all cyclic shuffles of [⇀u]
and [

⇀v] is given by

∑
[
⇀
w]∈[⇀u]�cyc[

⇀
v]

qcdes(w) = (1− q)m+n ∑
r

(
r + m− cdes(u)− 1

m− 1

)(
r + n− cdes(v)− 1

n− 1

)
rqr.

Theorem 5.4 implies Theorem 1.4. For other applications see the full version [1].

6 Open problems and final remarks

A Schur-positivity phenomenon, involving cyclic quasi-symmetric functions, was pre-
sented in Section 4. It is desired to find more results of this type. For example, it was
proved in [5, Cor. 7.7] that, for any 0 < k < n, the cyclic quasi-symmetric function

∑
π∈Sn : cdes(π−1)=k

Fn,Des(π)

is symmetric and Schur-positive. Computational experiments suggest the following re-
fined cyclic version.

Conjecture 6.1. For every ∅ ( J ( [n] the cyclic quasi-symmetric function

∑
π∈Sn

[cDes(π−1)]=[J]

Fcyc
n,cDes(π)

= ∑
π∈Sn

(∃i) cDes(π−1)=J+i

Fcyc
n,cDes(π)

is symmetric and Schur-positive.

Cyclic descents were introduced by Cellini [3] in the search for subalgebras of Solomon’s
descent algebra. An important subalgebra of the descent algebra is the peak algebra.

Problem 6.2. Define and study cyclic peaks and a cyclic peak algebra.
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