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KRONECKER COEFFICIENTS FOR ONE HOOK SHAPE

JONAH BLASIAK

Abstract. We give a positive combinatorial formula for the Kronecker coefficient
gλµ(d) ν for any partitions λ, ν of n and hook shape µ(d) := (n − d, 1d). Our main
tool is Haiman’s mixed insertion. This is a generalization of Schensted insertion to col-
ored words, words in the alphabet of barred letters 1, 2, . . . and unbarred letters 1, 2, . . . .
We define the set of colored Yamanouchi tableaux of content λ and total color d (CYTλ,d)
to be the set of mixed insertion tableaux of colored words w with exactly d barred letters
and such that wblft is a Yamanouchi word of content λ, where wblft is the ordinary word
formed from w by shuffling its barred letters to the left and then removing their bars. We
prove that gλµ(d) ν is equal to the number of CYTλ,d of shape ν with unbarred southwest
corner.

1. Introduction

Let Sn be the symmetric group on n letters and Mν be the irreducible CSn-module
corresponding to the partition ν. Given three partitions λ, µ, ν of n, the Kronecker co-
efficient gλµν is the multiplicity of Mν in the tensor product Mλ ⊗Mµ. A fundamental
open problem in algebraic combinatorics, called the Kronecker problem, is to find a posi-
tive combinatorial formula for these coefficients. Although this problem has been studied
since the early twentieth century, a complete solution still seems out of reach. Connec-
tions to complexity theory [22, 23, 20, 21, 9] and quantum information theory [6, 8] have
sparked new interest in this problem in recent years.

Explicit combinatorial formulas for Kronecker coefficients have been found in the fol-
lowing cases. Lascoux [17], and later Remmel [25] and Rosas [28], gave formulas for the
case that λ and µ are hook shapes. Remmel [26], and later Rosas [28], gave formulas
for the case that λ is a two row shape and µ is a hook shape. The case that λ and µ
are two row shapes has received considerable attention and several different results have
been obtained that are not obviously equivalent: Remmel and Whitehead [27], Rosas [28],
Briand, Orellana, and Rosas [7], and Mulmuley and Sohoni and the author [5] obtained
formulas for this case. Ballantine and Orellana [1] gave a formula for the case where
µ = (n− p, p) and λ1 − λ2 ≥ 2p.

Note added. After this paper was written (September 2012), Hayashi [15] (published
April 2015, submitted March 2009) gave a positive combinatorial formula for the Kro-
necker coefficients when one of the shapes is a hook, the same case considered in this
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paper, using Zelevinsky pictures. Liu [19] (December 2014) gave a simplified description
and proof of the first rule described in this paper (Hook Kronecker Rule I). Liu and the
author [4] (October 2015) gave a new proof of this simplified rule using noncommutative
super Schur functions and used it to answer questions raised in §5.4.

1.1. Lascoux’s heuristic for Kronecker coefficients. This work began with the fol-
lowing computer experiment, first investigated by Lascoux in [17]: let Zλ be the super-
standard tableau of shape and content λ and Zst

λ its standardization. Let Γλ denote the
set of permutations with insertion tableau Zst

λ . Form the multiset of permutations

Γλ ◦ Γµ := {u ◦ v : u ∈ Γλ, v ∈ Γµ}, (1.1)

where ◦ denotes multiplication in Sn, i.e., composition of permutations. Then form the
multisets of insertion and recording tableaux:

P (Γλ ◦ Γµ) := {P (w) : w ∈ Γλ ◦ Γµ},
Q(Γλ ◦ Γµ) := {Q(w) : w ∈ Γλ ◦ Γµ}.

The set Γλ naturally labels a basis of Mλ. For instance, Γλ can be identified with a right
cell of the W -graph ΓW as defined by Kazhdan and Lusztig in [16], for W = Sn. A nice
solution to the Kronecker problem might assign labels to a basis of Mλ ⊗Mµ so that the
decomposition of Mλ ⊗Mµ into irreducibles is apparent from these labels. The following
two properties, if true for every partition ν of n, would make Γλ ◦Γµ a beautifully simple
candidate for such labels.

(A) For every T ∈ SYT(ν), the multiplicity of T in P (Γλ ◦ Γµ) is gλµνf
ν or 0.

(B) For every Bν ∈ SYT(ν), the multiplicity of Bν in Q(Γλ ◦ Γµ) is gλµν .

Here, SYT(ν) denotes the set of standard Young tableau of shape ν and f ν := |SYT(ν)|.

Theorem 1.1 (Lascoux’s Kronecker Rule [17]). If λ and µ are hook shapes, then (A) and
(B) hold for all ν.

Lascoux [17], and Garsia and Remmel [11, §6–7], both investigate the extent to which
this rule generalizes to other shapes. They give examples showing that it does not extend
beyond the hook hook case. As far as we know, this approach to the Kronecker problem
has not been pursued any further in the literature.

Our computations indicate, however, that (B) is amazingly close to being true in gen-
eral, and we therefore believe that there is much more to be gained from this experiment.
To give an idea of how close (B) comes to holding for general shapes, let mλµBν denote
the multiplicity in (B) and define the fractions

αλµν :=
∣∣{Bν ∈ SYT(ν) : gλµν = mλµBν

}∣∣/f ν .
Of the 42376 triples of partitions λ, µ, ν of 10 for which either gλµν or some mλµBν is
nonzero, 11112 of them satisfy αλµν = 1, 3703 of them satisfy αλµν ∈ [ 9

10
, 1), etc., as

indicated below. Note that the maximum size of a Kronecker coefficient for n = 10 is 117.
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This “approximate rule” does even better when µ is a hook shape and, in fact, we
conjecture that (B) holds for any ν when λ2 ≤ 2 and µ is a hook shape. While this
procedure only sometimes produces a multiset of permutations whose number is gλµν ,
when it does, it somehow miraculously avoids the difficulty encountered in many positivity
problems in algebraic combinatorics: a quantity that is known to be nonnegative is easily
expressed as the difference in cardinality of two natural sets of combinatorial objects but
finding an injection from the smaller of these sets to the larger is extremely difficult.

1.2. Kronecker coefficients for one hook shape and two arbitrary shapes. This
paper gives a way of modifying Γλ ◦Γµ in the case µ is a hook shape, using colored words
and mixed insertion, to obtain a positive combinatorial formula for Kronecker coefficients
for one hook shape and two arbitrary shapes. We now outline this rule.

A colored word is a word in the alphabet of barred letters {1, 2, . . . } and unbarred letters
{1, 2, . . . }. Let w be a colored word. The total color of w is the number of barred letters
in w. Define wblft to be the ordinary word formed from w by shuffling the barred letters to
the left and then removing their bars. We say that w is Yamanouchi of content λ if wblft

is Yamanouchi of content λ. For example, if w = 1 3 1 1 2 2 2 1, then wblft = 3 1 2 2 1 1 2 1,
and these are Yamanouchi of content (4, 3, 1).

Set µ(d) := (n− d, 1d). We define CYWλ,d to be the set of colored Yamanouchi words
of content λ and total color d; Figure 1 depicts the case where λ = (3, 1, 1), d = 2. This
replaces the multiset of permutations Γλ ◦

(
Γµ(d)tΓµ(d−1)

)
in the experiment above. This

will be fully explained in §5.4, but for now we remark that if P (v) = Zst
µ has hook shape,

then we can color u ◦ v in such a way that it allows us to recover u and v from u ◦ v.

Mixed insertion is a generalization of Schensted insertion to colored words, developed
by Haiman in [14]. Its chief advantage for this work is that it is simultaneously com-
patible with any ordering of colored letters in which 1 < 2 < · · · and 1 < 2 < · · ·
(see Proposition 2.19 for a precise statement). Let CYTλ,d (respectively CYT≺λ,d) de-
note the set of mixed insertion tableaux of the words in CYWλ,d using the natural order
1 < 1 < 2 < 2 < · · · (respectively the small bar order 1 ≺ 2 ≺ · · · ≺ 1 ≺ 2 < · · · ); see
Figure 2.

For any set of tableaux ST, let ST(ν) denote the subset of ST consisting of tableaux of
shape ν. It is easy to show that CYT≺λ,d(ν) has size gλµ(d) ν + gλµ(d−1) ν (Proposition 3.1).

This is in some sense not new. For example, the CYT≺λ,d are closely related to the (k, l)
tableaux and hook Schur functions of Berele and Regev [3] (see Remark 3.2).

What is genuinely new here is the use of mixed insertion for both the orders < and
≺. The miracle in this setup is that it is easy to identify a subset of CYTλ,d(ν) having
cardinality gλµ(d) ν : it is the subset of tableaux with unbarred southwest corner (the
tableaux in bold in Figure 2; also see Figure 3). We call this combinatorial formula for
gλµ(d) ν Hook Kronecker Rule I. Quite mysteriously, it is easy to give a condition that
detects whether a tableau is the mixed insertion tableau of a colored Yamanouchi word
using the small bar order, but difficult to do so for the natural order, i.e., CYT≺λ,d(ν) is
easier to describe than CYTλ,d(ν), whereas the condition that the southwest corner is
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Figure 1: The set CYW(3,1,1),2. Edges are Knuth transformations of the words obtained
by applying neg. Column labels correspond to applying blft, and the positions of the barred
letters are constant along rows. The color raisable words are shown in bold.

unbarred is immediate to check in the natural order, but the corresponding condition in
the small bar order is difficult to describe.

We define the color lowering operator to be the operation that removes the bar on the
southwest entry of a colored tableau (if it is barred). One of the main tasks in this paper
is to understand the corresponding operator on colored words. This operator is more
subtle and involves rotation of a certain subword once to the right. Once this operator is
understood, the proof of Hook Kronecker Rule I is not difficult; it also allows us to prove
two somewhat more versatile versions of this rule (Hook Kronecker Rules II and III). We
also show that Hook Kronecker Rule I easily generalizes to skew shapes ν (Hook Kronecker
Rule IV).
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Figure 2: The mixed insertion tableaux of the words in the previous figure (which are
constant on connected components). This set of tableaux is CYT(3,1,1),2 and the tableaux
in bold are those with unbarred southwest corner (CYT−(3,1,1),2).

1.3. Organization. This paper is organized as follows: Section 2 gives the necessary
background on colored tableaux and mixed insertion and also establishes (§2.7) some
important facts about the operator blft and a related operator neg. In Section 3, we show
that |CYTλ,d(ν)| = gλµ(d) ν + gλµ(d−1) ν and officially state Hook Kronecker Rule I. In
Section 4, we define a color lowering operator on words and relate it to the color lowering
operator; we then use this to complete the proof of our rule. Finally, Section 5 gives three
more versions of our rule, discusses symmetries of these rules, and explains how they are
related to Lascoux’s Kronecker Rule.
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2. Colored tableaux and Haiman’s insertion algorithms

We begin this section with basic definitions of colored words and tableaux, and operators
on these objects (§2.1–2.2). Then, after fixing some notation for Schensted insertion
(§2.3), we review Haiman’s insertion algorithms and conversion [14] (§2.4–2.6). Finally,
we establish some important facts about the operator blft and a related operator neg (§2.7).
Almost all of the results in this section are restatements or easy consequences of results
from [14]. Shimozono and White [29] also give a nice exposition of this background, and
we follow much of their notation.

2.1. Words. A word is a sequence of (not necessarily distinct) letters from some totally
ordered alphabet. A subword of a word w1w2 · · ·wn is a word of the form wk1wk2 · · ·wkl ,
k1 < k2 < · · · < kl. We say that i is the place of wi and k = k1k2 · · · kl is the place word
of wk1wk2 · · ·wkl ; we also set wk = wk1wk2 · · ·wkl .

The set {1, 2, . . .} is the alphabet of unbarred letters or ordinary letters and the set
{1, 2, . . .} is the alphabet of barred letters. An ordinary word is a word in the alphabet
of ordinary letters. A colored word is a word in the alphabet A = {1, 2, . . .} ∪ {1, 2, . . .}
of barred and unbarred letters. We typically write w = w1w2 · · ·wn to denote a colored
word of length n, where each wi denotes a colored letter which could be either barred or
unbarred. Also, we often use the symbol x for an unbarred letter, while α, β, and η are
used for a colored letter which could be either barred or unbarred. For a colored letter α,
define α∗ := x if α = x and α∗ := x if α = x.

Let w = w1w2 · · ·wn be a colored word. The total color tc(w) of w is the num-
ber of barred letters in w. We write sub (w) for the subword of barred letters of w
and sub∅(w) for the subword of unbarred letters. We let w∗ denote the colored word
(w1)

∗(w2)
∗ · · · (wn)∗. The ordinary word wblft is formed from w by shuffling the barred

letters to the left and then removing their bars; precisely, wblft = sub (w)∗sub∅(w). This
operator will be studied further in §2.7.

The content of an ordinary word y is the sequence (c1, c2, . . . , cm), where ci is the
number of occurrences of i in y and m is the largest letter of y. The content of a colored
word w is the content of wblft. A colored permutation is a colored word with content (1n).

The reverse of a word w = w1w2 · · ·wn, denoted wrev, is the word wnwn−1 · · ·w1. The
upside-down word of a colored permutation v = v1v2 · · · vn, denoted vud, is the colored
permutation obtained by replacing each barred letter x by n+ 1− x and each unbarred
letter x by n+ 1− x. The inverse of a colored permutation v is the colored permutation
vinv for which (vinv)i = j if vj = i and (vinv)i = j if vj = i. If colored permutations are
identified with signed permutation matrices (with barred letters corresponding to matrix
entries equal to −1), then the matrix for vinv is just the transpose of the matrix for v.

Example 2.1. The colored word w below has content (4, 4, 1) and total color 5. The
word v below is a colored permutation, equal to the standardization wst of w (defined
below).
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w = 3 1 2 1 2 2 1 2 1

sub∅(w) = 2 1 2 1

sub (w) = 3 1 2 2 1

wblft = 3 1 2 2 1 2 1 2 1

w∗ = 3 1 2 1 2 2 1 2 1

v = 9 1 7 3 5 6 2 8 4

vrev = 4 8 2 6 5 3 7 1 9

vud = 1 9 3 7 5 4 8 2 6

vinv = 2 7 4 9 5 6 3 8 1

We will work mostly with the following two orders on A:

the natural order 1 < 1 < 2 < 2 < · · · ,
the small bar order 1 ≺ 2 ≺ 3 ≺ · · · ≺ 1 ≺ 2 ≺ · · · .

We reserve the symbol l for an arbitrary total order on A. Certain objects and operations
in this paper are defined for any order l and we indicate this by a superscript, i.e., Pl

m

will denote mixed insertion with respect to the order l; if no order is specified, then we
mean the natural order <.

For any order l on A and colored word w, the standardization of w with respect to
l, denoted wstl , is the colored permutation obtained from w by first relabeling, from left
to right, the occurrences of the smallest letter in w by 1, . . . , k (respectively 1, . . . , k) if
this letter is unbarred (respectively barred), then relabeling the occurrences of the next
smallest letter of w by k + 1, . . . , k + k′ (respectively k + 1, . . . , k + k′) if this letter is
unbarred (respectively barred), and so on. For a colored word w and letter α, sublα(w)
denotes the subword of w consisting of the letters lα.

2.2. Tableaux. A partition λ of n is a weakly decreasing sequence (λ1, . . . , λl) of non-
negative integers that sum to n. We also write λ ` n to mean that λ is a partition of
n.

The Ferrers diagram or shape of a partition λ is the array of square cells, left-justified,
with λi cells in row i. Ferrers diagrams are drawn with the English (matrix-style) con-
vention so that row (respectively column) labels start with 1 and increase from north to
south (respectively west to east). Write µ ⊆ λ if the shape of µ is contained in the shape
of λ. If µ ⊆ λ, then λ/µ denotes the skew shape obtained by removing the cells of µ
from the shape of λ. The notation λ⊕ µ denotes the skew shape constructed by placing
translates of shapes λ and µ so that all cells of µ are above and to the right of all cells of
λ. The conjugate partition λ′ of a partition λ is the partition whose shape is the transpose
of the shape of λ.

A tableau T of shape λ/µ is the Ferrers diagram of λ/µ together with a letter occupying
each of its cells. The size of T is the number of cells of T , and sh(T ) denotes the shape
of T . The notation T t denotes the transpose of T , so that sh(T t) = sh(T )′.
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Just as for shapes, T ⊕ U denotes the tableau constructed by placing translates of
tableaux T and U so that all cells of U are above and to the right of all cells of T . Given
a cell z and (skew) shape θ, say that z is addable to θ if θ ∩ z = ∅ and θ t z is a skew
shape. If T is a tableau, α a letter, and the cell z at position (r, c) is addable to sh(T ),
then T t α

(r,c) denotes the result of adding the cell z to T and filling it with α.

A semistandard tableau or ordinary tableau is a tableau in the alphabet of ordinary
letters in which entries strictly increase from north to south in each column and weakly
increase from west to east in each row. The content of a semistandard tableau T is the
sequence (c1, c2, . . . , cm), where ci is the number of occurrences of i in T and m is the
largest letter of T . A standard tableau is a semistandard tableau of content 1n. The set
of standard Young tableaux is denoted SYT and the subset of SYT of shape λ is denoted
SYT(λ). The row reading word of a semistandard tableau T , denoted rowword(T ), is the
word obtained by concatenating the rows of T from bottom to top.

Let Zλ be the superstandard tableau of shape and content λ—the tableau whose i-
th row is filled with i’s. For an SYT Q, Qev denotes the Schützenberger involution or
evacuation of Q (see, e.g., [10, A1.2]).

A semistandard colored tableau, or colored tableau for short, for the order l is a tableau
with entries in A such that unbarred letters strictly increase from north to south in each
column and weakly increase from west to east in each row, and barred letters weakly
increase from north to south in each column and strictly increase from west to east in
each row. The set of colored tableaux for the order l is denoted CTl (and CT := CT<).
The content of a colored tableau T is the content of the ordinary tableau obtained by
removing the bars on all the entries of T . A standard colored tableau is a colored tableau
of content 1n. The standardization of a colored tableau T for the order l, denoted T stl , is
defined as for colored words, except that barred letters are relabeled from top to bottom
and unbarred letters from left to right.

Remark 2.2. Many of the algorithms used in this paper, like insertion and conversion,
depend on knowing when one letter in a word or tableau is less than or greater than
another. For semistandard objects, when the two letters being compared are equal, the
tie is resolved by checking which letter is larger than the other after standardizing.

Example 2.3. The tableau T =
1 1 2 2 3

1 2

2

is a colored tableau for the order < of content

(3, 4, 1), shape (5, 2, 1), and total color 5. The standardization of T is T st =
1 3 6 7 8

2 4

5

.

The cell at position (2, 3) is an addable cell of T and T t 3 (2,3) =
1 1 2 2 3

1 2 3

2

.

Just as for words, we write sublα(T ) for the subtableau of T ∈ CTl consisting of the
letters lα. Let T ∗ denote the colored tableau obtained from T by applying ∗ to all the
letters and then transposing the result. This is always a colored tableau, but not for the
same order as T , in general. We will avoid this issue by only applying ∗ to standard
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colored tableaux or colored tableaux having only barred letters (also see Remark 2.9).
Let T be a colored tableau for the order ≺. Just as for words, define sub (T ) to be the
subtableau consisting of the barred letters of T and sub∅(T ) to be the skew subtableau
consisting of the unbarred letters of T (see Example 2.23).

2.3. Schensted insertion and the plactic monoid. The insertion algorithms in this
paper use the notion of inserting a letter α into a row or column R of a CTl. By
Remark 2.2, it suffices to give this definition in the case that the letters of R are distinct
and distinct from α. In this case, inserting α into R means that α replaces the least letter
β m α in R or, if no such β exists, adds a new cell containing α to the end of R. In the
former case, we say that α bumps β.

For a colored word w, the insertion tableau and recording tableau of w, P (w) and Q(w),
are defined using the usual Schensted insertion algorithm using the order < and breaking
ties by Remark 2.2.

For ordinary words u and v, we write u ∼ v to indicate that u and v are Knuth equivalent
or plactic equivalent. Knuth equivalence classes, under the operation of concatenation,
form a free associative monoid called the plactic monoid. The Knuth equivalence class
containing u may be identified with the semistandard tableau P (u), and any (skew)
semistandard tableau T may be identified with the Knuth equivalence class containing
rowword(T ). Therefore, for ordinary words u and u′, we allow such expressions as uu′ ∼
P (u)⊕ P (u′) ∼ rowword(P (u)) rowword(P (u′)) in the plactic monoid.

2.4. Mixed insertion. Here we review mixed insertion, as developed by Haiman in [14].
Mixed insertion was actually first defined by Berele and Regev in [3] and also studied by
Remmel in [24]. Haiman’s treatment goes somewhat deeper and relates mixed insertion
to an operation called conversion. This relationship is of fundamental importance for
this work and roughly means that mixed insertion is simultaneously compatible with any
ordering of colored letters in which 1 < 2 < · · · and 1 < 2 < · · · .

Definition 2.4 (Mixed insertion [14]). Let w = w1 . . . wn be a colored word and T0 a
colored tableau for the order l. Construct a sequence T0, T1, . . . , Tn = T of CTl: for
each i = 1, . . . , n form Ti from Ti−1 by mixed inserting wi as follows:

If wi is unbarred, insert wi (using the order l) into the first row of Ti−1; if it is barred,
into the first column. As each subsequent element α of Ti−1 is bumped by an insertion,
insert α into the row immediately below if it is unbarred, or into the column immediately
to its right if it is barred. Continue until an insertion takes place at the end of a row or
column, bumping no new element.

We say that T = T0
m←− w is the mixed insertion of w into T0. If T0 = ∅, then T is the

mixed insertion tableau of w for the order l and is denoted Pl
m(w); the mixed recording

tableau of w for the order l, denoted Ql
m(w), is the SYT with the letter i in the cell

sh(Ti)/sh(Ti−1).
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For the mixed insertion of a single letter α, the insertion path of T0
m←− α is the

sequence of cells containing the letters bumped during the mixed insertion, followed by
the cell added at the end.

See Example 2.20 for an example of mixed insertion.

Definition 2.5 (Dual mixed insertion). Following [29, §3.4] (see also [14, Remark 8.5]),
define the dual mixed insertion of the colored word w into the colored tableau T0, denoted

T0
dm←− w, to be the same as mixed insertion except with barred letters treated as if they

are unbarred and vice versa. As for mixed insertion, this may be done with respect to
any order l on A.

We now assemble some basic facts about mixed and dual mixed insertion for later use.

Proposition 2.6 ([14, Proposition 3.3]). Let α be a colored letter in w. Then

Pl
m(sublα(w)) = sublα(Pl

m(w)).

Proposition 2.7 ([14, Remark 8.5]). For a colored word w = w1 · · ·wn

Pl
m(w2w3 · · ·wn)

dm←− w1 = Pl
m(w).

The next proposition follows easily from the definitions.

Proposition 2.8. Standardization commutes with many of the operations in this paper:

P (w)st = P (wst),

Q(w) = Q(wst),

Pl
m(w)

stl
= Pm(wstl),

Ql
m(w) = Qm(wstl),

wblft st = wst blft,

for any colored word w and total order l on A.

Remark 2.9. The operators ∗ and rev do not commute with standardization. For example,
(1 1 1)∗ st = 2 3 1, whereas (1 1 1)st ∗ = 1 2 3; (1 1 1)rev st = 1 2 3, whereas (1 1 1)st rev =
3 2 1. We therefore only apply these operators to colored permutations. Similarly, as
commented in §2.2, the operator ∗ on colored tableaux will only be applied to standard
colored tableaux and colored tableaux having only barred letters. Left-right insertion also
does not commute with the version of standardization used in this paper.

Remark 2.10. Shimozono and White [29] use the convention that barred letters stan-
dardize from right to left in words and from left to right in colored tableaux, whereas
we use the convention, in agreement with the introduction of [14], that barred letters
standardize from left to right in words and from top to bottom in colored tableaux. With
either of these conventions, standardization commutes with mixed insertion.
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The Schensted insertions of u, urev, uud, and uud rev, for an ordinary permutation u, are
related by

P (urev) = P (u)t and Q(urev) = Q(u)ev t, (2.1)

P (uud) = P (u)ev t and Q(uud) = Q(u)t, (2.2)

P (uud rev) = P (u)ev and Q(uud rev) = Q(u)ev. (2.3)

These well-known facts are nicely explained in [10, A1.2]. Some similar results hold for
mixed insertion as well (though be warned that ud is not compatible with mixed insertion
in a simple way); these are proved in Propositions 3.4 and 8.3 and Corollary 8.4 of [14].

Proposition 2.11. The operators ∗ and rev have the following effect on mixed insertion:

(i) Pm(w∗) = Pm(w)∗,

(ii) Qm(w∗) = Qm(w)t,

(iii) Pm(wrev) = Pm(w)t,

(iv) Qm(wrev) = Qm(w)ev t,

where w is any colored permutation1.

2.5. Left-right insertion. The algorithm which is dual to mixed insertion under inverses
is left-right insertion. Schensted insertion of an ordinary letter into a semistandard tableau
is also called row insertion or right insertion. The transposed version of Schensted which
bumps letters by columns is called column insertion or left insertion.

Definition 2.12 (Left-right insertion [14]). Let w = w1 · · ·wn be a colored word. Con-
struct a sequence T0, T1, . . . , Tn = T of semistandard tableaux: put T0 = ∅; for each
i = 1, . . . , n form Ti from Ti−1 by left inserting w∗i if wi is barred and right inserting wi if
wi is unbarred.

We say that T = T0
lr←− w is the left-right insertion of w into T0. If T0 = ∅, then T is

the left-right insertion tableau of w, denoted T = Plr(w). Let Q be the recording tableau
for the sequence ∅ ⊂ sh(T1) ⊂ · · · ⊂ sh(Tn) = sh(T ). The left-right recording tableau of
w, denoted by Qlr(w), is obtained from Q by barring those letters of Q in cells added by
left insertions; that is, j is barred in Qlr(w) if and only if wj is barred in w. The insertion

path of T0
lr←− α is defined just as for mixed insertion.

Proposition 2.13. Let w = w1 · · ·wn be a colored permutation with largest letter wk (for
the order <), and set w′ = w1 · · ·wk−1wk+1 · · ·wn. Let Q′ be the tableau obtained from
Qm(w′) by replacing n − 1 with n, n − 2 with n − 1, . . ., k with k + 1 (this leaves the
standardization of this recording tableau unchanged). Then

Pm(w) = Pm(w′) t wk(r,c) and Qm(w) = Q′
lr←− (winv)n,

where (r, c) is the position of the cell sh(Qm(w))/sh(Q′).

1This proposition holds more generally for any colored word with content consisting of 1’s and 0’s.
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Note that (winv)n is k if wk is unbarred and k if wk is barred, so the left-right insertion of
(winv)n is simply the row (respectively column) insertion of k if wk is unbarred (respectively
barred).

Proof. Set (winv)L = (winv)1(w
inv)2 · · · (winv)n−1. By Theorem 4.3 of [14],

Qm(w) = Plr(w
inv), (2.4)

Qm(w′) = Plr((w
′)inv), (2.5)

Pm(w) = Qlr(w
inv), (2.6)

Pm(w′) = Qlr((w
′)inv). (2.7)

Since (winv)L is obtained from (w′)inv the same way Q′ is obtained from Qm(w′), (2.5)
gives Q′ = Plr((w

inv)L). Combining this with (2.4), we obtain

Qm(w) = Plr(w
inv) = Plr((w

inv)L)
lr←− (winv)n = Q′

lr←− (winv)n.

Similarly, (2.6), (2.7), and the relation between (winv)L and (w′)inv just mentioned give

Pm(w) = Qlr(w
inv) = Qlr((w

inv)L) t wk(r,c) = Qlr((w
′)inv) t wk(r,c) = Pm(w′) t wk(r,c). �

Remark 2.14. Left-right insertion and Proposition 2.13 are better understood using
biwords. In fact, left-right insertion and mixed insertion can both be viewed as special
cases of doubly mixed insertion of doubly colored biwords, as is explained in [29]. However,
for this paper we have decided that this cleaner setup is not worth the notational overhead.

2.6. Conversion. For any total order l on A and permutation σ of A, let lσ denote
the total order on A in which σ−1(α)lσ σ−1(β) if and only if αl β. For k ∈ Z≥1 ∪ {∞},
let <k denote the order

1 <k 2 <k · · · <k k <k 1 <k 2 <k · · · <k k <k

k + 1 <k k + 1 <k k + 2 <k k + 2 <k · · · .

Hence <1=<, <∞=≺, and (<k)σ =<k+1, where σ is the cycle (1 2 · · · k k + 1).

Definition 2.15 (Conversion [14]). We first define conversion for a colored tableau T with
no repeated letter. Let α be any letter in T and β be a letter not in T . The operation of
converting α to β in T is as follows:

First, replace α with β. What results is not in general a colored tableau since β may
be too large or too small, relative to neighboring letters. As long as that is the case,
repeatedly perform exchanges : if β is greater than its neighbor below or to the right,
exchange β with the lesser (or only) one of these neighbors; if instead β is less than its
neighbor above or to the left, exchange β with the greater (or only) one of these.

The resulting tableau is denoted T (α→ β).

We have found it convenient to sometimes think of conversion in a slightly different way,
a perspective which is also adopted in [2, Algorithm 2.4]. Instead of changing the letter in
a cell, we keep the letters the same and change the order on the alphabet. Then replacing
one letter with another can be accomplished by converting the current order l to lσ for



KRONECKER COEFFICIENTS FOR ONE HOOK SHAPE 13

some cycle σ. Hence, for a colored tableau T for the order <k with no repeated letter, we
define T (<k→<k+1) to be the result of repeatedly performing exchanges between k + 1
and letters in {1, . . . , k} until T is semistandard for the order <k+1. Similarly, the inverse
of this procedure is denoted U(<k+1→<k), which converts a colored tableau U for the
order <k+1 to a colored tableau for the order <k. Finally, we define

T (<k→<l) := T (<k→<k+1)(<k+1→<k+2) · · · (<l−1→<l) if k < l,

T (<k→<l) := T (<k→<k−1)(<k−1→<k−2) · · · (<l+1→<l) if k > l.

Remark 2.16. Benkart, Sottile, and Stroomer [2] explain conversion as a special case
of switching, an operation which takes two tableaux with a common border and moves
them through each other using a sequence of exchanges. They show that many different
sequences of exchanges can be used to compute a given switch. Hence, for instance,
the particular sequence of exchanges prescribed above to convert from < to ≺ is just a
convenient choice—many other sequences would work as well.

For a general semistandard colored tableau T for the order l, conversion is defined
from the above definition using Remark 2.2. This means that T (<k→<k+1) is accom-
plished by performing exchanges between the topmost k + 1 and {1, . . . , k} until no more
exchanges can be performed, then performing exchanges between the second topmost
k + 1 and {1, . . . , k} until no more exchanges can be performed, etc. To be careful, there
is something to check here, which is that the result of this procedure is a semistandard
colored tableau for the order <k+1. This is true because this conversion, in the language
of [2], is obtained by switching the subtableaux T |{k+1} and T |[k] of T (and leaving the

remainder of T fixed). Here, T |S, S ⊆ A, denotes the subtableau of T consisting of the
letters in S.

Example 2.17. The colored tableau on the left is converted from the small bar order
to the natural order by converting each barred letter, from largest to smallest (keeping
in mind Remark 2.2). As indicated below, the conversions <3→<2 and <2→< each take
two steps, where the occurrences of 3 and 2 are converted from bottommost to topmost.

1 2 3 1

1 3 4 2

2 1 1 3

1 2 4

3 5

≺→<3

1 2 3 1

1 3 1 2

2 1 3 4

1 2 4

3 5

<3→<2

bottom 3

1 2 3 1

1 1 1 2

2 2 3 4

1 3 4

3 5

<3→<2

top 3

1 2 1 1

1 1 2 3

2 2 3 4

1 3 4

3 5

<2→<
bottom 2

1 2 1 1

1 1 2 3

1 2 3 4

2 3 4

3 5

<2→<
top 2

1 1 1 1

1 2 2 3

1 2 3 4

2 3 4

3 5

Given the discussion above, it is not hard to verify the following fact.

Proposition 2.18. Conversion commutes with standardization in the following sense:

if T ∈ CT<k and the topmost (respectively bottommost) k + 1 in T is relabeled by l
(respectively m) in T stk , then

T (<k→<k+1)stk+1 = T stk(<l−1→<m).

(We have abbreviated st<
k

by stk.) A similar statement holds for any conversion <k→<k′.
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Proposition 2.19. Converting between the small bar order and natural order commutes
with mixed insertion in the following sense:

Pm(w) = P≺m (w)(≺→<), (2.8)

P≺m (w) = Pm(w)(<→≺), (2.9)

Qm(w) = Q≺m(w). (2.10)

Proof. By Propositions 2.8 and 2.18, we can assume that w is a colored permutation.
Corollary 3.16 of [14], adjusted to the notation at the end of Definition 2.15, states

that P<k+1

m (w) = P<k

m (w)(<k→<k+1). Repeated application then yields (2.8). The proof
of (2.9) is similar. Finally, applying (2.8) to every initial subword w1 · · ·wk of w =
w1w2 · · ·wn, we get (2.10). �

Example 2.20. Let w = 3 1 2 1 2 2 1 2 1. The sequence of tableaux produced in computing
Pm(w) is shown on the next line, and below that the sequence for P≺m (w).

3 1 3 1 2 3
1 1 3

2

1 1 3

2

2

1 1 3

2

2

2

1 1 3

1 2

2

2

1 1 2 3

1 2

2

2

1 1 1 3

1 2 2

2

2

3 1 3 1 3 2
1 3 1

2

1 3 1

2

2

1 3 1

2

2

2

1 2 3

1 1

2

2

1 2 3 2

1 1

2

2

1 2 3 1

1 1 2

2

2

By Proposition 2.19, each tableau T on the top line is related to the tableau U below
it by U = T (<→≺). The mixed recording tableaux for the orders < and ≺ encode the
sequence of shapes above:

Qm(w) = Q≺m(w) =

1 2 3 8

4 7 9

5

6

.

2.7. The operators neg and blft. Here we study two operators, neg and blft, which take
colored words to ordinary words. We will see that the insertion tableaux of wneg and wblft

can both be computed from the mixed insertion tableau of w.

Let w be a colored word. The ordinary word wneg is formed from w by replacing each
barred letter x with the unbarred letter2 −x. Unfortunately, in order to make neg commute
with standardization, we must adopt the convention that negative numbers standardize
from right to left. To avoid this confusion, we will standardize before applying neg.

The operator neg was defined and studied in [29]. The next result is [29, Proposition 14]
(which is an easy consequence of Haiman’s Theorem 3.12 [14]).

Proposition 2.21. Let x1 < x2 < · · · < xk be the barred letters of a colored permutation
v. Then

(i) Pm(v)(x1 → −x1)(x2 → −x2) · · · (xk → −xk) = P (vneg),

2We must add −1 > −2 > · · · to our alphabet of ordinary letters.
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(ii) Qm(v) = Q(vneg).

Recall that the ordinary word wblft is formed from w by shuffling the barred letters to
the left and then removing their bars. Given a colored tableau T for the order <k, let
T ′ = T (<k→≺). We define T blft to be the ordinary straight-shape tableau P such that
P ∼ sub (T ′)∗ ⊕ sub∅(T ′).

Let v be a colored permutation. Let vrev denote the colored permutation obtained
from v by reversing its subword of barred letters (keeping the unbarred letters fixed).
Let vud = vinv rev inv denote the colored permutation obtained from v by replacing the
smallest barred letter with the largest barred letter, the second smallest barred letter
with the second largest barred letter, and so on. We also define vrev∅ = v∗ rev ∗ and
vud∅ = v∗ ud ∗. For example,

(2 4 3 1 8 7 6 5)rev = 2 6 7 1 8 3 4 5,

(2 4 3 1 8 7 6 5)ud = 2 7 8 1 3 4 6 5,

(2 4 3 1 8 7 6 5)rev∅ = 5 4 3 1 8 7 6 2,

(2 4 3 1 8 7 6 5)ud∅ = 2 4 3 5 8 7 6 1.

Proposition 2.22. For any colored word w and colored permutation v,

(i) Pm(w)blft = P (wblft),

(ii) Qm(vrev inv) = Plr(v
rev ) = P (vblft),

(iii) Qm(vinv rev ) = Plr(v
ud ) = P (vud rev blft),

(iv) The tableau P := P (vud rev blft) can be computed from U := Pm(v) as follows:
let U ′ = U(<→≺); then P is the ordinary straight-shape tableau P such that
P ∼ sub (U ′)∗ ev ⊕ sub∅(U ′).

Proof. By Propositions 2.18 and 2.8, T blft st = T st blft for any CT T . Together with
Proposition 2.8, this implies that we can assume w is a colored permutation. Let T ′ =
Pm(w)(<→≺). By Proposition 2.19, T ′ = P≺m (w). Then by Proposition 2.6 with the order
≺, sub (T ′) = P≺m (sub (w)). Since sub (w) consists of only barred letters, this implies

sub (T ′)∗ = P (sub (w)∗). (2.11)

Let ≺′ denote the order 1 ≺′ 2 ≺′ · · · ≺′ 1 ≺′ 2 ≺′ · · · . Then by Proposition 2.6 with this
order,

sub∅(P≺
′

m (w)) = P≺
′

m (sub∅(w)) = P (sub∅(w)). (2.12)

Since the conversion T ′(≺→≺′), ignoring barred letters, amounts to performing jeu de
taquin slides to compute the straight-shape tableau that is plactic equivalent to sub∅(T ′),
there holds sub∅(T ′) ∼ sub∅(P≺

′
m (w)). Combining this with (2.11) and (2.12) gives

Pm(w)blft ∼ sub (T ′)∗ ⊕ sub∅(T ′) ∼ P (sub (w)∗)⊕ P (sub∅(w)) ∼ P (wblft),

which proves (i).

Statement (ii) is an application of [14, Theorem 4.3] followed by [14, Remark 4.4]. As
vinv rev inv = vud , (iii) is just another way of writing (ii). The proof of (iv) is the same
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as that of (i), using the additional fact that P (uud rev) = P (u)ev for any ordinary word
u. �

Example 2.23. Continuing Examples 2.1 and 2.20, recall w = 3 1 2 1 2 2 1 2 1 and v :=
wst. To illustrate Proposition 2.21 (i), we compute

v = 9 1 7 3 5 6 2 8 4
vneg = −9 −1 7 3 −5 −6 −2 8 4

1 3 4 9

2 5 8

6

7

Pm(v)

-5 -2 4 9

-1 3 8

6

7

Pm(v)(1→ −1)(2→ −2)(5→ −5)

-9 -6 -2 4

-5 3 8

-1

7

P (vneg)

To illustrate Proposition 2.22 (i), we have wblft = 3 1 2 2 1 2 1 2 1, and Pm(w)blft =
P (wblft) is computed from P≺m (w) as follows:

sub (P≺m (w))∗ ⊕ sub∅(P≺m (w)) =
1 1 2

2

3

⊕
1

1 2

2

∼
1 1 1 1 2

2 2 2

3

= P (wblft).

The next result will be useful for better understanding Hook Kronecker Rule III, which
expresses gλµ(d) ν as the cardinality of a set of colored words. The operators w 7→ wblft

and w 7→ wneg st both lose information and are related the same way rev and ud are related,
except with a “twist” by rev . The following proposition makes this precise and gives some
related results. Its proof is straightforward from the definitions.

Proposition 2.24. Let w be a colored permutation. Then

(i) wblft inv = wrev inv neg st,

(ii) wrev rev rev∅ blft = wblft,

(iii) wud ud ud∅ neg st = wneg st,

(iv) w∗ blft = wrev blft rev,

(v) w∗ neg st = wneg st ud.

3. Kronecker coefficients for one hook shape

Here we introduce the fundamental combinatorial objects of this work, colored Ya-
manouchi tableaux (CYT) and color raisable Yamanouchi tableaux (CYT−). We then
explain their relationship with Kronecker coefficients.

3.1. Colored Yamanouchi tableaux. An ordinary word y = y1 · · · yn is Yamanouchi if
every terminal subword ykyk+1 · · · yn has partition content. This is equivalent to P (y) =
Zλ, where λ is the content of y and Zλ is the superstandard tableau of shape and content λ.

We say that a colored word w is Yamanouchi if any of the following equivalent conditions
is satisfied:

(1) wblft is Yamanouchi,
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(2) P (wblft) is superstandard,

(3) Pm(w)blft is superstandard.

Conditions (2) and (3) are equivalent by Proposition 2.22 (i). We say that a colored
tableau T is Yamanouchi if T blft is superstandard, or equivalently, if T is the mixed
insertion tableau of some Yamanouchi word. The w of Example 2.23 is not Yamanouchi
because wblft ends in 2 2 1 2 1 2 1, which has content (3, 4). An example of a colored
Yamanouchi word is 3 1 2 1 2 1 2 1. See Figure 3 for examples of colored Yamanouchi
tableaux.

Define the following subsets of colored Yamanouchi tableaux (CYT):

CYTλ :={T ∈CT : T blft = Zλ} (the set of colored Yamanouchi tableaux of content λ),

CYTλ,d :={T ∈CT : T blft = Zλ, tc(T ) = d},
CYTλ,d(ν) :={T ∈CT : T blft = Zλ, tc(T ) = d, sh(T ) = ν}.

In the introduction, CYTλ,d was defined to be the set of mixed insertion tableaux of the
colored Yamanouchi words of content λ and total color d. This is equivalent to the present
definition by Proposition 2.22 (i).

3.2. Counting colored Yamanouchi tableaux. Recall that µ(d) denotes the hook
shape (n − d, 1d) for d ∈ {0, 1, . . . , n − 1}. For a (skew) shape θ, let sθ = sθ(x) denote
the Schur function corresponding to θ in the infinite set of variables x = x1, x2, . . . . Let
cνλµ = 〈sλsµ, sν〉 be the Littlewood–Richardson coefficient. It is also convenient to set

c
ν/µ
λ = cνλµ (defined to be 0 if µ 6⊆ ν). Let ∗ denote the internal product of symmetric

functions, which may be defined by sλ ∗ sµ =
∑

ν gλµ νsν .

The following proposition relates colored Yamanouchi tableaux to Kronecker coefficients
and is in some sense well known (see Remark 3.2, below).

Proposition 3.1. The following nonnegative integers are equal:

(A) gλµ(d) ν + gλµ(d−1) ν,

(B) 〈sλ ∗ (s(1d)s(n−d)), sν〉,
(C)

∑
α`d, β`n−d c

λ
αβ c

ν
α′ β,

(D) |CYTλ,d(ν)|,

for any λ, ν ` n and d ∈ {0, 1, . . . , n} (interpreting the undefined expressions gλµ(n) ν and
gλµ(−1) ν to be 0).

Proof. The quantities (A) and (B) are the same since s(1d)s(n−d) = sµ(d) + sµ(d−1).

The following general result of Littlewood [18] relates the internal and ordinary products
of the symmetric group:

sλ ∗ (sθsκ) =
∑

α`d, β`n−d

cλαβ(sα ∗ sθ)(sβ ∗ sκ),
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for any partitions θ ` d, κ ` n− d. Setting θ = (1d), κ = (n− d), we obtain

sλ ∗ (s(1d)s(n−d)) =
∑

α`d, β`n−d

cλαβ sα′sβ.

By taking the inner product with sν on both sides, we then see that (B) and (C) are
equal.

Finally, we consider (D). After converting the tableaux CYTλ,d(ν) to the order ≺ and
unraveling the definition of T blft, we see that this set of tableaux is in bijection with the
union of the Littlewood–Richardson tableaux of content λ and shape α⊕ (ν/α′), over all
α ` d such that α′ ⊆ ν. Hence

|CYTλ,d(ν)| =
∑
α`d

c
α⊕(ν/α′)
λ .

Multiplying this quantity by sλ and summing over λ, we obtain∑
α`d, λ`n

c
α⊕(ν/α′)
λ sλ =

∑
α`d

sα⊕(ν/α′)

=
∑
α`d

sαsν/α′ =
∑

α`d, β`n−d

cνα′ β sαsβ =
∑

α`d, β`n−d,
λ`n

cνα′ β c
λ
αβ sλ.

Extraction of the coefficient of sλ on the left- and right-hand sides proves that (D) equals
(C). �

Remark 3.2. Proposition 3.1 is closely related to hook Schur functions and the combi-
natorial objects used to describe them, (k, l) tableaux. The hook Schur function or super
Schur function HSν(x,y) of Berele and Regev [3] is the character of a certain irreducible
representation of the general linear Lie superalgebra. It can be given the following two
descriptions: the first description ([3, Definition 6.3]) is

HSν(x; y) =
∑
β⊆ν

sβ(x)sν′/β′(y) =
∑
α′,β⊆ν

cνα′ β sβ(x)sα(y). (3.1)

For the second, let ≺′ denote the order 1 ≺′ 2 ≺′ · · · 1 ≺′ 2 · · · . Then CT≺
′

is the same
as the set of (k, l) tableaux defined in [3], as k and l go to infinity. For T ∈ CT≺

′
, let

T (x; y) = xc11 x
c2
2 · · · yd11 yd22 · · · , where (c1, c2, . . .) is the content of sub∅(T ) and (d1, d2, . . .)

is the content of sub (T ). Then

HSν(x; y) =
∑

T∈CT≺
′
, sh(T )=ν

T (x; y). (3.2)

We now claim that the coefficient of tdsλ in the specialization HSν(x; tx) is equal to the
quantities in Proposition 3.1. A direct computation using (3.1) shows that this coefficient
is the same as (C):

HSν(x1, x2, . . . ; tx1, tx2, . . .) =
∑
α′,β⊆ν

cνα′ β sβ(x)sα(tx) =
n∑
d=0

∑
α′`d, β`n−d,

λ`n

cνα′ β c
λ
αβ t

d sλ(x).
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We can also specialize y = tx in (3.2); with a little thought, using the beginning of the
proof above that (D) equals (C) and the combinatorial definition of sλ(x), it can be shown
that the coefficient of td in this specialization is equal to

∑
λ`n |CYTλ,d(ν)|sλ. Hence the

descriptions (C) and (D) of Proposition 3.1 are somewhat analogous to the descriptions
(3.1) and (3.2) of hook Schur functions.

3.3. Color raisable and lowerable tableaux. By Proposition 3.1, the Kronecker co-
efficient gλµ(d) ν can be written as the difference

gλµ(d) ν =

∣∣∣∣ ⋃
i∈{0,2,4,...}

CYTλ,d−i(ν)

∣∣∣∣− ∣∣∣∣ ⋃
i∈{1,3,5,...}

CYTλ,d−i(ν)

∣∣∣∣.
This is typical for positivity problems in algebraic combinatorics: a nonnegative coefficient
is easily written as the difference in cardinality of two natural sets of combinatorial objects.
The difficulty in producing a positive combinatorial formula lies in finding an injection
from the smaller of the sets to the larger. For many sets of combinatorial objects in
bijection with CYTλ,d(ν) ({T (<→≺) : T ∈ CYTλ,d(ν)}, for instance), describing such an
injection seems to be extremely difficult. The miracle in this setup is that CYTλ,d(ν) can
naturally be partitioned into two subsets with cardinalities gλµ(d) ν and gλµ(d−1) ν .

A colored tableau for the order < is color lowerable if its southwest entry is barred,
and is color raisable if its southwest entry is unbarred. Hence unbarring the southwest
entry of any color lowerable tableau is a bijection between color lowerable tableaux and
color raisable tableaux, which we call the color lowering operator C−. Similarly, the color
raising operator C+ is the inverse of C− which acts by barring the southwest entry of any
color raisable tableau.

For example,

C−

(
1 1 2

1 2 2

2 2 3

)
=

1 1 2

1 2 2

2 2 3

, C+

(
1 1 1 1

1 2 2

2 2

)
=

1 1 1 1

1 2 2

2 2

.

Let CYT−λ , CYT−λ,d, CYT−λ,d(ν) denote the subsets of CYTλ, CYTλ,d, and CYTλ,d(ν),

respectively, consisting of color raisable tableaux. Similarly, let CYT+
λ , etc. denote the

corresponding sets of color lowerable tableaux.

We now come to our main result, which is the crux of the proof of the hook Kronecker
rules.

Theorem 3.3. For any color lowerable tableau T , T blft = C−(T )blft.

This will be proved in §4.

Corollary 3.4. The color lowering operator restricts to a bijection from color lowerable
Yamanouchi tableaux of content λ and total color d + 1 to color raisable Yamanouchi

tableaux of content λ and total color d, i.e., C− : CYT+
λ,d+1

∼=−→ CYT−λ,d.
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1

Figure 3: The set of color raisable Yamanouchi tableaux of content λ = (3, 2, 1); the
number of such tableaux of shape ν and total color d is the Kronecker coefficient gλ (6−d,1d) ν .

Theorem 3.5 (Hook Kronecker Rule I). The Kronecker coefficient gλµ(d) ν (where µ(d) =
(n − d, 1d)) is equal to the number of color raisable Yamanouchi tableaux of content λ,
total color d, and shape ν. This is, by definition, the number of colored tableaux T of
shape ν, having d barred entries and unbarred southwest corner, and such that T blft is the
superstandard tableau of shape and content λ.
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Proof. We compute

(1 + t)
n−1∑
d=0

gλµ(d) ν t
d =

n∑
d=0

(
gλµ(d) ν + gλµ(d−1) ν

)
td

=
n∑
d=0

|CYTλ,d(ν)| td by Proposition 3.1,

=
n∑
d=0

(
|CYT−λ,d(ν)|+ |CYT+

λ,d(ν)|
)
td

=
n∑
d=0

(
|CYT−λ,d(ν)|+ |CYT−λ,d−1(ν)|

)
td by Corollary 3.4,

=(1 + t)
n−1∑
d=0

|CYT−λ,d(ν)| td.

Dividing by 1 + t and taking the coefficient of td, we obtain gλµ(d) ν = |CYT−λ,d(ν)|, as
desired. �

Remark 3.6. The ability to convert between the orders < and ≺ seems to be a powerful
combinatorial tool since properties easily seen in one order may be difficult to see in the
other and vice versa. Here are two specific examples of this phenomenon.

The two main conditions that need to be checked to test whether T ∈ CYT−λ,d(ν) are

whether T blft = Zλ and whether the southwest corner of T is unbarred. Interestingly, these
are difficult to check “at the same time:” the former is easy to check for T (<→≺), but
not for T , and the latter is immediate to check for T , but difficult to check for T (<→≺).

The Kronecker coefficient gλµ(d) ν is also equal to |CYT+
λ,d+1(ν)|. While CYT+

λ,d+1(ν)

and CYT−λ,d(ν) are clearly in bijection, there does not seem to be an easy bijection between

{T (<→≺) : T ∈ CYT+
λ,d+1(ν)} and {T (<→≺) : T ∈ CYT−λ,d(ν)}.

4. Color raising and lowering operators on words

Here we determine the operator π− such that Pm(π−(w)) = C−(Pm(w)) and
Qm(π−(w)) = Qm(w). While the color lowering operator C− is simple, π− is more subtle
and involves rotation of a certain subword of w, which we call the rightmost special sub-
word of w, once to the right. In §4.3, this will be used to prove Theorem 3.3, thereby com-
pleting the proof of Hook Kronecker Rule I. Throughout this section, all words, tableaux,
mixed insertions, etc. are with respect to the natural order <.

4.1. Decreasing hook subwords.

Definition 4.1. A decreasing hook word is a colored word v such that vst neg is decreasing,
i.e., v = x1x2 · · ·xkxk+1 · · · xn and x1 > x2 > · · · > xk and xk+1 ≤ . . . ≤ xn. A decreasing
hook subword of a colored word w is a subword of w that is a decreasing hook word. For
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a colored word w, let τ(w) be the maximum possible length of a decreasing hook subword
of w.

Given a colored word w, set t := τ(w), and let η be smallest letter of w (for <) such
that sub≤η(w) has a decreasing hook subword of length t (see Proposition 4.4, below, for
a way to compute these values). We say that a decreasing hook subword of w is a special
subword if it has length t and uses letters ≤ η. See Example 4.5.

For a finite poset P , the set of Sperner 1-families, denoted S1(P), is the set of antichains
of P of maximum size. The set S1(P) is partially ordered as follows: if A,B ∈ S1(P),
then A ≤ B if, for each a ∈ A, there exists some b ∈ B such that a ≤ b. Dilworth proved
(see, e.g., [13]) that S1(P) is a distributive lattice. In particular, S1(P) has a unique
minimum and maximum.

Definition 4.2. For an ordinary word y of length n, let Pos(y) be the poset on [n] in
which i is less than j if and only if i < j and yi ≤ yj. Thus a decreasing subword of y of
length τ(y) is the same as an element of S1(Pos(y)). Given yj, yk ∈ S1(Pos(y)), we say
that yj is further left (respectively further right) than yk if yj is less than (respectively
greater than) yk in the partial order on Sperner 1-families defined above. We refer to the
minimum (respectively maximum) element of S1(Pos(y)) as the leftmost (respectively
rightmost) longest decreasing subword of y.

For a colored word w, define Pos(w) to be the poset Pos(y) just defined, with y =
wst neg. Thus a decreasing hook subword of w of length τ(w) is the same as an element of
S1(Pos(w)), and a special subword of w is the same as an element of S1(Pos(sub≤η(w))),
where η is as defined above.

It turns out that the leftmost and rightmost longest decreasing subwords have a more
direct description than their definition above. Recall that if w = w1w2 · · ·wn is a word,
then the place word of the subword wk1wk2 · · ·wkl of w (where 1 ≤ k1 < k2 < · · · < kl ≤ n)
is the ordinary word k = k1k2 · · · kl; we also set wk = wk1wk2 · · ·wkl . If k and j are place
words of length t, then k is componentwise less than or equal to j if ki ≤ ji for all i ∈ [t].

Proposition 4.3. The leftmost longest decreasing subword of an ordinary word is the
unique minimum for the componentwise order. Precisely, let y be an ordinary word and
let k = k1k2 · · · kt be the place word of the leftmost longest decreasing subword of y. Let
j = j1j2 · · · jt be a place word of y such that yj is decreasing. Then k is componentwise
less than or equal to j.

Similarly, the rightmost longest decreasing subword of an ordinary word is the unique
maximum for the componentwise order.

Proof. Let i ∈ [t]. Suppose for a contradiction that ki > ji. If yki < yji , then
j1 · · · jikiki+1 · · · kt is the place word of a decreasing subword of length t + 1, which is
impossible. If yki ≥ yji , then yki−1

> yki ≥ yji , hence k1 · · · ki−1jiji+1 · · · jt is the place
word of a decreasing subword that is not further right than yk, a contradiction. The proof
of the second statement is similar. �
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For a colored word w, let SW(w) denote the southwest entry of Pm(w). The next
corollary relates τ(w) and η defined above to Pm(w). We point out that Remmel also
defines and studies decreasing hook subwords in [24] (called decreasing subsequences of
type 1 there); he also states the first part of the following proposition.

Proposition 4.4. Let w be a colored word and let η be as in Definition 4.1.

(i) The length τ = τ(w) of the longest decreasing hook subword of w is equal to the
length of the first column of Pm(w).

(ii) The letter η is equal to SW(w).

(iii) If η is barred, then any special subword of w contains the rightmost occurrence
of the letter η in w.

(iv) If η is unbarred, then the leftmost special subword of w contains the leftmost
occurrence of the letter η in w.

(v) If η is barred and wk is the rightmost special subword of w, then all occurrences
of η∗ in w have place > k1.

(vi) If η is unbarred and wk is the leftmost special subword of w, then all occurrences
of η∗ in w have place ≤ kτ .

Proof. The analog of (i) for ordinary words is the classical Greene’s Theorem [12]. State-
ment (i) is immediate from this and Proposition 2.21. Statement (ii) follows from (i) and
Proposition 2.6.

Let wj be a special subword of w. By definition, w contains letters ≤ η, so if η is barred
and wj does not contain the rightmost occurrence of η, then this can be appended to wj

to obtain a longer decreasing hook subword, which is impossible. This proves (iii). For
(iv), observe that, if wj does not contain the leftmost occurrence of η, then replacement
of wj1 = η with the leftmost occurrence of η yields a special subword of w further left
than wj.

To prove (vi), observe that any occurrence of η∗ with place > kτ can be appended to
wk to obtain a decreasing hook subword of w of length τ + 1, which is impossible. The
proof of (v) is similar. �

We are now ready to define the color lowering and raising operators on words. For a
colored word w and place word k of length t such that wkt is barred, let πk(w) be the
colored word obtained from w by rotating its subword wk once to the right and then
unbarring wkt , i.e.,

πk(w) := w1 · · ·wk1−1w∗kt
wk1+1 · · ·wk2−1wk1wk2+1 · · ·wkt−1wkt−1wkt+1 · · ·wn,

where the bold letters indicate the rotated subword. It is clear that πk is invertible and
defines a bijection from colored words with a barred letter in position kt to colored words
with an unbarred letter in position k1. Let π−1k denote the inverse of πk.

We say that a colored word w is color lowerable (respectively color raisable) if SW(w)
is barred (respectively unbarred). For a color lowerable word w, define the color lowering
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operator on words, π−, by

π−(w) := πk(w), where wk is the rightmost special subword of w.

For a color raisable word v, define the color raising operator on words, π+, by

π+(v) := π−1k (v), where vk is the leftmost special subword of v.

Note that these operators are well defined by Proposition 4.4.

Example 4.5. Let w and v be the colored words below. The rightmost special subword
of w and the leftmost special subword of v are shown in bold and their place words are
1 3 8 11 12. From this we can see that w is color lowerable and v = π−(w) = π1 3 8 11 12(w)
and v is color raisable and w = π+(v) = π−11 3 8 11 12(v).

w = 1 2 1 2 2 1 2 1 1 2 1 2 1

v = 2 2 1 2 2 1 2 1 1 2 1 1 1

wst
= 4 8 1 9 12 5 10 2 6 13 3 11 7

vst = 11 8 4 9 12 5 10 1 6 13 2 3 7

wst neg = 4 −8 −1 −9 12 5 −10 −2 6 13 −3 −11 7

vst neg = 11 −8 4 −9 12 5 −10 −1 6 13 −2 −3 7

There are a total of four decreasing hook subwords of wst of length 5 (these are in bijection
with decreasing hook subwords of w and decreasing subwords of wst neg): 4 1 2 3 11,
4 1 9 10 11, 4 8 9 10 11, and 12 5 2 3 11; the first three are special and the fourth is
not. There are a total of three decreasing hook subwords of vst of length 5: 11 4 1 2 3,
11 5 1 2 3, and 12 5 1 2 3; the first two are special and the third is not.

It will be shown in Theorem 4.8 that the color lowering operator (C−) is compatible
with the color lowering operator on words (π−) in the following sense:

1 1 1 1 2

1 2 2

1 2

1 2

2

Pm(w)

1 1 1 1 2

1 2 2

1 2

1 2

2

Pm(π−(w))=C−(Pm(w))

1 3 5 9 10

2 6 13

4 8

7 11

12

Qm(π−(w))=Qm(w)

Proposition 4.6. Standardization respects decreasing hook subwords and commutes with
the color lowering and raising operators:

(a) C−(T )st = C−(T st),

(b) C+(T )st = C+(T st),

(c) wj is a decreasing hook subword of w if and only if (wst)j is a decreasing hook
subword of wst,

(d) same as (c), for special subwords, if η is barred,

(e) same as (c), for the leftmost special subword, if η is unbarred,

(f) π−(w)st = π−(wst),

(g) π+(w)st = π+(wst),
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for any colored word w and colored tableau T .

Proof. Statements (a)–(c) are immediate from the definitions. By Proposition 2.8 and
Proposition 4.4 (ii), the rightmost (respectively leftmost) occurrence of η := SW(w) is
relabeled by SW(wst) in the standardization wst if η is barred (respectively unbarred).
This, together with (c) and Proposition 4.4 (iii), (iv), yield (d) and (e). Finally, (f) follows
from (d) and Proposition 4.4 (iii), (v), and (g) follows from (e) and Proposition 4.4 (iv),
(vi). �

4.2. Compatibility of the color lowering operators C− and π−. We now prove the
relationship between C− and π− alluded to in Example 4.5.

We will need the following extension of Proposition 2.13.

Lemma 4.7. Let w = w1 · · ·wn be a colored permutation with largest letter wn = n and
second-largest letter wb. Set w′ = w1 · · ·wb−1wb+1 · · ·wn and β = (winv)n−1 (thus β = b if
wb is unbarred and β = b if wb is barred). Let Q′ be the tableau obtained from Qm(w′) by
replacing n− 1 with n, n− 2 with n− 1, . . ., b with b+ 1. If τ(w′) = τ(w), then

Pm(w) = Pm(w′) t wb (r,c) and Qm(w) = Q′
lr←− β, (4.1)

where (r, c) is the position of the cell sh(Qm(w))/sh(Q′).

Similarly, suppose v is a colored permutation with largest letter v1 = n and second-
largest letter vb. Let v′, Q′, and (r, c) be defined just as w′, Q′, and (r, c) are above. If
τ(v′) = τ(v), then

Pm(v) = Pm(v′) t vb (r,c) and Qm(v) = Q′
lr←− β. (4.2)

Proof. As in the proof of Proposition 2.13, we work with left-right insertion of winv instead
of mixed insertion of w. Set (winv)L = (winv)1(w

inv)2 · · · (winv)n−2. Note that (winv)n = n.
We first prove

Plr((w
inv)L)

lr←− β
lr←− n = Plr((w

inv)L)
lr←− n

lr←− β. (4.3)

Set τ = τ(w). By the assumption τ(w′) = τ(w), the number of rows of Plr((w
inv)L),

Plr((w
inv)L β), Q′ = Plr((w

inv)L n), and Plr(w
inv) are τ − 1, τ − 1, τ , and τ , respectively.

Hence the left-right insertion of n on either side of (4.3) simply adds the letter n in a new
cell at position (τ, 1) and the insertion path of the left-right insertion of β on either side
of (4.3) does not involve position (τ, 1). This proves (4.3) and, keeping track of recording
tableaux of these left-right insertions, gives

Qlr(w
inv) = Qlr((w

inv)L) t wb (r,c) t n
(τ,1),

Qlr((w
inv)L n) = Qlr((w

inv)L) t n−1
(τ,1),

(4.4)

Noting that Pm(w′) is obtained from Qlr((w
inv)L n) by replacing n− 1 with n, the desired

(4.1) now follows from computations similar to those in the proof of Proposition 2.13.

The second statement of the lemma follows from the first applied to w := vrev ∗: to avoid
confusion, let bw, βw, Q′w (respectively bv, βv, Q

′
v) be b, β, Q′ for (4.1) (respectively (4.2)).

The desired result about Pm(v) is immediate from (4.1) and Proposition 2.11 (i), (iii). For
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the desired result about mixed recording tableaux, we first assume βw is unbarred and
compute

Qm(v) = Qm(w)ev

=
(
Q′w

lr←− βw
)ev ∼ (rowword(Q′w)bw)ud rev ∼ bv rowword(Q′v) ∼

(
Q′v

lr←− βv
)
,

where the first equality is by Proposition 2.11 (ii), (iv) and the first plactic equivalence
is by (2.3); the second plactic equivalence follows from (2.3), Qm(w′) = Qm((v′)rev ∗) =
Qm(v′)ev, and bv = n+ 1− bw. The case where βw is barred is similar. �

Theorem 4.8. For a color lowerable word w,

Pm(π−(w)) = C−(Pm(w)) and Qm(π−(w)) = Qm(w). (4.5)

Similarly, for a color raisable word v,

Pm(π+(v)) = C+(Pm(v)) and Qm(π+(v)) = Qm(v). (4.6)

Proof. We first show that (4.6) follows from (4.5) by applying (4.5) to w := vrev ∗. The
operators rev and ∗ do not commute with standardization, so we need to assume that v is a
colored permutation (this implies the general case by Step 1, below). The automorphism
u 7→ urev ∗ of colored permutations identifies leftmost special subwords with rightmost
special subwords, so π+(v)rev ∗ = π−(w). This gives the second to last equality of

C+(Pm(v)) = C+(Pm(w)∗ t) = C−(Pm(w))∗ t

= Pm(π−(w))∗ t = Pm(π+(v)rev ∗)∗ t = Pm(π+(v));

the first and last equalities are by Proposition 2.11 (i), (iii), the middle equality is by (4.5),
and the second equality is clear. A similar computation using Proposition 2.11 (ii), (iv)
yields Qm(π+(v)) = Qm(v).

We now prove (4.5). Let w be a color lowerable word and set v = π−(w). Let τ = τ(w)
be the maximum length of a decreasing hook subword of w. Let η = SW(w) be the
southwest entry of Pm(w); we are assuming that this entry is barred, so set x = η. Let k
be the place word of the rightmost special subword of w; thus wkτ = η by Proposition 4.4
(iii). Let n be the length of w. The proof is by induction on n. The base case n = 1
is clear. The proof begins with three straightforward reductions (Steps 1–3), followed by
consequences of these reductions (Step 4), and then divides into two cases (Steps 5 and 6)
each of which contains two subcases (Steps 5a, 5b and 6a, 6b). Step 5 is particularly
interesting because it explains why it is the rightmost special subword that needs to be
rotated (and not some other subword, for instance).

Step 1. It is convenient to assume that w is a colored permutation, and this is accom-
plished by replacing w with wst. The theorem for wst proves it for w by Propositions 2.8
and 4.6.

Step 2. We may assume that x is the largest letter in w (for <). If not, let α > x be
the largest letter in w and let w′ (respectively v′) be w (respectively v) with α removed.
Then π−(w′) = v′ because α does not belong to the rightmost special subword of w (by
Proposition 4.4 (ii)). By induction, C−(Pm(w′)) = Pm(v′) and Qm(w′) = Qm(v′). Now
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Proposition 2.13 says that Qm(w) and Qm(v) are obtained from Qm(w′) = Qm(v′) by
the same procedure, hence Qm(w) = Qm(v). Proposition 2.13 also proves C−(Pm(w)) =
C−(Pm(w′)) t α

(r,c) = Pm(v′) t α
(r,c) = Pm(v); here we are using that (r, c) is not the

position of the southwest cell of Pm(w), which follows from the fact that α does not belong
to the rightmost special subword of w.

Note that once we assume x is the largest letter of w, this implies that the bottom
(τ -th) row of Pm(w) consists of a single cell containing x.

Step 3. We may assume that x is the last letter of w, i.e., kτ = n, and that x is the
first letter of v, i.e., k1 = 1. We will only show that the case where kτ < n can be reduced
to the case where kτ = n, the reduction from k1 > 1 to k1 = 1 being similar. Suppose
kτ < n and set w′ = w1w2 · · ·wn−1 and v′ = v1v2 · · · vn−1. Deleting wn does not change
the rightmost special subword, that is, w′k is the rightmost special subword of w′, hence
π−(w′) = v′. This implies SW(w′) = SW(w) = x and τ(w′) = τ(w) (by Proposition 4.4

(i), (ii)). Now we claim that the insertion paths of Pm(w′)
m←− wn and Pm(v′)

m←− vn
are identical and do not involve positions (τ, 1) and (τ + 1, 1). If the insertion path of

Pm(w′)
m←− wn involved (τ, 1) or (τ + 1, 1), then SW(w′) 6= SW(w) or τ(w′) 6= τ(w), which

is impossible. Then since Pm(w′) and Pm(v′) differ only in their southwest cell, and x and
x are the largest letters of Pm(w′) and Pm(v′), respectively, the claim follows (this uses
Step 2, which is not strictly necessary, but makes this argument slightly easier to say).
This claim and induction give the desired equalities in (4.5).

Step 4. Here we fix some notation for the remaining steps and establish some conse-
quences of the reductions in Steps 1–3. We may assume that wn = x is the largest letter
in w and v1 = vk1 = x. Set wL = w1w2 · · ·wn−1 and vR = v2v3 · · · vn. Let η′ be the entry
in position (τ−1, 1) of Pm(w) (we are assuming n > 1, so by the note at the end of Step 2,
Pm(w) has at least two rows).

Note that decreasing hook subwords of w of length τ must use x, hence

the map (wL)j 7→ (wL)j x is a bijection between decreasing hook subwords of
wL of length τ − 1 and decreasing hook subwords of w of length τ .

(4.7)

Because wn = x is the largest letter of w and by the note at the end of Step 2, Pm(w) =
Pm(wL) t x

(τ,1). Hence

SW(wL) = η′. (4.8)

Let α be the largest letter of wL. Note that η′ ≤ α. Steps 5 and 6 now address the
cases where η′ < α and η′ = α, respectively.

Step 5. The case η′ < α; equivalently, SW(wL) is not the largest letter of wL:

Let w′ (respectively v′) be w (respectively v) with α removed. We now prove

π−(w′) = v′. (4.9)

To prove this, we must show that wk is the rightmost special subword of w′. In particular,
we must show that

α does not belong to wk. (4.10)
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In fact, this is sufficient as any special subword of w′ further right than wk would yield a
special subword of w further right than wk. We now suppose that α does belong to wk

and will obtain a contradiction. There are two cases depending on whether or not α is
barred.

Step 5a. α is unbarred: In this case, we must have w1 = wk1 = α. Then since
SW(wL) < α, the letter w1 does not belong to the rightmost special subword of wL. By
Proposition 4.3 applied to wneg, every decreasing hook subword wj of w of length τ must
satisfy j1 ≤ k1 = 1, i.e., wj must contain w1. Then by (4.7), any decreasing hook subword
of wL of length τ − 1 must contain w1, contradiction.

Step 5b. α is barred: In this case, wkτ−1 = α. Let η′′ be the rightmost letter in the
rightmost special subword of wL. First note that η′ = SW(wL) < α implies η′′ ≤ η′ < α.
Consider the subword of w obtained by adding x to the end of the rightmost special
subword wL. Comparing this to wk using Proposition 4.3 shows that η′′ lies to the left of
α. But this implies α can be added to the end of the rightmost special subword of wL to
obtain a decreasing hook subword of wL of length τ , contradiction.

Now that (4.9) has been established, induction yields C−(Pm(w′)) = Pm(v′) and
Qm(w′) = Qm(v′). The desired result (4.5) now follows from Lemma 4.7 (with wb =
vb = α).

Step 6. The case η′ = α; equivalently, SW(wL) is the largest letter of wL: In this case,
we have that η′ < x are the two largest letters in w (the strict inequality is by Step 1).

Note that this implies that the last two rows of Pm(w) look like
η′

x
with no cells to their

right. Let Pw
0 be the result of removing the last two rows of Pm(w). Now there are two

cases depending on whether or not η′ is barred.

Step 6a. η′ is barred: Set y = η′,

w′ = wL,

vLR = v2v3 · · · vn−1, vL = v1v2 · · · vn−1, v′ = y vLR,

and k′ = k1 k2 · · · kτ−1 (see Example 4.10). By the definitions, k′ is the place word of a
decreasing hook subword of w′ and of v′ and πk′(w

′) = v′. Since SW(wL) (respectively
SW(w)) is the largest letter of wL (respectively w), every decreasing hook subword of
wL (respectively w) of length τ − 1 (respectively τ) is a special subword (we are using
Proposition 4.4 (ii)). Together with (4.7), this establishes that (wL)k′ is the rightmost
special subword of wL. Therefore π−(w′) = v′. By induction,

C−(Pm(w′)) = Pm(v′) and Qm(w′) = Qm(v′). (4.11)

By the first paragraph of Step 6, we have

Pm(w′) = Pw
0 t y

(τ−1,1),

Pm(w) = Pw
0 t y

(τ−1,1) t x
(τ,1), (4.12)

Qm(w) = Qm(w′) t n
(τ,1).
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The tableaux for v and v′ require slightly more care to compute:

Pm(v′) = Pw
0 t y

(τ−1,1),

Pm(v′) = Pm(vLR)
dm←− y,

Pm(vL) = Pm(vLR)
dm←− x = Pw

0 t x
(τ−1,1), (4.13)

Pm(v) = Pm(vL)
m←− y = Pw

0 t y
(τ−1,1) t x

(τ,1),

Qm(v) = Qm(vL) t n
(τ,1) = Qm(v′) t n

(τ,1).

The first line is immediate from (4.11) and (4.12). The second line is clear given Propo-
sition 2.7. The third line follows from the first two and the fact that (v′)st = (vL)st.
For the fourth line, the mixed insertion of y bumps the x in position (τ − 1, 1) and then
places x in a new cell at position (τ, 1). This mixed insertion computation together with
(v′)st = (vL)st gives the last line. The desired result (4.5) now follows from (4.11), (4.12),
and (4.13).

Step 6b. η′ is unbarred: Set y = η′,

wLR = w2w3 · · ·wn−1, wR = w2w3 · · ·wn, w′ = wLR y,

v′ = vR,

and k′ = k2 − 1 k3 − 1 · · · kτ − 1 (see Example 4.10). We first claim w1 = y. By (4.8)
and Proposition 4.4 (ii), every special subword of wL contains η′; even more, η′ is the first
letter of any special subword of wL since η′ is unbarred and is the largest letter of wL.
Then by (4.7), y = η′ is the first letter of wk, hence w1 = wk1 = y.

We have that k′ is the place word of a decreasing hook subword of w′ and of v′, and
πk′(w

′) = v′ (for this last fact we are using that y is the first letter of wk hence the second
letter of vk). Since w1 = y is the largest unbarred letter in w, decreasing hook subwords
of w of length τ must use y and this yields a bijection between decreasing hook subwords
of w of length τ and decreasing hook subwords of wR of length τ − 1. Since wn = x is the
largest letter of w, every decreasing hook subword of wR (respectively w) of length τ − 1
(respectively τ) is a special subword. These facts, together with (w′)st = (wR)st, imply
that w′k′ is the rightmost special subword of w′. Hence π−(w′) = v′. By induction,

C−(Pm(w′)) = Pm(v′) and Qm(w′) = Qm(v′). (4.14)

Next, we prove

Pm(wLR) = Pw
0 ,

Pm(wR) = Pm(wLR)
m←− x = Pw

0 t x
(τ−1,1),

Pm(w′) = Pw
0 t y

(τ−1,1), (4.15)

Pm(w) = Pm(wR)
dm←− y = Pw

0 t y
(τ−1,1) t x

(τ,1),

Qm(w) = Qm(wR) t n
(τ,1) = Qm(w′) t n

(τ,1).
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The first line follows from the first paragraph of Step 6 and the fact that w1 = y and
wn = x are the two largest letters of w. The second line is an easy consequence of the
first. The third line follows from the second as (w′)st = (wR)st. For the fourth line, the
dual mixed insertion of y bumps the x in position (τ−1, 1) and then places x in a new cell
at position (τ, 1). This dual mixed insertion computation, together with (w′)st = (wR)st,
gives the last line.

We also have

Pm(v′) = Pw
0 t y

(τ−1,1),

Pm(v) = Pm(v′)
dm←− x = Pw

0 t y
(τ−1,1) t x

(τ,1), (4.16)

Qm(v) = Qm(v′) t n
(τ,1),

where the first line follows from (4.14) and (4.15); the second and third lines are then

clear as the dual mixed insertion Pm(v′)
dm←− x simply adds a new cell containing x in

position (τ, 1). The desired result (4.5) now follows from (4.14), (4.15), and (4.16). �

Theorem 4.8 has the following corollary, which does not seem easy to prove directly.

Corollary 4.9. The operators π− and π+ are inverses of each other and define a bijection
between color lowerable words and color raisable words.

Example 4.10. A possibility for Step 6a of the proof of Theorem 4.8 is

w = 5 3 2 1 6 4 7,

v = 7 5 2 3 1 4 6,

w′ = 5 3 2 1 6 4,

v′ = 6 5 2 3 1 4,

where the bold letters indicate the rightmost special subwords of w and w′ and the leftmost
special subwords of v and v′. For this example, τ = τ(w) = 5, η = 7, x = 7, η′ = 6, y = 6,
and

Pw
0 =

1 2 4

3

5

Pm(w′) =

1 2 4

3

5

6

Pm(v′) =

1 2 4

3

5

6

Pm(w) =

1 2 4

3

5

6

7

Pm(v) =

1 2 4

3

5

6

7

.

A possibility for Step 6b is

w = 6 3 2 1 5 4 7,

v = 7 6 2 3 1 4 5,

w′ = 3 2 1 5 4 6,

v′ = 6 2 3 1 4 5.
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For this example, τ = τ(w) = 5, η = 7, x = 7, η′ = 6, y = 6, and

Pw
0 =

1 2 4

3

5

Pm(w′) =

1 2 4

3

5

6

Pm(v′) =

1 2 4

3

5

6

Pm(w) =

1 2 4

3

5

6

7

Pm(v) =

1 2 4

3

5

6

7

.

4.3. Completing the proof of Hook Kronecker Rule I. Recall that ⊕ denotes con-
catenation of tableaux and ∼ denotes plactic equivalence (see §2.3). In this subsection
we prove the following theorem.

Theorem 4.11. For any color lowerable word w, wblft ∼ π−(w)blft.

This, together with Theorem 4.8 and Proposition 2.22 (i), proves Theorem 3.3.

We give a lemma and then proceed with the proof of Theorem 4.11. These are heavy
in notation, so it is helpful to follow along with Example 4.13.

Lemma 4.12. Suppose w is a color lowerable word and k = k1 · · · kτ is the place word
of its rightmost special subword. Set v = π−(w) and x = SW(w). Let i be such that
wki is the leftmost barred letter of wk. Set wL = w1w2 · · ·wki−1, wR = wkiwki+1 · · ·wn,
vL = v1v2 · · · vki, and vR = vki+1vki+2 · · · vn. Then

π−
(
sub∅(wL) x

)
= sub∅(vL), (4.17)

sub (wR) = π+
(
x sub (vR)

)
. (4.18)

Moreover,

x ⊕ P
(
sub∅(wL)

)
∼ P

(
sub∅(vL)

)
, (4.19)

P
(
sub (wR)∗

)
∼ P

(
sub (vR)∗

)
⊕ x . (4.20)

Proof. By Propositions 2.8 and 4.6, we can assume that w is a colored permutation. Set
w′ = sub∅(wL) x and let k′ be the place word of w′ such that (w′)k′ = wk1 · · ·wki−1

x (this
determines k′ uniquely since we are assuming w is a colored permutation). One checks
directly from the definitions that πk′(w

′) = sub∅(vL).

Note that every decreasing hook subword of w′ of maximum possible length contains
x. It is then not hard to show that wk being the rightmost special subword of w implies
(w′)k′ is the rightmost special subword of w′. This proves (4.17). The proof of (4.18) is
similar.

Theorem 4.8 and (4.17) imply C−(Pm(w′)) = Pm(sub∅(vL)). It follows from the note of
the previous paragraph that the last row of Pm(w′) consists of a single cell containing x.
Moreover, Pm

(
sub∅(wL)

)
= P

(
sub∅(wL)

)
and Pm

(
sub∅(vL)

)
= P

(
sub∅(vL)

)
since these

words consist of only unbarred letters. These facts yield (4.19).

A similar argument to the previous paragraph using (4.18) in place of (4.17) yields

Pm

(
sub (wR)

)
= Pm

(
sub (vR)

)
t x

(τ−i+1,1).

The plactic equivalence (4.20) then follows from

Pm

(
sub (wR)

)∗
= Pm

(
sub (wR)∗

)
= P

(
sub (wR)∗

)
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and(
Pm

(
sub (vR)

)
t x

(τ−i+1,1)

)∗
= Pm

(
sub (vR)∗

)
t x

(1,τ−i+1) ∼ P
(
sub (vR)∗

)
⊕ x

(here we have used Proposition 2.11 (i)). �

Proof of Theorem 4.11. Maintain the notation of Lemma 4.12. We compute

wblft = sub (wL)∗ sub (wR)∗ sub∅(wL) sub∅(wR),

vblft = sub (vL)∗ sub (vR)∗ sub∅(vL) sub∅(vR).

By Lemma 4.12, we have

sub (wR)∗ sub∅(wL) ∼ P
(
sub (wR)∗

)
⊕ P

(
sub∅(wL)

)
∼ P

(
sub (vR)∗

)
⊕ x ⊕ P

(
sub∅(wL)

)
(4.21)

∼ P
(
sub (vR)∗

)
⊕ P

(
sub∅(vL)

)
∼ sub (vR)∗ sub∅(vL).

This proves the theorem since sub (wL)∗ = sub (vL)∗ and sub∅(wR) = sub∅(vR). �

Example 4.13. Let us illustrate the proofs of Lemma 4.12 and Theorem 4.11 for the
following choice of w:

w = 4 1 2 3 6 2 3 2
wL

1 1 1 3 2 3 1 4 5 1 1 2
wR

,

v = 5 1 2 4 6 3 3 2 2
vL

1 1 3 2 3 1 1 4 1 1 2
vR

,

wblft = 2 2
sub (wL)

∗
1 1 2 1 4 5 1

sub (wR)∗
4 1 3 6 2 3

sub∅(wL)

1 3 3 1 2
sub∅(wR)

,

vblft = 2 2
sub (vL)

∗
1 2 1 1 4 1

sub (vR)∗
5 1 4 6 3 3 2

sub∅(vL)

1 3 3 1 2
sub∅(vR)

.

The rightmost (respectively leftmost) special subword of w (respectively v) and the cor-
responding letters of wblft (respectively vblft) are in bold.

We have

sub∅(wL) x = 4 1 3 6 2 3 5,

sub∅(vL) = 5 1 4 6 3 3 2,

sub (wR) = 1 1 2 1 4 5 1,

x sub (vR) = 5 1 2 1 1 4 1.

The rightmost (respectively leftmost) special subwords are shown in bold in the first
and third (respectively second and fourth) lines, so (4.17) and (4.18) are evident for this
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example. The plactic equivalences (4.19) and (4.20) become

5 ⊕ P
(
4 1 3 6 2 3

)
∼

1 2 3

3 6

4

5

= P
(
5 1 4 6 3 3 2

)
,

P
(
1 1 2 1 4 5 1

)
=

1 1 1 1 5

2 4
∼ P

(
1 2 1 1 4 1

)
⊕ 5 .

Finally, (4.21) becomes

sub (wR)∗ sub∅(wL) ∼ 1 1 1 1 5

2 4
⊕

1 2 3

3 6

4

∼ 1 1 1 1

2 4
⊕

1 2 3

3 6

4

5

∼ sub (vR)∗ sub∅(vL).

5. More hook Kronecker rules and their symmetries

Here we give two variants of Hook Kronecker Rule I (§5.1) and also show that this rule
holds when ν is a skew shape (§5.2). We show that the “symmetry” gλµ(d) ν = gλ′ µ(d)′ ν
of Kronecker coefficients is evident from the hook Kronecker rules, while the symmetry
gλµ(d) ν = gν µ(d)λ does not seem to be (§5.3). Finally, we compare the hook Kronecker
rules to the experiment in the introduction and to Lascoux’s Kronecker Rule (§5.4).

5.1. Hook Kronecker Rules I–III. Let λ and ν be partitions of n and let Aλ, Bν

be SYT of shapes λ, ν, respectively. Define the following subsets of standard colored
tableaux of size n:

CTAλ :=
{
T : T blft = Aλ

}
,

CTAλ,d :=
{
T : T blft = Aλ, tc(T ) = d

}
,

CTAλ,d(ν) :=
{
T : T blft = Aλ, tc(T ) = d, sh(T ) = ν

}
.

Define the following subsets of colored permutations of length n:

CWAλ :=
{
w : P (wblft) = Aλ

}
,

CWAλ,d :=
{
w : P (wblft) = Aλ, tc(w) = d

}
,

CWAλ,d,Bν :=
{
w : P (wblft) = Aλ, tc(w) = d, Qm(w) = Bν

}
.

Further, define CT−Aλ (respectively CT+
Aλ

) to be the subset of CTAλ consisting of color

raisable (respectively lowerable) tableaux. Define CT−Aλ,d, CW−
Aλ

, etc. similarly (for the
sets of words, intersect with color raisable or lowerable words instead of tableaux).

Corollary 5.1 (Hook Kronecker Rules I–III). Let λ and ν be partitions of n and recall
µ(d) = (n − d, 1d). Let Aλ and Bν be any SYT of shapes λ and ν, respectively, as
above. The following sets of combinatorial objects have cardinality equal to the Kronecker
coefficient gλµ(d) ν:

(I) CYT−λ,d(ν)

(II) CT−Aλ,d(ν)

(III) CW−
Aλ,d,Bν

.
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Proof. We have already shown that the cardinality of (I) is gλµ(d) ν . By Theorem 3.3 and
Proposition 2.22 (i), the color lowering operator C− restricted to CTAλ gives a bijection
from CT−Aλ,d(ν) to CT+

Aλ,d+1(ν) for d ∈ {0, 1, . . . , n − 1}. The proof of Hook Kronecker
Rule I carries over to this setting with little change; to adapt the proof of Proposition 3.1,
all that is required is to note that the number of Littlewood–Richardson tableaux of
content λ and shape α⊕ (ν/α′) is the same as the number of standard tableaux of shape
α ⊕ (ν/α′) that are plactic equivalent to Aλ. Hence gλµ(d) ν = |CT−Aλ,d(ν)|. Finally, (II)

and (III) have the same cardinality as Pm

(
CW−

Aλ,d,Bν

)
= CT−Aλ,d(ν). �

The set of colored words CYWλ,d defined in the introduction is related to the CWZst
λ ,d

defined above by standardizing: (CYWλ,d)
st = CWZst

λ ,d
. Figure 1 (after standardizing)

illustrates Hook Kronecker Rule III for λ = (3, 1, 1), d = 2, and all Bν .

In addition to the three descriptions above, we also point out that the tableaux Aλ and
Bν in the definition of CWAλ,d,Bν have many descriptions:

Aλ = P (wblft) = Plr(w
rev ) = Q(wrev inv neg) = Qm(wrev inv) = Qm(wrev rev∅ inv)

Bν = Qm(w) = Q(wneg) = P (winv rev blft).
(5.1)

These equalities hold by Propositions 2.21, 2.22, and 2.24.

Example 5.2. Let Aλ =
1 4 5 6

2

3

and Bν =
1 3 6

2 5

4

. The first line below gives the

nonempty sets CW−
Aλ,d,Bν

for all d; the second line gives the sets CT−Aλ,d(ν), i.e., the
mixed insertion tableaux of the words on the first line; the third line gives the tableaux
Pm(wrev inv) for the w on the first line (these are the subject of Proposition 5.7, below):

{4 2 5 3 1 6} {4 1 5 3 2 6, 5 3 2 4 1 6} {5 3 6 4 2 1, 5 3 1 4 2 6} {5 3 6 4 2 1}
1 3 6

2 5

4




1 3 6

2 5

4

1 3 6

2 4

5




1 2 3

4 6

5

1 3 6

2 4

5




1 2 3

4 6

5




1 3 4 6

2

5




1 3 4 6

2

5

1 2 4 6

3

5




1 2 3 5

4

6

1 2 5 6

3

4




1 2 3 6

4

5

 .

Here are the corresponding color lowerable sets of words and tableaux (CW+
Aλ,d,Bν

,

CT+
Aλ,d

(ν), and {Pm(wrev inv) : w ∈ CW+
Aλ,d,Bν

}):

{2 3 5 4 1 6} {1 3 5 4 2 6, 3 4 2 5 1 6} {3 4 6 5 2 1, 3 4 1 5 2 6} {3 4 6 5 2 1}
1 3 6

2 5

4




1 3 6

2 5

4

1 3 6

2 4

5




1 2 3

4 6

5

1 3 6

2 4

5




1 2 3

4 6

5




1 3 4 6

2

5




1 3 5 6

2

4

1 2 4 6

3

5




1 3 4 5

2

6

1 4 5 6

2

3




1 3 5 6

2

4

 .
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5.2. A generalization to skew shapes. Here we show that Hook Kronecker Rule I
generalizes in a straightforward way to the case where ν is a skew shape. For β a skew
shape of size n and λ, µ ` n, the Kronecker coefficient gλµβ is defined by

gλµβ = 〈sλ ∗ sµ, sβ〉.

The definitions of blft, colored Yamanouchi tableaux, color lowerable, color raisable, and
C− all carry over to colored tableaux of skew shape without change.

For a tableau B and (skew) shape θ contained in the shape of B, Bθ denotes the (skew)
subtableau of B obtained by restricting to the shape θ.

Lemma 5.3. Let T be a CT≺ of shape ν/κ. Let Bκ be a CT≺ of shape κ which contains
only barred letters < all letters of T and define B to be the union of Bκ and T (hence B
is a CT≺ of shape ν). Then T blft ∼ (Bblft)λ/κ′, where λ = sh(Bblft).

Proof. Since Bblft can be computed by inserting rowword(sub∅(B)) into sub (B)∗, and
the insertion of a letter x into an ordinary tableau does not affect letters < x,

(Bblft)κ′ = (Bκ)
∗. (5.2)

Set w = rowword(sub (B)∗) rowword(sub∅(B)), so by definition, Bblft ∼ w. Then, letting

m be the smallest letter of T blft, we have

(Bblft)λ/κ′ = sub≥m(Bblft) ∼ sub≥m(w) = rowword(sub (T )∗) rowword(sub∅(T )) ∼ T blft,

where the first equality is by (5.2), the first plactic equivalence is a well-known property
of the plactic monoid, and the second equality is straightforward from definitions. �

Proposition 5.4. Theorem 3.3 generalizes to skew tableaux: for any color lowerable
tableau T of skew shape ν/κ, T blft = C−(T )blft.

Proof. Using Lemma 5.3 and with B and λ as in the lemma, we compute

T blft ∼ (Bblft)λ/κ′ = (C−(B)blft)λ/κ′ ∼ C−(T )blft,

where the equality is by Theorem 3.3. The result follows since T blft and C−(T )blft have
straight-shape. �

The proof of Proposition 3.1 generalizes to the case where ν is a skew shape with
little change (the generalized Littlewood–Richardson coefficient cγαβ = 〈sαsβ, sγ〉 makes
sense for any skew shapes α, β, γ). Then, in view of Proposition 5.4, the proof of Hook
Kronecker Rule I carries over to this case as well. Hence, there holds the following rule.

Corollary 5.5 (Hook Kronecker Rule IV). The Kronecker coefficient gλµ(d)β is equal to
the number of color raisable Yamanouchi tableaux of content λ, total color d, and shape β.
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5.3. Symmetries of the hook Kronecker rules. The Weyl group D3 (which is isomor-
phic to S4) acts on triples of partitions of n by permuting them and transposing an even
number of them. Kronecker coefficients are invariant under this action, i.e., gλµν = gθ(λ,µ,ν)
for any θ ∈ D3. What we actually want to consider here is this action restricted to the
subset of triples for which our rules apply, i.e., those with µ a hook shape: the subgroup
of D3 taking this subset to itself is isomorphic to the dihedral group of order 8.

As far as we can tell, only 2 of these 8 symmetries can be seen from the hook Kronecker
rules: (λ, µ, ν) 7→ (λ′, µ′, ν) and (of course) the identity.

Proposition 5.6. We have the following bijections of sets of colored permutations:

CWA,d,B

rev ∗
−−→ CWAt,n−d,Bev (5.3)

CW−
A,d,B

rev ∗
−−→ CW+

At,n−d,Bev (5.4)

Proof. The bijection (5.3) follows from Proposition 2.11 and Proposition 2.24 (iv). Since
the automorphism w 7→ wrev ∗ of colored permutations identifies leftmost special subwords
with rightmost special subwords, (5.4) follows from (5.3). �

Regarding the symmetry (λ, µ, ν) 7→ (ν, µ, λ), we have the following result.

Proposition 5.7. The subset of standard colored tableaux

CTd,Bν (λ) :=
{
Pm(wrev inv) : w ∈ CWAλ,d,Bν

}
does not depend on the choice of Aλ. Therefore CTd,Bν (λ) is a set of standard colored
tableaux of shape λ with cardinality gλµ(d) ν + gλµ(d−1) ν.

Proof. Let w ∈ CWAλ,d,Bν and set v = wrev inv. By Proposition 2.22 (iii), Bν = Qm(w) =

Qm(vinv rev ) = P (vud rev blft). Then Bν can be computed in terms of Pm(v) as described
in Proposition 2.22 (iv). This gives a definition of CTd,Bν (λ) that depends on d,Bν , λ,
but not on Aλ. �

This proposition given, we now obtain a bijection between CTAλ,d(ν) and CTd,Bν (λ)

via CTAλ,d(ν)
∼=←− CWAλ,d,Bν

∼=−→ CTd,Bν (λ). See Example 5.2. It may be possible to
describe this bijection directly, but we do not know how to do this and, in view of this
example, it will not be easy. A related difficult problem is to give a direct definition of
the partition CTd,Bν (λ) = CT−d,Bν (λ)tCT+

d,Bν
(λ) induced from the partition CTAλ,d(ν) =

CT−Aλ,d(ν) t CT+
Aλ,d

(ν) via this bijection. Example 5.2 shows that the subset of CTd,Bν

consisting of color raisable tableaux does not, in general, have cardinality gλµ(d) ν . We
have therefore convinced ourselves that the equality gλµ(d) ν = gνµ(d)λ is difficult to see
from our rules.

5.4. Comparison of the hook Kronecker rules with Lascoux’s Kronecker Rule.
We now compare Hook Kronecker Rules II and III to the experiment in the introduction
and to Lascoux’s Kronecker Rule [17]. This comparison is better made with the “reverse”
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of our rules, which we now compute. Define brgt by wbrgt := wrev blft rev (this shuffles barred
letters right instead of left). Let λ, ν, Aλ, Bν be as in §5.1.

CWrev
Aλ,d,Bν

:=
(
CWAλ

t,d,Bνev t

)rev
=
{
wrev : P (wblft) = Aλ

t, tc(w) = d, Qm(w) = Bν
ev t
}

=
{
w : P (wrev blft) = Aλ

t, tc(wrev) = d, Qm(wrev) = Bν
ev t
}

=
{
w : P (wbrgt) = Aλ, tc(w) = d, Qm(w) = Bν

}
(5.5)

=
{
w : P (wbrgt) = Aλ, tc(w) = d, Q(wneg) = Bν

}
. (5.6)

The second to last equality is by (2.1) and Proposition 2.11 (iv), and the last equality
is by Proposition 2.21. Increasing hook subwords and special increasing subwords can
be defined in a similar way to their decreasing counterparts. Then the set CWrev −

Aλ,d,Bν
:=(

CW−
At
λ,d,Bν

ev t

)rev
(which has the desired cardinality gλµ(d) ν) can be defined directly as

the subset of CWrev
Aλ,d,Bν

consisting of those words w such that the largest letter
of any special increasing subword of w is unbarred.

(5.7)

Define the following subsets of colored permutations (L stands for Lascoux):

CWLAλ,d :=
{
w : P (wrev brgt) = Aλ, tc(w) = d

}
,

CWLAλ,d,Bν :=
{
w : P (wrev brgt) = Aλ, tc(w) = d, Q(w) = Bν

}
,

CWL−Aλ,d :=
{
w : P (wrev brgt) = Aλ, tc(w) = d, wn is unbarred

}
,

CWL−Aλ,d,Bν :=
{
w : P (wrev brgt) = Aλ, tc(w) = d, Q(w) = Bν , wn is unbarred

}
. (5.8)

For an object w in the alphabet A, define w∅ to be the object in the alphabet of ordinary
letters obtained from w by removing all bars; also, for a set W of colored objects, define
W∅ to be the multiset {w∅ : w ∈ W}. We claim that when µ is the hook shape µ(d), the
multiset (1.1) from the introduction is related to the CWL by

Γλ ◦ Γµ =
(
CWL−

Zst
λ ,d

)∅
. (5.9)

Right multiplying3 a permutation u by a permutation v such that P (v) = Zst
µ(d) is the same

as reversing the subword un−dun−d+1 · · ·un of u and then shuffling un, un−1, . . . , un−d+1 to
the left, into the rest of the word. By placing bars on the letters un, . . . , un−d+1, we obtain
a colored word w of total color d such that wrev brgt = u and wn is unbarred. This verifies
(5.9).

Example 5.8. If d = 2,

u = 5 2 7 1 4 6 3 and v = 7 1 2 6 3 4 5,

then

u ◦ v = 3 5 2 6 7 1 4 and w = 3 5 2 6 7 1 4.

3We adopt the convention for multiplying permutations in which u◦si is obtained from u by swapping
letters ui and ui+1, where si is the transposition (i i+1).
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As a further example, observe that CWLZst
(3,1,1)

,2 is the result of applying st rev rev to the

words in Figure 1; the bottom six rows correspond to the subset CWL−
Zst
(3,1,1)

,2
.

Hence the half of Lascoux’s Kronecker Rule concerning property (B) becomes

For any hook shape λ, d ∈ {0, 1, . . . , n− 1}, and Bν ∈ SYT(ν), gλµ(d) ν = |CWL−
Zst
λ ,d,Bν

|.

The similar forms of Lascoux’s Kronecker Rule and the reverse of Hook Kronecker Rule III
are then apparent by comparing (5.5), (5.6), and (5.7) with (5.8).

We still do not fully understand the relationship between these rules, however. For

example, the multisets of SYT P
(
CWL−

Zst
λ ,d

)∅
and Pm

(
CWrev −

Zst
λ ,d

)∅
are equal when λ is a

hook shape. However, we only know how to prove this by giving an explicit description of
both multisets and then checking that they are the same. Moreover, for general λ, these
multisets seem to be quite close; in fact, the tableaux in Pm

(
CWrev −

Zst
λ ,d

)
were originally

found by making slight modifications to those in P
(
CWL−

Zst
λ ,d

)
.

Remark 5.9. Be aware that, although
(
CWL−

Zst
λ ,d

)∅
is a union of Knuth equivalence

classes, CWL−
Zst
λ ,d

is not in the following sense: a Knuth transformation between two ele-

ments of this multiset, say · · · xzy · · · · · · zxy · · · , may correspond to a transformation
of the form · · · xzy · · ·  · · · zxy · · · rather than · · ·xzy · · ·  · · · zxy · · · in CWL−

Zst
λ ,d

.

This is part of the difficulty in Problem 5.10, below.

We believe that the tableaux in Pm

(
CWrev −

Zst
λ ,d

)
are really the correct combinatorial ob-

jects for Kronecker coefficients for one hook shape, but we are not entirely sure that the
words CWL−

Zst
λ ,d

should be given up in favor of CWrev −
Zst
λ ,d

. We therefore suggest the follow-

ing problem, which may help uncover a deeper relationship between Lascoux’s Kronecker
Rule and the hook Kronecker rules.

Problem 5.10. Find a nice proof of the fact that P
(
CWL−

Zst
λ ,d

)∅
= Pm

(
CW rev −

Zst
λ ,d

)∅
when λ is a hook shape. For general λ, find an explicit bijection between CWL−

Zst
λ ,d

and

Pm

(
CW rev −

Zst
λ ,d

)
. For instance, such a bijection might modify these words in a simple way

and then apply Schensted or mixed insertion, or might apply a new kind of insertion
algorithm.
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