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1MPIPKS (Dresden)

Condensed Matter Theory Seminar — Köln – 24/10/2014
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Entropies

For some probability distribution {pi}, define the Renyi entropy

Sn =
1

1− n log

(∑
i

pni

)

Generalizes the usual Shannon entropy

S = lim
n→1

Sn = −
∑
i

pi log pi

Classical system: probabilities given by Boltzmann weights
pi ∝ e−βE(i)

Quantum: the pi label the eigenvalues of the reduced density
matrix ρA = TrB〈ψ|ψ〉.
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Quantum entanglement entropy

Bipartition

A

B

ξ

[von Neumann, 1955]

|ψ〉 e.g. ground state of HA∪B

ρA = TrB |ψ〉〈ψ|

Sn = 1
1−n log (Tr ρnA)
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Quantum entanglement entropy

Bipartition

A

B

ξ

[von Neumann, 1955]

|ψ〉 e.g. ground state of HA∪B

ρA = TrB |ψ〉〈ψ|

Sn = 1
1−n log (Tr ρnA)

Extended quantum system: Boundary law

correlation length ξ, dimension d.

Sn(L) = anL
d−1 + o(Ld−1)
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Entanglement entropy (2/2)

Why studying this quantity?

How to store efficiently quantum states in a computer?

Tool to distinguich between subtly different phases of matter.

Replica trick: Twist, Swap.

Classic results

1d critical systems: Sn ∼ c
6

(
1 + 1

n

)
log
[
L
π sin π`

L

]
[Holzhey et al,

NPB 1994 — Vidal et al, PRL 2003 — Calabrese & Cardy, JSM 2004]
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Entanglement entropy (2/2)

Why studying this quantity?

How to store efficiently quantum states in a computer?

Tool to distinguich between subtly different phases of matter.

Replica trick: Twist, Swap.

Classic results

1d critical systems: Sn ∼ c
6

(
1 + 1

n

)
log
[
L
π sin π`

L

]
[Holzhey et al,

NPB 1994 — Vidal et al, PRL 2003 — Calabrese & Cardy, JSM 2004]

Topological order in gapped systems: Sn = aL+ Stopo + o(1)
[Kitaev & Preskill, PRL 2006 — Levin & Wen, PRL 2006]

Issues

Sometimes difficult to compute in dimension d > 1

What about experiments?
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Mutual information

Question: can we do the same in 2d classical systems?
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Mutual information

A

B

LA

LB

Lx

Ly

Sn(A) = Sn({piA}) piA =
∑
iB

piA,iB

In(A,B) = Sn(A) + Sn(B)− Sn(A ∪B)
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Replica picture

In(A,B) =
1

1− n log

(
Z[A,n, β]Z[B,n, β]

Z(β)nZ(nβ)

)
,

Z[A,n, β] =
∑
iA

∑
iB1

,...,iBn

e
−β

∑n
k=1 EiA,iBk
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Replica picture

Z[A,n, β]
T/n

T

Z[B,n, β]

T

T/n

Off critical/topological behavior [Castelnovo & Chamon, PRB 2007 —

Iaconis, Inglis, Kallin & Melko, PRB 2013 — Hermanns & Trebst, PRB 2014]

In(A,B) = anL+ Gn + o(1)

Here: Gn potentially universal at criticality
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Critical behavior

Systems with a critical point separating two gapped phases:
critical behavior at both T = Tc and T = nTc.

T = Tc: n critical systems coupled to one ordered system.

Gn(Tc) =
1

1− n log

(
d×

[Zfix
A Zfix

B

ZA∪B

]n)

T = nTc: one critical system coupled to n disordered systems.

Gn(nTc) =
1

1− n log

(Z free
A Z free

B

ZA∪B

)

This is true in any geometry in any dimension.
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Universal shape from conformal field theory (rectangle I)

Z is the universal part in the partition function at criticality:

Zlattice(Lx, Ly) = ALxLyBLx+LyZ (1 + o(1))

Important point: lattice boundary conditions will renormalize to
conformally invariant boundary conditions.

free

free free

fix

T = Tc

free

free free

free

T = nTc
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Universal shape from conformal field theory (rectangle II)

Z(Lx, Ly) = Lc/4−4h
x [f(Ly/Lx)]16h−c/2 [f(2Ly/Lx)]−8h

with

f(u) = e−πu/12
∞∏
k=1

(
1− e−2πku

)
[Kleban & Vassileva, J. Phys. A (1992)]
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Universal shape from conformal field theory (rectangle II)

Z(Lx, Ly) = Lc/4−4h
x [f(Ly/Lx)]16h−c/2 [f(2Ly/Lx)]−8h

with

f(u) = e−πu/12
∞∏
k=1

(
1− e−2πku

)
[Kleban & Vassileva, J. Phys. A (1992)]

Universal data:

c = central charge of the CFT.

h = dimension of the boundary condition changing operator.
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Numerical checks at T = nTc

In computed in Monte Carlo through a transfer matrix ratio trick.

Z[A,n, β]

Z(β)n
=

N−1∏
i=0

Z[Ai+1, n, β]

Z[Ai, n, β]

Main examples: Ising (c = 1/2) and Q = 3 Potts (c = 4/5).
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Numerical checks at T = nTc
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Numerical checks at T = nTc
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Numerical checks at T = Tc
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Partial conclusion

central charge extraction from Entropy and Information in 2d
Stat. Mech

Other geometries (torus, cylinder) have been checked too.

XY model: gluing of CFTs with different radii (or Luttinger
parameters).

Can be generalized to any n > 1 or n < 1.

Shannon limit (n→ 1) sometimes highly non-trivial. For
Ising, leading term appears to be (logL)2.
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Entropy of a line

Z[A,n, β] =
∑
σ

ZσA(nβ) [ZσB(β)]n

Using this, I1(A,B) = 2S1(line of spins)
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Entropy of a line

Renyi entropy of a line [JMS, Misguich & Pasquier, PRB 2011]

|σ〉

LB

LA

S4

Sn =
1

1− n log

[ Zbook

(Zsheet)
n

]
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Entanglement in Rokhsar-Kivelson wave function

Take some classical statistical model Z =
∑

c e
−βE(c)

Construct some Hilbert space |c〉.
Orthogonality 〈c|c′〉=δc,c′

|ψ〉 =
1√
Z

∑
c

e−βE(c)/2|c〉

[Rokhsar & Kivelson, PRL 1988] [Henley, J. Phys. Cond. Mat 2004]

A possible choice of classical model
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Connections between (too many) entropies

Sn(entanglement RK) = Sn(classical line)
[JMS, Furukawa, Misguich & Pasquier Phys. Rev. B 2009] (weaker version
holds also for RVB [JMS, Ju, Fendley & Melko New. J. Phys 2013])

S1(entanglement RK) = S1(classical line) = 1
2I1(classical)
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Infinite strip/cylinder limit

e−λH |s〉 ∼ e−λE0 |ψ〉 〈ψ|s〉 , |ψ〉 ground state of H.

In =
2

1− n log

(∑
σ

ψσ(β)nψσ(nβ)

)

Sline
n =

1

1− n log

(∑
σ

ψσ(β)2n

)
with

|ψ(β)〉 =
∑
σ

ψσ(β) |σ〉

ground-state of a corresponding spin chain (Ising, XXZ, . . . )
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Free bosonic theory (Luttinger liquid)

A =
g

4π

∫ L

0
dx

∫ ∞
−∞

dτ

[
(∇ϕ)2 +A1 cos

(ϕ
r

)
+A2 cos

(
2ϕ

r

)
+ . . .

]
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Free bosonic theory (Luttinger liquid)

Tr ρn =
∑
φ

p(φ)n

p(φ)n ∝ exp(−Sg(φ))n = exp(−nSg(φ)) = exp(−Sng(φ))

pg(φ)n ∝ png(φ)
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Free bosonic theory (Luttinger liquid)

Tr ρn =
∑
φ

p(φ)n

p(φ)n ∝ exp(−Sg(φ))n = exp(−nSg(φ)) = exp(−Sng(φ))

pg(φ)n ∝ png(φ)

Close to the boundary, the stiffness is modified to g −→ ng. We
get:

sn =
1

1− n

[
log

(Zng
ZDng

)
− n log

( Zg
ZDg

)]
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Boundary phase transition

Vertex operators in the action (d integer)

Vd = cos

(
πd

2
h

)
Irrelevant if d2 > 2g. Otherwise locks the field to a flat
configuration with degeneracy d. [Coleman, PRB 1975]

However, g → ng near the boundary in the book.

⇒ Phase transition at nc = d2
min/(2g)
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Phase transition (2/2)

XXZ, half-filling −→ d = 2

Replicas Boundary locked

nc

n

In the locked phase, we have 2n “half-sheets”.

sn =
n

1− n log

(Z(LA)Z(LB)

Z(LA + LB)

)
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Numerical checks (XXZ)
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CFT discretizations (1/2)

Constructing lattice wave functions from CFT correlators
[Cirac & Sierra, PRB 2009], [Nielsen, Cirac & Sierra, JSM 2011]

[Tu, Nielsen & Sierra, NPB 2014] [Bondesan & Quella, NPB 2014],. . .
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CFT discretizations (1/2)

Constructing lattice wave functions from CFT correlators
[Cirac & Sierra, PRB 2009], [Nielsen, Cirac & Sierra, JSM 2011]

[Tu, Nielsen & Sierra, NPB 2014] [Bondesan & Quella, NPB 2014],. . .

Simplest example of such a construction

|Ψn〉 =
∑

x1,...,xL/2

L/2∏
j<i

sin
π(xi − xj)

L

n

|x1, . . . , xL/2〉
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CFT discretizations (2/2)

Good ansatz for the XXZ spin chain. n = 1 is exact (XX
chain)
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Good ansatz for the XXZ spin chain. n = 1 is exact (XX
chain)

The norm 〈Ψn|Ψn〉 is the line entropy of the XX chain.
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CFT discretizations (2/2)

Good ansatz for the XXZ spin chain. n = 1 is exact (XX
chain)

The norm 〈Ψn|Ψn〉 is the line entropy of the XX chain.

We know there is a transition in the norm at n = 4, so these
states are gapped for n > 4!
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Conclusion

Universal terms in entropies at criticality. Comparison
CFT/numerics.

Renyi index n distinguishes between competing orders.

What about models in higher dimensions?
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Conclusion

Thanks you!
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