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Integrable systems

Statistical mechanics 2 4 0d: universality J

Out of equilibrium 1 + 1d: peculiar thermalization properties )

Go from one to the other: “just” perform the Wick rotation 7 = it.



This talk

There is a precise way to compute out of equilibrium quantities in
1d quantum systems, starting from the underlying 2d stat mech
model.

I will illustrate this on an explicit example, where things can be
worked out in considerable detail, and give exact formulas valid at
all time.
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Long range correlations: gaussian free field, or coulomb gas, or free
compact boson CFT (¢ = 1), or euclidean Luttinger liquid.



Dimer coverings on the Aztec diamond




Dimer coverings on the Aztec diamond




Dimer coverings on the Aztec diamond




Mapping to free fermions




Mapping to free fermions
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Arctic circle theorem  [Jockusch, Propp and Shor 1998]



Inhomogeneous CFT [Allegra, Dubail, JMS, Viti 2016]



N'/3 scaling near the edge: rightmost particle follows the
Tracy-Widom distribution [Johansson 2005]



Repulsive interactions



Attractive interactions



Can also do six vertex model
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a=dsin(y+e) , b=dsine , c=dsiny

222
A=2T2 7% +2ab c = cos 7.

Disclaimer: in the following a = 1, and A is fixed to some value.



An Observation

[JMS 2014] [Allegra, Dubail, JMS, Viti 2016]
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Six vertex model with domain wall boundary conditions
[Korepin 1982]
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[Allegra, Dubail, JMS, Viti 2016]

[JMS 2014]
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An Observation

[JMS 2014] [Allegra, Dubail, JMS, Viti 2016]

b—0

—7/2

Hamiltonian (or Trotter) limit.



Relation through a transfer matrix (6-vertex model)

ZEb) = (- MU T O AL )

partition function of the six vertex model with domain wall
boundary conditions.

T(b) =1+ bHxxz + O(b?)

lim T(r/2n)" = e™Hxx2z
N—o00

r
2n

Z(r) = (Lole™|Wo) = lim Z,5(b= o)



Free fermions point A = 0

H = Z (cl_ﬂcx + CL%H) = / %(COS ket (k)e(k)

TEZ

e(%er)HCLe(%fy)H _/;ngzk:p+ycosk+z sin k T(k)
™

Saddle point treatment: x + iy sink + 5 cos k = 0, two solutions

o 22 4 y? < 72: power law decay of correlations

o 22 4 y? > 72 everything goes to zero

Remark: Z(7) = (Wole™|¥y) = /8



Curved CFT approach inside the disk

[Allegra, Dubail, JMS & Viti 2016] Imaginary time propagator at short
distances (up to some phases)

1 1 1
i ~ —
(! (w4 0w,y + oy)e(,y)) 27 [637 +iv(z,y)dy  dx — iv(w, y)éy]

This coincides with the propagator for the following action

! 2 eo@d) (1 5 19
S = 27T/clzdze Vg Oz¢R + Y 0L |,

provided

2
z(x,y) = arccos(*) — jarctanh2Z

(r/2)? = y? T

@Y = \/(7/2)2 — 22 — 42




Interacting arctic curves (o = 7 /(7 — 7))

z(s) _ a? csc? as{cos(27+3s)(cos s—acsin s cot as)+a sin s cos s cot as+cos> s—2}+2
T csc s csc(y+s)(sin? (y+s)+sin? s)

y(s) [2(12 cscy sin? s csc? as{2asin s cot as sin(7+s)fsin(’y+2s)}71] +sin? s
T csc2(y+s)(sin?(y+s)+sin? s)

Hamiltonian limit of [Colomo, Pronko 2009]



Related example: fermi gas in a harmonic potential

SC2

H= [ ool |32+ 5| v

Modes @ZJ,TC = [p uk(z)y'(z) dz given in terms of Hermite
polynomials. Single particle energies ¢, = (k+1/2), k € N

Density profile for N particles (Wigner Semicircle law)

(e (@)e(@)) ~ %\/Lz "2 L=VaN>1

Similar treatment (saddle point, etc)
Similar CFT interpretation
|U(z1,...,2N)|? coincides with eigenvalue pdf for GUE.



|zergin-Korepin partition function (interacting)

There is a remarkable exact determinant formula for ZX
[lzergin 1987, lzergin, Coker, Korepin 1992]

In the homogeneous limit it becomes a Hankel determinant:
. n? o —yu
sine " 1—e™7

Z;K = 7[ n—l] det (/ du u’ﬂe_e“_m)

sin e

sin(y+e¢)

where recall b = and cosy = A.

Can be rewritten as a Fredholm determinant [Slavnov 2003] (see also
[Colomo Pronko 2003])



Hankel matrices and orthogonal polynomials

@ Choose a scalar product (f, g) = [ dzf(z)g(x)w(z)

o Let {pr(x)}r>0 be a set of monic orthogonal polynomials for
the scalar product , (pk,p1) = hidx

o Consider the Hankel matrix A, with elements A;; = (z*7)

n—1 it d
I K, (2, y)
det A = [The . (A7), =L Y
¢ kHO ’“ (A7) = Zraniay r=0
= y:

with

— €z 1 n\L)Pn— — Pn—1\T)Pn
):Zpk( pr(y) hn-lp (z)p 1(32_2 1(2)pn (y)



Laguerre polynomials

n—1 |2
wlz)=eTonR, , det(A)= Iizo 2

e’

0 o 1 — e U
) n2 det duy e v ———
sin e 0<i,j<n—1 \ J_oo 1—e
Dy = X

det (/ du ui+je_€“@(u)>
0<7,57<n—1

—00

Now use gee:g = det(B~1A) = det(1 + B71(A — B)) to get
something well behaved in the Hamiltonian limit.



Result: exact fredholm determinant representation

Z(r) = (Wole™|Wy) = e 20D det(T — V)|  [IMS 2017]

V(z,y) = B(z,y)w(y)

VYD) (vY) — Vado(Vy) (V)
Ble,y) = 2(z —y)

1 — e—y/(27sinY)
1 — e—7y/(27siny)

w(y) =0(y) —

(_1)k+1

logdet(I-V) = Z / dzy ...dzpV(ry,x2) ... V(rg, 1)
RFE

k=1



Easiest: use [Zinn-Justin 2000] [Bleher, Fokin 2006]

Z(t) ~ exp({( G 5 —1} (TS;?P) M0(1)

T—00 T — *y)

Interpretation: free energy of the fluctuating region.



Back to real time )

W) =e ™ W) o) = [ MU )

H =" (SLSLy + 8282, +AS2S3,,)
TEL

Free fermion case (A = 0) [Antal, Ricz, Rakos, and Schiitz, 1999]
Interactions: Numerics [Gobert, Kollath, Schollwéck & Schiitz 2005]



Back to real time )

() = e (W), W) = [ AL )

H= Z (SpSpi1 + 52571 +ASSE )
TEZL

Magnetization




Back to real time

Analytic continuation
@ Return probability: 7 = it

e Correlations: y =it and 7 — 0T

Continuation of the arctic curves should give the light cone:

Free fermions: 22 + 9% = (7/2)2 — o=+t
Interactions: complicated — @ = £(siny)t = +v/1 — A?¢



Analytic continuation

Numerical observations (huge precision, t up to 600 on laptop):

@ Root of unity, 7 = arccos A = %

—logR<t>=< ¢ _1><tsin'v>2

W 12 + O(log t)

Coincides with analytic continuation only when p = 1.

@ non root of unity

—logR(t) = tsiny + O(logt)



Analytic continuation

Numerical observations (huge precision, t up to 600 on laptop):
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How about a proof using Riemann-Hilbert techniques?
[Its, Izergin, Korepin, Slavnov 1990]



Effective descriptions

o Generalized hydrodynamics (|]A| < 1, ballistic)
[Castro-Alvaredo, Doyon, Yoshimura 2016]
[Bertini, Collura, De Nardis, Fagotti 2016]

This particular quench (root of unity A = cos %p),

3 q . Sin% T
So(x/t) = —g-aresin | ——p ("
q

[De Luca, Collura, Viti 2018]

Reproduces the front obtained by arctic curves machinery
Density is nowhere continuous as a function of A, similar to
return probability.
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DMRG, t = 80 here

[http://itensor.org]



What about entanglement entropy? J




General wisdom for Entanglement scaling in 1+1d

@ Ground state of a gapped Hamiltonian with local interactions.

Area law: S(£) ~ £971  [Srednicki 1993; Hastings, 2004]

@ There can be mild (log) violations for critical systems

141d CFT S(L) ~ S log L
[Holzhey, Larsen & Wilczek 1994; Calabrese & Cardy 2004]

Systems with a Fermi surface S(L) ~ L% 1log L
[Wolf 2006; Gioev & Klich 2006]



After a quantum quench (still critical)

@ Local quench S(t) ~ §logt. [Calabrese, Cardy 2007]
@ Global quench S(t) ~ t. [Calabrese, Cardy 2005]

NB: Those are pure CFT calculations.

Chaotic systems: random circuits calculations [Nahum, Ruhman, Vijay &
Haah 2017] also give S(t) ~ ¢, but have no notion of local quench.



EE after the quench studied here [Dubail, JMS, Viti & Calabrese 2017]
Sulw,t) ~ 775 log e (Ta(w,y = it))

Map to the upper half plane through g(z) = e*(*+7/2)
_ o)L
Tt = (09 |52 () )

—8an

Careful that the UV cutoff € — ¢(z) = €g/ sin kp(x) now depends
on position.
_n+l B 213/2
Sula,1) = "o —In [t(l (z/1)?) }

n

Recovers the numerical guess made in [Eisler & Peschel 2014]



Caveat: Integrability and non Integrability

H = Z( 050541 ?U?+1>+JQZ< 050542+ 0] J+2)
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Conclusion

The mysteries of the analytic continutation.

Exact computations, valid at all times.

@ For certain high energy states, the XXZ chain out of
equilibrium can show exotic behavior.

Entanglement growth: integrable vs non integrable.



Thank you!



