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Abstract

I try to give an idea how physicists guessed why the critical behavior of some important
two-dimensional lattice models (Ising, Potts, dimers, etc) is related to the representation
theory of certain Lie algebras, in particular the Virasoro algebra. This is the broad topic of
2d conformal field theory (CFT). I will illustrate some of these aspects, taking as examples
dimer and Ising models.

I want to discuss the following claim, often made in physics literature, but poorly understood
from a rigorous mathematical perspective: to understand critical statistical mechanical lattice
models with a perfectly legitimate probabilistic interpretation, it is necessary to study repre-
sentations of infinite dimensional Lie Algebras, the most prominent example being the Virasoro
algebra (c is the central charge)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 [c, Ln] = 0

This is the celebrated result of [Belavin, Polyakov, Zamolodchikov 1983], classifying universality
classes amounts to identifying irreducible representations of the algebra. The aim of these
informal lectures is to give a partial idea of how physicists managed to guess this. My main
starting examples will be the Ising and dimer models. There are two sides to the story

• Exact solution of specific models such as the Ising model. Lenz, Peierls, Kramers, Wannier,
[Onsager 1944], Lieb, Baxter, etc. Lattice approach, try to take the scaling limit.

• Field theoretical approach based on conformal symmetry. Ideas by Polyakov (1970),
conformal field theory [BPZ 1983], Cardy, etc.

1 Lattice fermions

Two-level systems— H = C2, two basis states |0〉 =

(
0
1

)
and |1〉 =

(
1
0

)
. Wave

functions are |ψ〉 = α |0〉 + β |1〉 , (α, β) ∈ C2. Now introduce the annihilation c =

(
0 0
1 0

)
,

and creation c† =

(
0 1
0 0

)
operators. Physicists like to use the “dagger” notation † to denote

Hermitian conjugate, together with bra/ket notations, where e. g. the bra 〈0| = (|0〉)† = (0 1).

We have c† |0〉 = |1〉, c |1〉 = |0〉, c† |1〉 =

(
0
0

)
= 0, c |0〉 =

(
0
0

)
= 0 (slight abuse of
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notations for the last two, which we keep on doing in the following). Also, c†c =

(
1 0
0 0

)
, and

c†c+ cc† = I2 =

(
1 0
0 1

)
.

Two two-level systems— H = (C2)⊗2. dimH = 22 = 4.
Spanned by |00〉 = |0〉 ⊗ |0〉, |01〉 = |0〉 ⊗ |1〉, |10〉 = |1〉 ⊗ |0〉, |11〉 = |1〉 ⊗ |1〉.

A collection of N two level systems— H = (C2)⊗N , dimH = 2N . Want a set of (Dirac)

fermionic operators, that is, a set of ci, c
†
i for i = 1, . . . , N that satisfy

cic
†
j + c†jci = δijI (1)

cicj = −cjci (2)

where I = I2 ⊗ . . . ⊗ I2 is the identity operator. The relations (1) and (2) are usually called
canonical anticommutation relations (CAR), since they involve the anticommutator {A,B} =
AB + BA, instead of the commutator [A,B] = AB − BA. An explicit construction, originally
due to [Jordan & Wigner, 1928] 1 is shown below:

c†1 = c† ⊗ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
N−1 times

(3)

...

c†k =

(
−1 0
0 1

)
⊗ . . .⊗

(
−1 0
0 1

)
︸ ︷︷ ︸

k−1 times

⊗ c† ⊗ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
N−k times

(4)

...

c†N =

(
−1 0
0 1

)
⊗ . . .⊗

(
−1 0
0 1

)
︸ ︷︷ ︸

N−1 times

⊗ c† (5)

The chain of k− 1 tensor products of I2− 2c†c = (−1)c
†c in e. g. (4) is called a Jordan-Wigner

string. One can readily check that the anticommutation relations (1), (2) are satisfied, using
(A⊗B)(C ⊗D) = AC ⊗BD lots of times.

It is possible to write down essentially any state using fermionic operators acting on the
vacuum |0〉 = |0 . . . 0〉 = |0〉 ⊗ . . . ⊗ |0〉. For example for N = 5, |01101〉 = +c†2c

†
3c
†
5 |0〉 (the

sign is always positive provided the creation operators appear with increasing index from left
to right). Further useful properties are stated in the red rounded box next page.

Free fermions Hamiltonian— A free (lattice) fermions Hamiltonian is a 2N × 2N matrix
that is quadratic in the fermions creation and annihilation operators (assume hermiticity here):

H =

N∑
i,j=1

(
Aijc

†
icj +Bijc

†
ic
†
j +B∗ijcjci

)
(6)

1Physicist often use this result when studying one dimensional quantum magnets (“quantum spin chains”),
which are modeled using Pauli matrices. The construction goes σαj = I2 ⊗ . . .⊗ σα ⊗ I2 . . .⊗ I2, for α = x, y, z,
where σx = c†+c, σy = −ic†+ ic, σz = 2c†c−I2 are the Pauli matrices. The “Pauli matrices acting on site j” are

related to fermions through the Jordan-Wigner transformation σz
j = 2c†jcj − I, σxj + iσyj = 2c†j

∏j−1
l=1

(
I − 2c†l cl

)
.
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Useful fermionic formulas

• Anticommutation relations: c†icj = δijI − cjc†i , cicj = −cjci , c†ic
†
j = −c†jc

†
i .

In particular cici = 0 = c†ic
†
i .

• ci |0〉 = 0 and 〈0| c†i = (ci |0〉)† = 0. Hence all ci “annihilate” the vacuum |0〉.

• Commutation relations for quadratic forms: [c†icj , c
†
kcl] = δjkc

†
icl − δilc

†
kcj .

In particular, [c†ici, c
†
kck] = 0.

• Exponentiation: since (c†c)2 = c†c, we have the relation exp
(
αc†ici

)
= 1 + (eα − 1)c†ici.

Also, eαc
†
i cic†ie

−αc†i ci = eαc†i .

where A is a Hermitian matrix and B is a N × N matrix. This is of course a specific class of
Hamiltonians, since we have at most 2N2 free parameters while the Hilbert space size is 2N .
In physics context, free really means quadratic. A wide class of systems can be mapped onto
free fermions. Those include determinantal point processes (B can be made to vanish in those
cases), the Ising model, etc. But not six vertex in general, or three state Potts, etc.

How to diagonalize a free fermions Hamiltonian? — Here we focus on the specific
form

H =

N∑
i,j=1

Aijc
†
icj (7)

for simplicity, but the procedure described below can be generalized to treat cases where B is a
non zero matrix. Hamiltonians of the form (7) conserve the number of particles, which means

applying it on n-particle state c†i1 . . . c
†
in
|0〉 returns a sum over n particle states (essentially, any

fermion destroyed by cj is immediately created back by c†i ). A is a hermitian N × N matrix,
so can be diagonalized in an orthonormal basis. The corresponding eigenvalue equations read
(assume no multiplicities for simplicity)

N∑
j=1

Aijujk = εkuik , k = 1, . . . , N (8)

The eigenvalues are the εk and the ujk are orthonormal, meaning
∑N

j=1 u
∗
jkujq = δkq. Now

introduce a new set of fermions as

f †k =
N∑
j=1

ujkc
†
j , k = 1, . . . , N , fk = (f †k)† (9)

Then it is easy to show {fk, f †q } = δkqI and {fk, fq} = 0, same as for real space fermions. So
finally

H =
∑
k

εkf
†
kfk (10)

Obtaining the spectrum is quite easy now. Obviously H |0〉 = 0. Using the anticommutation

relations, Hf †k |0〉 = εkf
†
k |0〉. Or Hf †k1f

†
k2
|0〉 = (εk1 + εk2)f †k1f

†
k2
|0〉, k1 6= k2. So the spectrum
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of this system is
n∑
i=1

εki , {k1, . . . , kn} subset of {1, . . . , N}

An eigenstate with smallest eigenvalue is obtained by filling all single particle energies that are
the smallest, |Ω〉 =

∏
k,εk>0 f

†
k |0〉 (irrespective of the order in which the product is taken).

2 Dimers on honeycomb and Ising on square

2.1 Dimers

Let us try and apply our technology for dimers on the honeycomb (drawn as a brickwall),
uniform measure. This is one of the simplest example where our free fermion technology may
be applied. Observations: a dimer configurations is uniquely determined by the occupancies
along vertical edges, so we may ignore the rest.

|0110〉

〈1010|

Te

To

Te

To

Figure 1: (N = 4)×(N ′ = 4) hexagonal lattice. An example of dimer covering (dimers are shown
as thick blue lines). We see the occupation of the top and bottom vertical edges as imposed. In
thinner dark red are drawn the vertical edges not occupied by dimers, those become particles
(1) in the following, while real dimers are holes (0).

Transfer matrix method— Put a 0 on vertical edges occupied by a dimer (shown in thick
blue), and a 1 otherwise (thiner darkred). We see the ones as a collection of particles propagating
upwards. Then associate a vector to dimer occupancies along a given line. For example for N =
4 in the picture, to the bottom line configuration 0110 we associate the vector |0110〉 = c†2c

†
3 |0〉

where recall |0〉 = |0000〉 is the vacuum.
Imagine I can find a 2N × 2N matrix T , such that 〈C|T |C′〉 = 1 if the configurations are

compatible –meaning valid dimer covering– when stiched together and 0 otherwise. Then the
partition function on the N ×N ′ lattice is simply Z = 〈top|TN ′ |bottom〉.

Proof. 〈top|TN ′ |bottom〉 =
∑
C1,...,CN′−1

〈top|T |CN ′−1〉 〈CN ′−1|T |CN ′−2〉 . . . 〈C1|T |bottom〉.
Each element in the sum is one for valid configurations, zero otherwise.

It is also possible to just require the bottom and top boundaries to coincide (periodic bound-
ary conditions). In this case Z = TrTN

′
.

Here we actually need two transfer matrices, since the rule changes depending on the parity
of the row considered. The bottom configuration is |bottom〉 = |0110〉, and Te |0110〉 = |0101〉+
|0110〉+ |0011〉, and ToTe |0110〉 = 2 |0101〉+ |1001〉+ 3 |0110〉+ 2 |1010〉+ |1100〉+ |0011〉. The
partition function is Z = 〈1010|(ToTe)

2|0110〉 = 20 (or 14, forgot).
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Transfer matrix in the one particle subspace— This is a N×N block, since the number
of particles (number of 1) is conserved –in the zero particle sectors the transfer matrix acts as
identity, T |0〉 = |0〉. (Me)ij = δij + δi+1,j , (Mo)ij = δij + δj+1,i. (M2)i,j = (MeMo) =
discrete laplacian− δi,jδi,N .

Transfer matrix as free fermions— Observations: (i) Ones propagate upwards to the left,
or to the right. (ii) number of one is conserved (iii) two ones cannot jump to the same site.
Labelling edges in a natural, way one sees the rules changes depending on parity of the row.
We write T 2 = TeTo, and call it the transfer matrix. We have

T 2 = exp

∑
i,j

Aijc
†
icj

 (11)

where A is actually the logarithm of the (tweaked at the right boundary) discrete N × N
laplacian: A = logM,Mij = 2δij + δi,j+1 + δi+1,j − δi,jδi,N . The logarithm is well defined since
all eigenvalues of M are strictly positive.

Sketch of the Proof. From the construction of the transfer matrix in the one particle sector,
we get T 2c†i |0〉 =

∑
jMijc

†
j |0〉. One needs to also determine the action on states c†i1 . . . c

†
in
|0〉,

i1 < . . . < in in the n-particle sector, for n = 2, . . . , N . Assuming T 2 is invertible, and using
T 2c†i1c

†
i2
. . . c†in |0〉 = T 2c†i1T

−2T 2c†i2T
−2 . . . T 2c†inT

−2 |0〉, a sufficient condition for T to be a

correct transfer matrix is to satisfy T 2c†iT
−2 = Mijc

†
j , and be the identity in the zero particle

sector. Introducing “diagonalizing” fermions f †k as in the previous section yields T 2f †kT
−2 =

λkf
†
k , where the λk are the (all positive) eigenvalues of M . Then

T = exp

(∑
k

log(λk)f
†
kfk

)
(12)

does the job, since [f †kfk, f
†
q fq] = 0, so T 2f †kT

−2 = elog λkf
†
kfkf †ke

− log λkf
†
kfk = λkf

†
k . Also T is

the identity in the zero particle sector. Finally, expressing (12) in terms of the c†i gives (11).

Correlation functions— The quantity

〈0|T 2c2c
†
2T

2|0〉
〈0|T 4|0〉

(13)

gives the probability of having a vertical dimer in the second vertical edge (starting from left)
in the middle in figure 1. In principle, any correlation function can be computed using this
formalism, and we can say that the dimer operator at site j is cjc

†
j .

2.2 Ising model and Onsager’s glory

N×N lattice, N is the horizontal length, M vertical, vertical coupling is Jv, horizontal coupling
is Jh. Classical energy associated to a spin configuration

E(σ11, . . . σNN ′) =
N∑
x=1

N ′∑
y=1

Jhσx,yσx+1,y + Jvσx,yσx,y+1

We take here open boundary conditions, so σx,N ′+1 = 0 and σN+1,y = 0. [Onsager 1944] essen-
tially cracked the lattice problem, and determined the transfer matrix using a more complicated
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Jh

JvT

T

T

Figure 2: (N = 6) × (N ′ = 4) square lattice. The transfer matrix now acts on the vector
space generated by the spin configuration of the N sites along a given row, not vertical edges
as before. Also, there is just one transfer matrix now.

algebraic technique which uses what’s known now as Onsager algebras. The solution was sim-
plified in a series of subsequent works, in particular by Kaufman. Here we express it in the
language of the review article [Schultz, Mattis, Lieb 1964], which makes use of free fermions.
We give the final result without proof:

T = ρM exp

θ N∑
j=1

(
2c†jcj − 1

) exp

βJh N−1∑
j=1

(c†j + cj)(cj+1 − c†j+1)

 , (14)

with ρ cosh θ = eβJv , ρ sinh θ = e−βJv . It is possible to diagonalize this transfer matrix using
a generalization of the method explained on page 3. We do not elaborate further, since also
the relation between spins and fermions is slightly more tricky. Let us just point out that (14)
can be expressed as the exponential of a free fermions Hamiltonian. This follows from the
Baker-Campbell-Hausdorff formula and the property [quadratic, quadratic] = quadratic.

3 Universal conformal spectrum

Recall the transfer matrix for dimers could be expressed as (11), where the N × N matrix
A is the logarithm of a tweaked discrete laplacian. Diagonalization is rather straightforward.
Introducing the non local Fourier-sine modes

f †k =

√
2

N + 1/2

N∑
j=1

sin

(
kπj

N + 1/2

)
c†j , fk = (f †k)† (15)

allows to express the transfer matrix as

T = exp(−H) , H =
∑
k

εkf
†
kfk , εk = − log

(
2 + 2 cos

kπ

N + 1/2

)
(16)

The introduction of two minus signs might seem totally artificial, however it will be necessary to
match physicist’s conventions later on (minimizing energy is more natural in physics). Since each

εk is associated to a single creator f †k , we call it single particle energy. Also, since the transfer
matrix is block diagonal with respect to particle number, it is fixed by boundary conditions. In
the following, we set for simplicity the number of particle to be N/2, with N even.
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3.1 Spectrum at low energy

We are interested in taking a scaling limit N,N ′ → ∞, while keeping (say) the ratio N/N ′

fixed, and hopefully observe universal behavior. This is what we are after here, not explicit
computations of observables in finite-size, and then take the scaling limit. In such a limit,
one needs to apply very high powers of the tranfer matrix. Intuitively, this means that long
range correlations will be dominated by the part of the spectrum corresponding to the biggest
eigenvalues of the TM. Through (16), big eigenvalues of the TM translates to low eigenenergies
of the Hamiltonian H.

Since we have N/2 particles and the single particle energies have all multiplicity one, there
are (N)!/(N/2)!2 possible eigenstates indexed by {k1, . . . , kN/2} ⊂ {1, . . . , N}:

f †k1 . . . f
†
kN/2
|0〉 with energy E(k1, . . . , kN/2) = εk1 + . . .+ εkN/2 , (17)

The corresponding eigenvalues of the TM are Λ(k1, . . . , kN/2) = exp(−E(k1, . . . , kN/2)). Let
us look at the biggest eigenvalue first, which means we need the N/2 smallest single particle
energies. The corresponding eigenstate, the “ground state” is

|Ω0〉 = f †1f
†
2 . . . f

†
N/2 |0〉

notation
= | . . . • • • •︸ ︷︷ ︸

N/2

| ◦ ◦ ◦ ◦ . . .︸ ︷︷ ︸
N/2

〉 (18)

with energy E0(N) = −
∑N/2

k=1 log(2 + 2 cos kπ
N+1/2). Using the Euler-MacLaurin formula2, its

large N behavior is

E0(N) = eN + e′ − π

96N
+O(1/N2) (19)

e and e′ can be obtained exactly, but we do not care about them. Writing the energies as Eα
in increasing order, we will see that for α finite

Eα(N) = eN + e′ +
π

N

(
pα −

1

96

)
+O(1/N2) (20)

where pα ∈ N. The part proportional to 1/N in the previous equation is called conformal
spectrum.

Remark. It is important to realize that the 1/N contributions to the ground state energy
might depend on boundary conditions. Indeed here the matrix A we needed to diagonalize was
the logarithm of a tweaked laplacian with matrix elements 2δi,j + δi,j+1 + δi+1,j − δi,jδi,N . The
last term comes from the mapping from dimers to particle configurations, it is in principle non
negociable. Considering the logarithm of the untweaked laplacian instead also gives a perfectly
legitimate stat mech models, however. The solution is very similar, and can be obtained by
replacing all the denominators in N + 1/2 by N + 1 in the definitions of f †k and εk, and not
changing anything else. In this case we find Eα(N) = eN + e′ + π

N

(
pα − 1

24

)
+ O(1/N2). In

the following and unless specified otherwise, we look at the (slightly simpler) plain
laplacian, and set the ground state energy to zero. The −π

24N and −π
96N also have a

CFT interpretation, but this is a longer story.

3.2 Bosonization

We look here at low energy excitations –with same number of particles for simplicity– above
the ground state, for large N . It is easy to construct the first few excited states, by considering
“particle-hole” excitations above the ground state. For example the first one is obviously

|Ω1〉 = |. . . • • • ◦| • ◦ ◦ ◦ . . . 〉 = f †N/2+1fN/2 |Ω〉 . (21)

2∑b
k=a f(k) =

∫ b
a
f(x)dx+ f(a)+f(b)

2
+ f ′(b)−f ′(a)

12
+ . . .

7



0 0.5 1 1.5 2 2.5 3

−1

0

1

2

3

kπ/(N + 1)

ε k

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

q

Figure 3: Left: Fermi see with N/2 = 6 particles and N = 12 allowed single particle energies.
Right: in the limit N →∞, the Fermi see in the vicinity of the beach becomes, after rescaling,
an infinitely deep Dirac see (we shift q = k −N/2− 1/2). [Change the scale of the axis on the
right]

Introducing ε(K) = − log (2 + 2 cosK), εk = ε( kπ
N+1/2), and the energy difference is E1 − E0 =

ε′(π/2) πN +O(N−2), and it turns out ε′(π/2) = 1 (in general this is called Fermi speed, is noted
vF , and depends on the details of the lattice model). The second and third are

|Ω2〉 = |. . . • • • ◦| ◦ • ◦ ◦ . . . 〉 (22)

|Ω3〉 = |. . . • • ◦ •| • ◦ ◦ ◦ . . . 〉 , (23)

with the same energy E2,3 −E0 = 2π
N +O(N−2). Determining the Eα becomes a combinatorial

problem. A nice way to obtain all the eigenstates from the ground-state is through a procedure
known as bosonization. Introduce the modes 3

an =
N∑
k=1

f †kfk+n , n ∈ Z∗ (24)

with convention f †q = 0 = fq if q /∈ {1, . . . , N} to make life easier. One can check, for example,
that a−1 |Ω0〉 = |Ω1〉, a−2 |Ω0〉 = |Ω2〉 − |Ω3〉, (a−1)2 |Ω0〉 = |Ω2〉+ |Ω3〉, an>0 |Ω〉 = 0, etc.

Infinite dimensional bosonic algebra— The following is reasonably easy to prove. For
any finite n,m,α, β, one can choose N sufficiently large, such that4

〈Ωα|[an, am]|Ωβ〉 = nδn+m,0δα,β (25)

For large N , notice also a†n = a−n. This means in the limit N →∞, it is natural to consider the
infinite dimensional5 algebra generated by the an. The Hilbert space of low lying excitations is

3Technically, we also need Q =
∑N
k=1 : f†kfk := −

∑N/2
k=1 fkf

†
k +

∑N/2+1
k=1 f†kfk to take into account other

sectors, in case we allow particle number to fluctuate.
4for example [a1, a−1] = f†1f1 − f†NfN , which acts only on the boundary “sites” 1, N .
5An (bosonic) algebra of the form [an, am] = nδn+m,0 has to be infinite dimensional (take trace), contrary to

fermionic ones.
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spanned by states of the form

1√
nm1

1 . . . n
mp
p m1! . . .mp!

(a−n1)m1 . . . (a−np)
mp |Ω0〉 (26)

for non negative m1, . . . ,mp and p ∈ N. One can check that they are orthonormal to each other,
and also that they are eigenstates of H̃ with eigenvalue (up to corrections of order 1/N2)

Eα − E0 =
π

N
(m1n1 + . . .+mpnp) (27)

One can show that this procedure exhausts all possibilities for linearly independent eigenstates.
What we have here is an exemple of a “conformal tower”. The spectrum is discrete (in units of
π/N), and each energy level M (eigenvalue πM

N ) has a multiplicity given by the partition number
of M , noted p(M). As is well known from number theory, the generating function for this num-
ber is

∏∞
p=1

1
1−λp =

∑∞
M=0 p(M)λM . The large M behavior is given by the Ramanujan-Hardy

formula log p(M) = π
√

2M
3 + O(logM), so multiplicities blow up very fast. The Hamiltonian

can also be rewritten as

H − E0 =
π

N

( ∞∑
n=1

a−nan

)
+O(N−2) (28)

The above (bosonization) procedure can be justified rigorously [Kac]. CFTs that have this as
Hamiltonian are called free boson CFT, or free field, or free scalar field, or gaussian free field,
or bosonic string, or Luttinger liquid, depending on context.

Relation to Virasoro— It is possible to construct a Virasoro algebra by using bosons:

Ln =
1

2

∑
j∈Z

: a−jaj+n : (29)

where : axay := axay if x ≤ y, and ayax otherwise. One can check that

[Ln, Lm] = (n−m)Ln+m +
1

12
n(n2 − 1)δn+m,0 (30)

so the central charge is c = 1. In that case the ground state is an eigenstate of L0, the excited
states are build from |Ω0〉 by acting on it with the L−n, choosing some order and sticking to it,
similar to free boson. Of course, it is perfectly fine, if one wishes, to stay at the level of bosons,
and not invoque Virasoro at all in studying dimer models.

3.3 A word on the Ising case

The transfer matrix is more complicated, but is still the exponential of a quadratic form. This
is because (i) [quadratic, quadratic] = quadratic, see colored box (ii) Baker-Campbell-Hausdorf

eXeY = eX+Y+ 1
2

[X,Y ]+.... In that case the relevant (Bogoliubov) transformation to diagonalize
mixes creators and annihilators. At the critical point (and only at the critical point), we get
after very long algebra a Hamiltonian of the form

H − E0 =
πv

L

( ∞∑
k=1

kψ−kψk

)
(31)
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where v is some non universal parameter that depends on Jh, Jv. The ψk are called Majorana
(or neutral) fermions. They satisfy the anticummutation relations {ψk, ψq} = δkq, plus ψ†k = ψk
different from the previous fermions6, that are sometimes called Dirac fermions in the literature.

Let us mention that it is also possible to compute the degeneracies exactly in this model.

One finds for large N , log p(M) = π
√

M
3 +O(logM). This is clearly a different beast from the

one before, since the multiplicities grow less fast7.

Relation to Virasoro— There is also a relation with Virasoro, which is given in this case
by

Ln =
1

2

∑
k∈Z′

k : ψ−k+nψk : , n ∈ Z. (32)

One can check that the central extension is c = 1/2 in that case.

4 Tentative relation to conformal field theory

Our aim is here is just to present some of the basic logic of CFT, which is non rigorous. There
are of course many holes in the argument we present here, but the story I tell below hopefully
helps getting an idea why the hell Virasoro. Some of the aspects presented here are discussed
more thoroughly in [A mathematical introduction to conformal field theory, Schottenloher 2008].
For the physics side, see e.g. [Ginsparg 1988].

Quantum physics and representation theory— The question we want to address first
is how some symmetry acts on the quantum states we have previously defined. Imagine for
simplicity we have a connected Lie group, and we want to see the action of a certain group
element g ∈ G on a state |Ψ〉. This should generate another state |Ψ′〉. The important point is
that the physical quantities in the underlying statmech model are the expectation values 〈Φ|Ψ〉.
We demand that these should be left invariant by the action of a ground element, meaning
〈Φ′|Ψ′〉 = 〈Φ|Ψ〉, since those are the only truly physical observables in the underlying statmech
model. Wigner proved that symmetries in that case are represented by unitary operators8.

|Ψ′〉 = U(g) |Ψ〉 , U † = U−1. (33)

It is then natural to ask for U to be a homomorphism, ∀g, h ∈ G,U(gh) = U(g)U(h) to
once again preserve probabilities. Hence it is in principle very important to understand the
representations of the Lie group (or Lie algebra, as we shall see later on).

Projective representations— There is a hole in our previous argument, it is actually not
necessary to look at true representations of the underlying group. Just asking for U(gh) =
eiθ(g,h)U(g)U(h) also preserves probability. This means projective representations are more
relevant general framework to study symmetries in quantum systems.

One might ask whether it is possible to see projective representations as (induced by) true
representations, but in a larger group. The answer is yes, what one needs to consider is what is

6They can also be constructed from our previous fermions, even in finite dimension. For example, the set

ψ2j−1 =
cj+c

†
j√

2
, ψ2j =

cj−c
†
j

i
√

2
is a set of Majorana fermions.

7The generating function in the identity sector is χ(λ) =
∑∞
n=0

λ2n2∏2n
k=1

(1−λk)
= 1+λ2+λ3+2λ4+2λ5+3λ6+. . .

8For non connected Lie group, anti unitary acting anti-linearly are also possible. The most famous of those is
time-reversal, but let’s not talk about it.
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known as the central extension of the group. Hence, representations of the central extension of
the group are the right objects to consider.

The conformal group— The set of Moebius transformations

w(z) =
az + b

cz + d
, a, b, c, d ∈ C , ad− bc = 1 (34)

forms a group in the strictest mathematical sense. The transformation maps the Riemann
sphere C ∪ {∞} to itself, and each transformation has a unique inverse

z(w) =
dw − b
−cw + a

. (35)

One can show that the central extension of this group is trivial, so that’s it. This group is called
the group of “global conformal transformation” in Physics literature.

Lie algebras— A Lie group is a group that is also a differentiable manifold. It is nice, in
the sense that the group operation are compatible with the smooth structure. For physicists,
Lie group implement “continuous” symmetries. For example rotation symmetry in the plane is
implemented by SO(2). Connection to Lie algebras are provided by the exponential map: for
example the translation implemented on some smooth real valued function can be obtained by
Taylor expansion around x (we assume analyticity here)

f(x+ a) =
∞∑
k=0

ak

k!
(∂x)kf(x) = ea∂x .f(x) (36)

so we say, for example, that the differential operator ∂x generates translations. The generators
typically satisfy some algebra. In physics, it is often much more convenient to work at the
level of generators, and come back to the group with the exponential map if needed/possible
9. One can have fun looking at other generators, for example x∂x generates dilatations, since
eax∂xf(x) = f(eax). Also eax

2∂x .f(x) = f( 1
1/x+a). In 2d it’s similar. For example, one can show

that x∂x + y∂y generates dilatations, or that x∂y − y∂x, good old curl, generates rotations.

Conformal algebra— The Moebius transformations are not the only transformations that
preserve angles in 2d; in fact, any function f(x, y) satisfying the Cauchy-Riemann equations
does. It is convenient to use complex variables, in which case all holomorphic functions are
locally conformal. Such a set of conformal transformations does not form a group. [Take
f(z) = z2 for example. f(1) = 1 and f(−1) = 1 so 1 has two inverses. There are regularity
issues also]. It only makes sense locally, at the level of algebra. Physicists refer to it as local
conformal symmetry, and don’t give a damn that it’s not a group, and has no global meaning.

The underlying algebra turns out to be infinite dimensional. Using the notation ∂z+∂z̄ = ∂x,
i(∂z − ∂z̄) = ∂y, one can show that all local conformal transformations are generated by the
ln + l̄n, −i(ln − l̄n) which may be written as

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄. (37)

Some particular cases we mentioned before. For example, the l−1 + l̄−1 generate translations
in the horizontal direction, −i(l−1 + l̄−1) generates translation in the vertical direction, l0 + l̄0
generates dilatations, −i(l0 − l̄0) generates rotations, etc.

9One can always to that for a finite-dimensional simply connected Lie group, but this is not true in general
for infinite dimensional algebras.
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The “modes” in (37) satisfy the Witt algebra [ln, lm] = (n − m)ln+m, same for l̄n, also
[ln, l̄m] = 0 (actually this is a subtle point, since we complexified the algebra, but ok).

It is important to note that the l±1, l0 form a subalgebra. There is a group corresponding
to this finite subalgebra, and guess what, it is the global conformal group. As mentioned before
the central extension is trivial.

There is a unique non trivial central extension of the Witt algebra, it is called the Virasoro
algebra. Since we assume the right thing to do is looking at projective representations of the
Witt algebra, this is equivalent to looking at true representations at the Virasoro algebra. As
a side note, there is no such thing as the Virasoro group, that would have the Virasoro algebra
as a Lie algebra.

Lowest weight representation— From our dimer/Ising example, we have seen that the
low energy spectrum of H (highest eigenvalues spectrum of the TM) is build as a “conformal
tower” from a vacuum state |Ω〉. In terms of the Virasoro, the states in the tower are of the
form

Lm1
−n1

. . . L
mp
−np |h〉 , n1, . . . , np > 0 (38)

where |h〉 is the eigenstate of L0 with minimal non negative eigenvalue h. The construction
implies all states (38) are eigenstates of L0. This lowest weight state is also annihilated by all
Ln for n > 0.

∀n > 0 , Ln |h〉 = 0 (39)

This is actually absolutely crucial: indeed, by using the commutation relations of the Ln, one
can easily show L0Ln |h〉 = (LnL0 − nLn) |h〉 = (h − n)Ln |h〉. So Ln lowers the eigenvalue by
n. If the condition (39) is not fulfilled then the spectrum is not bounded from below (just act
with many Lp>0), and any physical interpretation as dominant eigenvectors of a transfer matrix
is lost. We are only interested in lowest weight representations of Virasoro, which have this
property, and are deemed physical.

It is important to realize that nothing prevents the existence of other towers in general.
There can be other states |h′〉 with h′ > h that are also annihilated by the Ln>0, and from |h′〉
one can build another conformal tower. The number of conformal towers need not be finite,
not even in a countable set in general. Also, just because a tower can appear in a given CFT
does not mean it will in the specific setup considered. A vast body of work went into better
understanding such aspects, we do not discuss them here.

Unitary minimal models— As alluded to before, representation theory of Virasoro is in-
credibly rich, so from now on we are going to impose a bunch of other constraints, to see what
we get. In the following we ask

1. The Hamiltonian is L0, and we look at unitary representations, which implies L†n can be
expressed in terms of the Lm. One can show that the only consistent choice is L−n = L†n.
True for dimers and Ising.

2. Spectrum bounded from below. This seems reasonable from a transfer matrix point of
view. Satisfied by all known critical models in statmech.

3. I look at irreducible representations.

4. I look in the region 0 < c < 1. Satisfied by Ising (c = 1/2), not by dimers (c = 1).

Now this becomes pure representation theory of algebras, no physical intuition anymore. The
main hero to solve this problem is the Kac determinant, it is discussed at length in CFT books,
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let’s just skip to the final result. The class of models that satisfy all four requirements is called
the class of “unitary minimal models” Mm. They are labeled by an integer m ∈ N,m ≥ 3 and
have central charge

c = 1− 6

m(m+ 1)
. (40)

For a given value of m there are m(m−1)/2 possible towers with table of exponents (eigenvalues
of L0 on the “bottom of the tower state |hrs〉”)

hrs =
[(m+ 1)r −ms]2 − 1

4m(m+ 1)
, 1 ≤ r ≤ m− 1 , 1 ≤ s ≤ r. (41)

called the Kac table. Ising is m = 3, and the exponents are h11 = 0, h21 = 1/2, h22 = 1/16.
There is a correspondence between these exponents and a set of fields, called primary fields. I
do not explain this here, but it implies that all critical exponents have to be in the table. For
example the celebrated exponent for spin-spin correlations in Ising is ∆ = 2× 1

16 = 1
8 . There are

underlying stat mech models for each unitary minimal model. For example the 3-state Potts
model (Ising is 2-state Potts) has a critical point, which corresponds to m = 5 (c = 4/5). All
critical exponents for this model are in the table (41) for m = 5, just multiply hpq by 2. These
statements have been checked numerically to high precision in countless models. This example
is a highly nontrivial prediction of conformal field theory, since the critical point of this model
as remained unaccessible to rigorous methods so far in three-state Potts.

For a central charge c, the multiplicity growth is given by logPc(M) = π
√

2cM
3 +O(logM)

in any of the towers. This is called the Cardy formula.
In the limit c → 1−, the number of allowed exponents/towers diverges. This is consistent

with the observation of continuously varying exponents, which have been established in e.g the
six vertex model and interacting dimer models.

What I did not talk about—

• There is much interesting physics/mathematics obtained by relaxing the unitarity con-
straint. Examples include percolation, loop models in general, Liouville, etc. The transfer
matrix can also be sometimes non diagonalizable, and representation theory can become
quite difficult.

• The Ising and dimer models I discussed are exactly solvable, using the mapping to free
fermions that I discussed here. Those are a special case of a general family of models
called (Yang-Baxter) integrable models. Computations in non free fermions integrable
model (often referred to as interacting integrable models) are often much more involved.

• I did not explain why the Hamiltonian (with energy set to zero) on the strip is L0.
Actually, typical CFT arguments tell us that H = πvF

N

(
L0 − c

24

)
, so also predict the 1/N

part of the ground state energy to be πvF
N

(
h− c

24

)
. On a cylinder, there are two Fermi

points (beaches) due to periodic boundary conditions, and the Hamiltonian is given by
πvF
N

(
L0 + L̄0 − c

6

)
. One needs two copies of the Virasoro algebra in that case. Usually,

one needs only one copy when studying systems defined in a simply connected domain
with “boundaries”, and this is dubbed chiral CFT or boundary CFT in physics literature.

• Using our algebraic objects, it is possible to define fields, roughly speaking generating
functions for the modes of the Lie algebra. For example, the stress tensor is defined as
T (z) =

∑
n∈Z

Ln
zn+2 . The CFT point of view takes those fields as fundamental objects,

and asks for consistency conditions, “operator product expansion”, transformation under
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conformal maps, conformal Ward identities, etc. There is also a distinction between
primary operators and others, depending on how they transform under conformal maps.
This is an important part of the story, since the fields themselves have interpretations as
local observables in the statmech model. For the free boson CFT one can also define the
free chiral field ϕ(z) = i

∑
n6=0

an
nzn + q− ip log z, where the an are the bosonic modes from

before, and [q, p] = i, with vacuum expectation value 〈ϕ(z)ϕ(w)〉 = − log(z − w). Using
this one, one can define vertex operators Vα(z) =: eiαϕ(z) : with vacuum expectation value
〈Vα(z)Vα(w)〉 = (z − w)−α

2
.

• I did not discuss the computation of correlation functions, and how all those can be
obtained from unitary minimal models and free boson CFT.

• Boundary conditions have to be discussed also of course.

• I only addressed the question of which towers can appear, not which ones do appear. This
turns out to be related to the previous point.

• This topic is obviously related to SLE, which in particular provides a rigorous and more
probabilistic perspective on conformal invariance.

• CFT is still an ongoing subject for research . . .
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