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e Emptiness formation probability
@ Definition, physical motivations
@ Magnetization string as a conformal boundary condition
@ Universal and semi-universal terms

@ Connection with the theory of Toeplitz determinants
@ Known results: Onsager, Szeg6 and Fisher-Hartwig
@ Application to our problem

© Non conformal case, and arctic circle
@ Imaginary time behavior
@ What about quantum quenches?



Emptiness formation probability
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What is it?

Take some spin-1/2 chain, e.g.
H=3 <J$Ufaf+1 +Jyojof + Jz"yz'%z'H) +h) o]
J J

The ground-state is [1)). Look at a subsystem A, with RDM
pa = Trp|¢)(1p|. The emptiness formation probability (EFP) is

P = proba(all spins in A are 1) = (11 ... ™ |pal TT... 1)
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Physical motivations

@ Introduced in the context of integrable systems [Korepin Izergin
Essler & Uglov, Phys. Lett. A 1994], ...

@ Very unphysical observable, especially in systems with U(1)
symmetry.

@ Fermion counting statistics

XO) = <€f)\2j(lfo;.)/2> _ Z Dme "

m>0

<m2>c in principle accessible through quantum noise
measurement [Cherng & Demler, NJP 2007]

@ Order parameter statistics X (\) = <e_’\fd$ O(x)>
[Lamacraft & Fendley, PRL 2008]

@ Quantum quenches, a la [Antal et al, PRE 1999]
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This talk

@ Study of the EFP using field-theoretical techniques

@ Influence of the boundary conditions

o Conserved number of particles (U(1)), or not.

o Exact results in the free fermions limit (Toepliz determinants)
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Magnetization string as a conformal boundary condition

~ L
(slit) (slit)
p 2 p, _ it
chl Zstrip

Scaling in logarithmic form

E=a; xl + bxlog(Lf(¢/L)) + ap + ...

b=27> 0 (?a — —) due to sharp corners [Cardy & Peschel, NPB 1988]
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Universality & semi-universality in the free energy (6 = 2m)

[JMS and Jéréme Dubail, arXiv:1303.3633]
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Universality & semi-universality in the free energy (6 = 2m)

[JMS and Jéréme Dubail, arXiv:1303.3633]

logl, a_
— 1/L
I + i +o(1/L)

F =ayL?+ a1 L +bylog L+ ag+b_y

What about short-length cutoffs? Make the substitution
L—L+e
logL a4

7 + T —|—0(1/L)

F' = ayl? + aiL + bolog L+ af + by

@ Semi-universal: invariant under L — L + €

@ Universal: invariant under L — aL + €

b_1 = & x (universal term)
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Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

Scrr — Scrr + ; dz (Type(x))
T Jslit

£ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM
2006] , [Dubail Read & Rezayi, PRB 2012]
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Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

Scrr — Scrr + ; dz (Type(x))
T Jslit

£ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM
2006] , [Dubail Read & Rezayi, PRB 2012]

l—e
AF = 7§r/ dw (T (w))

The stress-tensor behaves as

_ Tmec YJgeom 1
<T('UJ)> - 120 X L X w2—27‘(‘/9 .

When 6 = 27, (T(w)) o< 2 +..., and |AF oc L log(//e)

gl
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Scaling of the logarithmic EFP
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Logarithmic correction
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Logarithmic correction

Ising chain H = —3 ;07071 —h}_, 0%
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€ =1/2 has been set in the plots. P = Some determinant
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Full counting statistics

xe(A) = <e*AZ§:1<1705>/2> N <e—ixfdw<xw<x>>

¥ (x) is a Majorana fermion field. The system is still cut into two,

but the effect of ¥ (x)y(x) is exactly marginal
[Oshikawa & Affleck, NBP 1997], [Fendley Fisher & Nayak, Ann. Phys 2009]

Result:
1 8 A
c = 3 — Coff = ) arctan? [tanh 2]
1 .
£ = 3~ ?  (Non universal)
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For the Ising chain

~ Oko 1 m(k+1/2)
A = 5 +2Lcsc[ 7

The EFP is given by

Py = é?jﬁg(&—j) (1)
Po = 1§<%3t§€(Ai,j+Ai+j,l) (2)

Take the limit L — oo. This gives Ay, = —

@ P, is a Toeplitz determinant.

o P, is a Toeplitz+Hankel determinant.
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Fun with Toeplitz

= det i
1<ig<N (9i-)
go g1 g2 g3 cee gN-—1
g-1 90 g1 g2 -+ gN-2
g-2 g—1 g0 g1 -+ gN-3
= det
1<i,j<N 9-3 g-2 g-1 490 cer gN—4
91-N 92-N Gg3-N G4-N --- 9o

Onsager-Ising spontaneous magnetization problem, monomer
correlators, full counting statistics, entanglement entropy, Random
matrix theory, ...
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Fun with Toeplitz

Question:

go 9 g2 g3
g-1 g0 g1 g2
g-2 g-1 go g1
g-3 g-—2 g-1 go

g1-N 92-N 9g3—-N G4—N

gN-1
gN-2
gN-3
gN—4

g0

asymptotic behavior of det T (g) when N — oo.
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Fun with Toeplitz (I1)

First intuition: write down Ty in Fourier space. Introduce

. 1 [27 )
90) => g™ . ge=lgl /0 g(0)e~"*" db

o
kEZ

g(0) is called the symbol of the Toeplitz determinant. We have

2 2 -
UTTNU ~ diag (g(())’g(ﬂ- T — ﬂ-)) , Ujl _ e?wzgl/N

o 9(2
N)? 7g( N
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Fun with Toeplitz (I1)

First intuition: write down Ty in Fourier space. Introduce

. 1 [27 4
90) => g™ . ge=lgl /0 g(0)e~"*" db

o
kEZ

g(0) is called the symbol of the Toeplitz determinant. We have

2m

),

2 y
U'TNU = diag (g(O),g( - 9(2m — ]\7;)) , Uy =iy



Connection with the theory of Toeplitz determinants
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Toeplitz (III)

The Szegd strong limit theorem (SSLT)

Provided the symbol is sufficiently smooth, we have

N (0.)
det Ty ~ exp (2 [log gly + Y _ k [log g];, [log 9]—k>

™
k=1

log g needs to be well-defined = ¢ has winding number 0.
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[eIeeY Yolelelele]

Toeplitz (III)

The Szegd strong limit theorem (SSLT)

Provided the symbol is sufficiently smooth, we have

N (0.)
det Ty ~ exp (27T log glo + > _ k [log gl,, [log 9]k>
k=1

log g needs to be well-defined = ¢ has winding number 0.

Example: spontaneous magnetization in Ising (Kaufman-Onsager)

o) = () Ko= (ibi28]sinb26])

M= (1- K)o
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Toeplitz (1V): Coulomb-Gas interpretation

Dy =y [ Pt [ B2 [ S a0 TT

i<k
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Toeplitz (1V): Coulomb-Gas interpretation

05 _ 0%

Dy =y [ Pt [ B2 [ S a0 TT

Jj<k

Dy is the partition function for a 2d Coulomb gas in an external
potential V(0) = —log g(0):

1 @@ del e_E(017027"'70N)

Dy = —
N N! 2 27 2w

005 _ o0k

E(61,02,...,0n) = =2 log

j<k

+> V()
i
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, assuming V(0) =0
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, assuming V(0) =0

Dy = (27r)—N/d91...d(9NeXp(—Eo((gl,...,gN)—i-ZjV(@j))

~ exp (3, V(2jn/N))
~ exp (&[5 V(0)a0)
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, first order correction V(6 # 0)
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, first order correction V(6 # 0)

L O R 1
5E_/0 de/o dqu-l-%/o do V'(¢)h(9)

Find h(¢) that minimizes E. We get

k=1
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Fisher-Hartwig singularities (I)

1 1 ,
For the EFP, we have:  ¢(0) = 5 + isign (cos0)e /2

Singularity in the generating function at § = 7.
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Fisher-Hartwig singularities (1)

R

9(0) = £(0) [] exp(iB, argle’ @)

r=1

R

—log Dy = %[log flo - (Z B?) log N + o(1)

r=1
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Fisher-Hartwig singularities (1)

R
g(0) = f(0) [ exp(i: arg[e’®=07)])
r=1
N R
—log Dy = —[log flo — (Tzl B?) log N + o(1)

@ There are proof in several cases: [Basor, Ehrhardt, Bottcher, Tracy,
Widom, Deift, Its, Krasovsky,. .. ]
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Fisher-Hartwig singularities (1)

R
g(0) = f(0) [ exp(i: arg[e’®=07)])
r=1
N R
—log Dy = —[log flo — (Tzl B?) log N + o(1)

@ There are proof in several cases: [Basor, Ehrhardt, Bottcher, Tracy,
Widom, Deift, Its, Krasovsky,. .. ]

o Heuristic way: regularize the SSLT term ), k[log g]x[log g]—x
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Fisher-Hartwig singularities (1)

Ambiguity in the Fisher-Hartwig representation: to see that, make
a shift g, — B, + n,, with > n, =0.

Dy = det(Tw(g)) ~ (G[f)Y Y NUrmh plg)

{nr}
provided f(0) is smooth [Deift Its & Krasovsky, Ann. Math. 2011]

Conjecture for the general structure [Kozlowki, 2008]

, o0
Dy =GN Y N« D Elg {5,,n,}] (1 DL (P _i>
3 i=1
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Application to our problem

Here g = , and one recovers the < log/ = %6 log ¢ for PBC

Where does the /=1 log ¢ come from?

Conjecture: it comes from the cusp at 8 = 7 for the “regular part
f(0) of the symbol. New parametrization:

g(e) = f2)0 + 2 A+ 1z = e®

Use v(z) and 7(z) to make f(z) smooth:

v(z) = —i—ax(z+1)—a><(z+1)2+...
5(z) = Stax(l+1/z)—ax(1+1/2)?+

4
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Application to our problem

Here g = —i, and one recovers the g log/ = 1—16log€ for PBC

Following the Riemann-Hilbert analysis of [Kitanine, Kozlowski, Maillet,
Slavnov & Terras, Comm. Math. Phys 2009] [Kozlowki, 2008], we get a
contribution

1
—26%a x 07tlogl = ———¢"11og?
327

We recover £ = 1/2 for the LEFP Ising chain. Bonus:

£E= %tanh)\ for the full counting statistics generating function.
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Remarks

o Better derivation of the £~!log ¢

@ Toeplitz + Hankel case?

e Finite aspect ratio ¢/L

@ Other subleading corrections
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© Non conformal case, and arctic circle
@ Imaginary time behavior
@ What about quantum quenches?
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Imaginary time behavior

Now let us look at the imaginary time pictures
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Imaginary time behavior

Infinite Semi-infinite

All degrees of freedom are frozen in a region of area oc /2. Hence
E =azl®+ay +blogl +o(1)

Agrees with exact results [Kitanine Maillet Slavnov & Terras, JPA 2001 — JPA
2002] [Kozlowski, JSM 2008] for the leading term in XXZ.



Imaginary time behavior (Il)

@ Same phenomenon as for the “arctic circle” in dimer models.

In dimer language, [1111) = [1010).

@ Shape is non universal, but the logarithms seem universal
o In the fluctuating region, possibly [work in progress]

g_ ko

= 47T//<c(x,7)(V<p)2 dzdr



Imaginary time behavior (llI)

The arctic circle as an emptiness formation probability

Z = (ML | T [ AL
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The Antal quench

Prepare an XX chain in

[(0)) = ... W4T )

Evolve with the critical Hamiltonian H = Hx x.
[Antal Racz Rakos Schiitz, PRE 1999],. ..

(1)) = e'y(0))

@ Magnetization profile
@ Stationary behavior

@ XXZ [Sebetta & Misguich, in preparation]
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Imaginary time Loschmidt echo

T=L/2 T=1L T=2L
For 7 < L, the imaginary time Loschmidt echo grows as
L(T) ~ exp (()éT2)

Analytic continuation 7 — it:

‘E(t) ~ exp (—at2) ‘
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Loschmidt echo (exact result)

In terms of fermions,

H= Z tij c;rcj + h.c= Z e(k)d};dk
i, k

e PBC: Fort < L, L(t) is a L x L Toeplitz determinant. The
symbol is
9(0) = e

Apply the Szegé theorem:

L(t) = exp (—oth) , a = Z k:[e]%

e OBC: Toeplitz+Hankel. Substitution oz — /2.

e Correction is exponentially small O(e=4t/L).
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Conclusion

e U(1) vsnon U(1).

@ Universal logarithm in the U(1) case.

@ Other semi-universal terms?

o Better understanding of the connection with quenches: density
profile, guess the field theory outside of the frozen region, ...
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Thank you!
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