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What is it?

Take some spin-1/2 chain, e.g.

H =
∑
j

(
Jxσ

x
j σ
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j+1 + Jyσ

y
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j+1 + Jzσ

z
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)
+ h

∑
j

σzj

The ground-state is |ψ〉. Look at a subsystem A, with RDM
ρA = TrB|ψ〉〈ψ|. The emptiness formation probability (EFP) is

P = proba(all spins in A are ↑) = 〈↑↑ . . . ↑↑ |ρA| ↑↑ . . . ↑↑〉

L− ℓ

ℓ

A

B

A B

ℓ L− ℓ

E = − logP
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Physical motivations

Introduced in the context of integrable systems [Korepin Izergin

Essler & Uglov, Phys. Lett. A 1994], . . .

Very unphysical observable, especially in systems with U(1)
symmetry.

Fermion counting statistics

χ(λ) =
〈
e−λ

∑
j(1−σzj )/2

〉
=
∑
m≥0

pme
−λm

〈m2〉c in principle accessible through quantum noise
measurement [Cherng & Demler, NJP 2007]

Order parameter statistics X(λ) =
〈
e−λ

∫
dxO(x)

〉
[Lamacraft & Fendley, PRL 2008]

Quantum quenches, a la [Antal et al, PRE 1999]
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This talk

Study of the EFP using field-theoretical techniques

Influence of the boundary conditions

Conserved number of particles (U(1)), or not.

Exact results in the free fermions limit (Toepliz determinants)
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Magnetization string as a conformal boundary condition

ℓ

L

τ

Pp =
Z(slit)

cyl

Zcyl

ℓ

L

τ

Po =
Z(slit)

strip

Zstrip

Scaling in logarithmic form

E = a1 × ` + b× log(Lf(`/L)) + a0 + . . .

b = c
24

∑
α

(
θα
π − π

θα

)
due to sharp corners [Cardy & Peschel, NPB 1988]
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Universality & semi-universality in the free energy (θ = 2π)

[JMS and Jérôme Dubail, arXiv:1303.3633]

F = a2L
2 + a1L+ b0 logL+ a0 + b−1

logL

L
+
a−1

L
+ o(1/L)

What about short-length cutoffs? Make the substitution
L→ L+ ε

F ′ = a2L
2 + a′1L+ b0 logL+ a′0 + b−1

logL

L
+
a′−1

L
+ o(1/L)

Semi-universal: invariant under L→ L+ ε

Universal: invariant under L→ aL+ ε

b−1 = ξ × (universal term)
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Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

SCFT −→ SCFT +
ξ

2π

∫
slit
dx 〈Txx(x)〉

ξ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM

2006] , [Dubail Read & Rezayi, PRB 2012]

∆F =
ξ

π

∫ `−ε

ε
dw 〈T (w)〉

The stress-tensor behaves as

〈T (w)〉 =
π c

12 θ
× ggeom

L
× 1

w2−2π/θ
+ . . .

When θ = 2π, 〈T (w)〉 ∝ 1
w + . . ., and ∆F ∝ L−1 log(`/ε)
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Scaling of the logarithmic EFP

Ep ∼ a1`+
c

8
log

[
L

π
sin

(
π`

L

)]
+ a

(p)
0 −

ξc

8
cot

(
π`

L

)
log `

L
,

Eo ∼ a1`−
c

16
log

[
4L

π

tan2
(
π`
2L

)
sin
(
π`
L

) ]+ a
(o)
0 +

ξc

32
× 2− cos

(
π`
L

)
sin
(
π`
L

) log `

L
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Logarithmic correction

Ising chain H = −∑j σ
x
j σ

x
j+1 − h

∑
j σ

z
j .
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1
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g
L

co
effi

ci
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ξ = 1/2 has been set in the plots. P = Some determinant
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Full counting statistics

χ`(λ) =
〈
e−λ

∑z
j=1(1−σzj )/2

〉
→
〈
e−iλ

∫
dxψ(x)ψ(x)

〉

ψ(x) is a Majorana fermion field. The system is still cut into two,
but the effect of ψ(x)ψ(x) is exactly marginal
[Oshikawa & Affleck, NBP 1997], [Fendley Fisher & Nayak, Ann. Phys 2009]

Result:

c =
1

2
→ ceff =

8

π2
arctan2

[
tanh

λ

2

]
ξ =

1

2
→ ? (Non universal)
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For the Ising chain

Ak =
δk0

2
+

1

2L
csc

[
π(k + 1/2)

L

]
The EFP is given by

Pp = det
1≤i,j≤`

(Ai−j) (1)

Po = det
1≤i,j≤`

(Ai−j +Ai+j−1) (2)

Take the limit L→∞. This gives Ak =
δk0

2
+

1

2π(k + 1/2)

Pp is a Toeplitz determinant.

Po is a Toeplitz+Hankel determinant.
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Fun with Toeplitz

DN = detTN (g)

= det
1≤i,j≤N

(gi−j)

= det
1≤i,j≤N



g0 g1 g2 g3 . . . gN−1

g−1 g0 g1 g2 . . . gN−2

g−2 g−1 g0 g1 . . . gN−3

g−3 g−2 g−1 g0 . . . gN−4
...

...
...

...
. . .

...
g1−N g2−N g3−N g4−N . . . g0


Onsager-Ising spontaneous magnetization problem, monomer
correlators, full counting statistics, entanglement entropy, Random
matrix theory, . . .
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Question: asymptotic behavior of detTN (g) when N →∞.
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Fun with Toeplitz (II)

First intuition: write down TN in Fourier space. Introduce

g(θ) =
∑
k∈Z

gke
ikθ , gk = [g]k =

1

2π

∫ 2π

0
g(θ)e−ikθ dθ

g(θ) is called the symbol of the Toeplitz determinant. We have

U †TNU ' diag

(
g(0), g(

2π

N
), . . . , g(2π − 2π

N
)

)
, Ujl = e2πijl/N

detTN (g) ≈
N−1∏
k=0

g(
2kπ

N
) ≈ exp

(
N

2π

∫ 2π

0
log g(θ) dθ

)
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Toeplitz (III)

The Szegő strong limit theorem (SSLT)

Provided the symbol is sufficiently smooth, we have

detTN ∼ exp

(
N

2π
[log g]0 +

∞∑
k=1

k [log g]k [log g]−k

)

log g needs to be well-defined ⇒ g has winding number 0.

Example: spontaneous magnetization in Ising (Kaufman-Onsager)

g(θ) =
(

1−Koe−iθ

1−Koeiθ

)1/2
, Ko = (sinh[2βJ1] sinh[2βJ2])−1

M =
(
1−K2

o

)1/8 ∼ (T − Tc)1/8
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Toeplitz (IV): Coulomb-Gas interpretation

DN =
1

N !

∫
dθ1

2π
g(θ1)

∫
dθ2

2π
g(θ2) . . .

∫
dθN
2π

g(θN )
∏
j<k

∣∣∣eiθj − eiθk ∣∣∣2

DN is the partition function for a 2d Coulomb gas in an external
potential V (θ) = − log g(θ):

DN =
1

N !

∫
dθ1

2π

dθ2

2π
. . .

dθN
2π

e−E(θ1,θ2,...,θN )

E(θ1, θ2, . . . , θN ) = −2
∑
j<k

log
∣∣∣eiθj − eiθk ∣∣∣+

∑
j

V (θj)
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, assuming V (θ) = 0

θ
(0)
j =

2jπ

N
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, assuming V (θ) = 0

θ
(0)
j =

2jπ

N

DN = (2π)−N
∫
dθ1 . . . dθN exp

(
−E0(θ1, . . . , θN ) +

∑
j V (θj)

)
∼ exp

(∑
j V (2jπ/N)

)
∼ exp

(
N
2π

∫ 2π
0 V (θ)dθ

)



Emptiness formation probability Connection with the theory of Toeplitz determinants Non conformal case, and arctic circle

Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, first order correction V (θ 6= 0)

θj = θ
(0)
j +

h(θ
(0)
j )

N
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Toeplitz (V): Coulomb-Gas interpretation

Equilibrium positions, first order correction V (θ 6= 0)

θj = θ
(0)
j +

h(θ
(0)
j )

N

δE =
1

2

∫ 2π

0
dθ

∫ 2π

0
dφ
|h(θ)− h(φ)|2
|eiθ − eiφ| +

1

2π

∫ 2π

0
dφV ′(φ)h(φ)

Find h(φ) that minimizes δE. We get

δEmin = −
∞∑
k=1

k([V ]k)
2
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Fisher-Hartwig singularities (I)

For the EFP, we have: g(θ) =
1

2
+

1

2
sign (cos θ)e−iθ/2

θ

|g(θ)|

arg g(θ)

Singularity in the generating function at θ = π.
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Fisher-Hartwig singularities (II)

g(θ) = f(θ)

R∏
r=1

exp(iβr arg[ei(θ−θr)])

− logDN =
N

2π
[log f ]0 −

(
R∑
r=1

β2
r

)
logN + o(1)

There are proof in several cases: [Basor, Ehrhardt, Böttcher, Tracy,

Widom, Deift, Its, Krasovsky,. . . ]

Heuristic way: regularize the SSLT term
∑

k k[log g]k[log g]−k
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g(θ) = f(θ)

R∏
r=1

exp(iβr arg[ei(θ−θr)])

− logDN =
N

2π
[log f ]0 −

(
R∑
r=1

β2
r

)
logN + o(1)

There are proof in several cases: [Basor, Ehrhardt, Böttcher, Tracy,

Widom, Deift, Its, Krasovsky,. . . ]

Heuristic way: regularize the SSLT term
∑

k k[log g]k[log g]−k
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∑

k k[log g]k[log g]−k
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Fisher-Hartwig singularities (III)

Ambiguity in the Fisher-Hartwig representation: to see that, make
a shift βr → βr + nr, with

∑
nr = 0.

DN = det(TN (g)) ∼ (G[f ])N
′∑
{nr}

Nω({βr,nr})E[g]

provided f(θ) is smooth [Deift Its & Krasovsky, Ann. Math. 2011]

Conjecture for the general structure [Kozlowki, 2008]

DN = (G[f ])N
′∑
{nr}

Nω({βr,nr})E[g, {βr, nr}]
(

1 +

∞∑
i=1

α
(i)
{βr,nr}N

−i

)
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Application to our problem

Here β1 = −1
4 , and one recovers the c

8 log ` = 1
16 log ` for PBC
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Application to our problem

Here β1 = −1
4 , and one recovers the c

8 log ` = 1
16 log ` for PBC

Where does the `−1 log ` come from?

Conjecture: it comes from the cusp at θ = π for the “regular part”
f(θ) of the symbol. New parametrization:

g(z) = f(z)(1 + z)−ν(z)(1 + 1/z)−ν̄(z) , z = eiθ

Use ν(z) and ν̄(z) to make f(z) smooth:

ν(z) = −1

4
− a× (z + 1)− a× (z + 1)2 + . . .

ν̄(z) =
1

4
+ a× (1 + 1/z)− a× (1 + 1/z)2 + . . .
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Application to our problem

Here β1 = −1
4 , and one recovers the c

8 log ` = 1
16 log ` for PBC

Following the Riemann-Hilbert analysis of [Kitanine, Kozlowski, Maillet,

Slavnov & Terras, Comm. Math. Phys 2009] [Kozlowki, 2008], we get a
contribution

−2β2a× `−1 log ` = − 1

32π
`−1 log `

We recover ξ = 1/2 for the LEFP Ising chain. Bonus:
ξ = 1

2 tanhλ for the full counting statistics generating function.
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Remarks

Better derivation of the `−1 log `

Toeplitz + Hankel case?

Finite aspect ratio `/L

Other subleading corrections
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Magnetization string as a conformal boundary condition
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What about quantum quenches?
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Imaginary time behavior

Now let us look at the imaginary time pictures
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Imaginary time behavior

Infinite Semi-infinite

All degrees of freedom are frozen in a region of area ∝ `2. Hence

E = a2`
2 + a1 + b log `+ o(1)

Agrees with exact results [Kitanine Maillet Slavnov & Terras, JPA 2001 – JPA

2002] [Kozlowski, JSM 2008] for the leading term in XXZ.
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Imaginary time behavior (II)

Same phenomenon as for the “arctic circle” in dimer models.

In dimer language, |↑↑↑↑〉 = |1010〉.

Shape is non universal, but the logarithms seem universal

In the fluctuating region, possibly [work in progress]

S =
κ0

4π

∫
κ(x, τ)(∇ϕ)2 dxdτ
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Imaginary time behavior (III)

The arctic circle as an emptiness formation probability

CFT

Z =
〈
↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓

∣∣T 16
∣∣ ↑↑↑↑↑↑↑↑↓↓↓↓↓↓↓↓〉
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The Antal quench

Prepare an XX chain in

|ψ(0)〉 = | . . . ↓↓↓↓↑↑↑↑ . . .〉

Evolve with the critical Hamiltonian H = HXX .
[Antal Racz Rakos Schütz, PRE 1999],. . .

|ψ(t)〉 = eiHt|ψ(0)〉

Magnetization profile

Stationary behavior

XXZ [Sebetta & Misguich, in preparation]
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Imaginary time Loschmidt echo

L(τ) =
〈
ψ(0)

∣∣ e−τH ∣∣ψ(0)
〉

τ = L/2 τ = L τ = 2L

For τ < L, the imaginary time Loschmidt echo grows as

L(τ) ∼ exp
(
ατ2

)
Analytic continuation τ → it:

L(t) ∼ exp
(
−αt2

)



Emptiness formation probability Connection with the theory of Toeplitz determinants Non conformal case, and arctic circle

Loschmidt echo (exact result)

In terms of fermions,

H =
∑
i,j

tij c
†
icj + h.c =

∑
k

ε(k)d†kdk

PBC: For t < L, L(t) is a L× L Toeplitz determinant. The
symbol is

g(θ) = e−iε(θ)

Apply the Szegő theorem:

L(t) = exp
(
−αt2

)
, α =

∑
k

k[ε]2k

OBC: Toeplitz+Hankel. Substitution α→ α/2.

Correction is exponentially small O(e−At/L).



Emptiness formation probability Connection with the theory of Toeplitz determinants Non conformal case, and arctic circle

Conclusion

U(1) vs non U(1).

Universal logarithm in the U(1) case.

Other semi-universal terms?

Better understanding of the connection with quenches: density
profile, guess the field theory outside of the frozen region, . . .
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Thank you!
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