Connection with the theory of Toeplitz determinants ${\tt oooooooooo}$

Non conformal case, and arctic circle 00000000

Emptiness formation probability, Toeplitz determinants and conformal field theory

Jean-Marie Stéphan¹ Jérôme Dubail² Paul Fendley¹

¹University of Virginia, Charlottesville ²Yale University, New Haven

Seminaire de physique mathematique — Saclay March 2013

JMS, arXiv:1303.5499

see also JMS and JD, arXiv:1303.3633

Non conformal case, and arctic circle 00000000

Outline

Emptiness formation probability

- Definition, physical motivations
- Magnetization string as a conformal boundary condition
- Universal and semi-universal terms

2 Connection with the theory of Toeplitz determinants

- Known results: Onsager, Szegő and Fisher-Hartwig
- Application to our problem

3 Non conformal case, and arctic circle

- Imaginary time behavior
- What about quantum quenches?

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

What is it?

Take some spin-1/2 chain, e.g.

$$H = \sum_{j} \left(J_x \sigma_j^x \sigma_{j+1}^x + J_y \sigma_j^y \sigma_{j+1}^y + J_z \sigma_j^z \sigma_{j+1}^z \right) + h \sum_{j} \sigma_j^z$$

The ground-state is $|\psi\rangle$. Look at a subsystem A, with RDM $\rho_A = \text{Tr}_B |\psi\rangle\langle\psi|$. The emptiness formation probability (EFP) is

 $\mathcal{P} = \text{proba}(\text{all spins in } A \text{ are } \uparrow) = \langle \uparrow \uparrow \dots \uparrow \uparrow | \rho_A | \uparrow \uparrow \dots \uparrow \uparrow \rangle$

 $\mathcal{E} = -\log \mathcal{P}$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Physical motivations

• Introduced in the context of integrable systems [Korepin Izergin Essler & Uglov, Phys. Lett. A 1994],...

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Physical motivations

- Introduced in the context of integrable systems [Korepin Izergin Essler & Uglov, Phys. Lett. A 1994],...
- Very unphysical observable, especially in systems with $U(1) \ {\rm symmetry.}$

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle 00000000

Physical motivations

- Introduced in the context of integrable systems [Korepin Izergin Essler & Uglov, Phys. Lett. A 1994],...
- Very unphysical observable, especially in systems with U(1) symmetry.
- Fermion counting statistics

$$\chi(\lambda) = \left\langle e^{-\lambda \sum_j (1 - \sigma_j^z)/2} \right\rangle = \sum_{m \ge 0} p_m e^{-\lambda m}$$

 $\langle m^2 \rangle_c$ in principle accessible through quantum noise measurement [Cherng & Demler, NJP 2007]

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle 00000000

Physical motivations

- Introduced in the context of integrable systems [Korepin Izergin Essler & Uglov, Phys. Lett. A 1994],...
- Very unphysical observable, especially in systems with U(1) symmetry.
- Fermion counting statistics

$$\chi(\lambda) = \left\langle e^{-\lambda \sum_j (1 - \sigma_j^z)/2} \right\rangle = \sum_{m \ge 0} p_m e^{-\lambda m}$$

 $\langle m^2 \rangle_c$ in principle accessible through quantum noise measurement [Cherng & Demler, NJP 2007]

• Order parameter statistics $X(\lambda) = \left\langle e^{-\lambda \int dx \, \mathcal{O}(x)} \right\rangle$ [Lamacraft & Fendley, PRL 2008]

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle 00000000

Physical motivations

- Introduced in the context of integrable systems [Korepin Izergin Essler & Uglov, Phys. Lett. A 1994],...
- Very unphysical observable, especially in systems with U(1) symmetry.
- Fermion counting statistics

$$\chi(\lambda) = \left\langle e^{-\lambda \sum_j (1 - \sigma_j^z)/2} \right\rangle = \sum_{m \ge 0} p_m e^{-\lambda m}$$

 $\langle m^2 \rangle_c$ in principle accessible through quantum noise measurement [Cherng & Demler, NJP 2007]

- Order parameter statistics $X(\lambda) = \left\langle e^{-\lambda \int dx \, \mathcal{O}(x)} \right\rangle$ [Lamacraft & Fendley, PRL 2008]
- Quantum quenches, a la [Antal et al, PRE 1999]

Connection with the theory of Toeplitz determinants 0000000000

Non conformal case, and arctic circle 00000000

This talk

• Study of the EFP using field-theoretical techniques

• Influence of the boundary conditions

• Conserved number of particles (U(1)), or not.

• Exact results in the free fermions limit (Toepliz determinants)

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle

Magnetization string as a conformal boundary condition

$$\mathcal{P}_o = rac{\mathcal{Z}_{ ext{strip}}^{(ext{slit})}}{\overline{\mathcal{Z}}_{ ext{strip}}}$$

Connection with the theory of Toeplitz determinants 0000000000

Non conformal case, and arctic circle 00000000

Magnetization string as a conformal boundary condition

Scaling in logarithmic form

$$\mathcal{E} = a_1 \times \ell + b \times \log(L f(\ell/L)) + a_0 + \dots$$

 $b = \frac{c}{24} \sum_{lpha} \left(\frac{\theta_{lpha}}{\pi} - \frac{\pi}{\theta_{lpha}} \right)$ due to sharp corners [Cardy & Peschel, NPB 1988]

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle 00000000

Universality & semi-universality in the free energy ($\theta = 2\pi$)

[JMS and Jérôme Dubail, arXiv:1303.3633]

$$F = a_2 L^2 + a_1 L + b_0 \log L + a_0 + b_{-1} \frac{\log L}{L} + \frac{a_{-1}}{L} + o(1/L)$$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Universality & semi-universality in the free energy $(\theta = 2\pi)$

[JMS and Jérôme Dubail, arXiv:1303.3633]

$$F = a_2 L^2 + a_1 L + b_0 \log L + a_0 + b_{-1} \frac{\log L}{L} + \frac{a_{-1}}{L} + o(1/L)$$

What about short-length cutoffs? Make the substitution $L \rightarrow L + \epsilon$

$$F' = a_2 L^2 + a_1' L + \frac{b_0 \log L}{L} + a_0' + b_{-1} \frac{\log L}{L} + \frac{a_{-1}'}{L} + o(1/L)$$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Universality & semi-universality in the free energy $(\theta = 2\pi)$

[JMS and Jérôme Dubail, arXiv:1303.3633]

$$F = a_2 L^2 + a_1 L + b_0 \log L + a_0 + b_{-1} \frac{\log L}{L} + \frac{a_{-1}}{L} + o(1/L)$$

What about short-length cutoffs? Make the substitution $L \rightarrow L + \epsilon$

$$F' = a_2 L^2 + a_1' L + \frac{b_0 \log L}{L} + a_0' + b_{-1} \frac{\log L}{L} + \frac{a_{-1}'}{L} + o(1/L)$$

- Semi-universal: invariant under $L \rightarrow L + \epsilon$
- Universal: invariant under $L \rightarrow aL + \epsilon$

$$b_{-1} = \xi \times (\text{universal term})$$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

$$S_{CFT} \longrightarrow S_{CFT} + \frac{\xi}{2\pi} \int_{\text{slit}} dx \, \langle T_{xx}(x) \rangle$$

 ξ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM 2006], [Dubail Read & Rezayi, PRB 2012]

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

$$S_{CFT} \longrightarrow S_{CFT} + \frac{\xi}{2\pi} \int_{\text{slit}} dx \ \langle T_{xx}(x) \rangle$$

 ξ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM 2006] , [Dubail Read & Rezayi, PRB 2012]

$$\Delta F = \frac{\xi}{\pi} \int_{\epsilon}^{\ell-\epsilon} dw \, \langle T(w) \rangle$$

The stress-tensor behaves as

$$\langle T(w) \rangle = \frac{\pi c}{12 \theta} \times \frac{g_{\text{geom}}}{L} \times \frac{1}{w^{2-2\pi/\theta}} + \dots$$

Whe

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Where does the semi-universal term come from?

Boundary perturbation by the stress-tensor

$$S_{CFT} \longrightarrow S_{CFT} + \frac{\xi}{2\pi} \int_{\text{slit}} dx \, \langle T_{xx}(x) \rangle$$

 ξ is the extrapolation length [Sorensen Chang Laflorencie & Affleck, JSM 2006] , [Dubail Read & Rezayi, PRB 2012]

$$\Delta F = \frac{\xi}{\pi} \int_{\epsilon}^{\ell-\epsilon} dw \, \langle T(w) \rangle$$

The stress-tensor behaves as

$$\langle T(w) \rangle = \frac{\pi c}{12 \theta} \times \frac{g_{\text{geom}}}{L} \times \frac{1}{w^{2-2\pi/\theta}} + \dots$$

n $\theta = 2\pi$, $\langle T(w) \rangle \propto \frac{1}{w} + \dots$, and $\Delta F \propto L^{-1} \log(\theta)$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Scaling of the logarithmic EFP

$$\mathcal{E}_p \sim a_1 \ell + \frac{c}{8} \log \left[\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right] + a_0^{(p)} - \frac{\xi c}{8} \cot \left(\frac{\pi \ell}{L} \right) \frac{\log \ell}{L},$$

$$\mathcal{E}_o \sim a_1 \ell - \frac{c}{16} \log \left[\frac{4L}{\pi} \frac{\tan^2 \left(\frac{\pi \ell}{2L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \right] + a_0^{(o)} + \frac{\xi c}{32} \times \frac{2 - \cos \left(\frac{\pi \ell}{L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \frac{\log \ell}{L}$$

Connection with the theory of Toeplitz determinants 0000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Scaling of the logarithmic EFP

$$\mathcal{E}_p \sim a_1 \ell + \frac{c}{8} \log \left[\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right] + a_0^{(p)} - \frac{\xi c}{8} \cot \left(\frac{\pi \ell}{L} \right) \frac{\log \ell}{L},$$

$$\mathcal{E}_o \sim a_1 \ell - \frac{c}{16} \log \left[\frac{4L}{\pi} \frac{\tan^2 \left(\frac{\pi \ell}{2L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \right] + a_0^{(o)} + \frac{\xi c}{32} \times \frac{2 - \cos \left(\frac{\pi \ell}{L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \frac{\log \ell}{L}$$

Connection with the theory of Toeplitz determinants ${\tt oooooooooo}$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Scaling of the logarithmic EFP

$$\begin{aligned} \mathcal{E}_p &\sim a_1 \ell + \frac{c}{8} \log \left[\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right] + a_0^{(p)} - \frac{\xi c}{8} \cot \left(\frac{\pi \ell}{L} \right) \frac{\log \ell}{L}, \\ \mathcal{E}_o &\sim a_1 \ell - \frac{c}{16} \log \left[\frac{4L}{\pi} \frac{\tan^2 \left(\frac{\pi \ell}{2L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \right] + a_0^{(o)} + \frac{\xi c}{32} \times \frac{2 - \cos \left(\frac{\pi \ell}{L} \right)}{\sin \left(\frac{\pi \ell}{L} \right)} \frac{\log \ell}{L} \end{aligned}$$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Logarithmic correction

Ising chain
$$H=-\sum_j\sigma_j^x\sigma_{j+1}^x-h\sum_j\sigma_j^z$$
 .

 $\xi = 1/2$ has been set in the plots.

 $\mathcal{P} =$ Some determinant

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Logarithmic correction

Ising chain
$$H = -\sum_j \sigma_j^x \sigma_{j+1}^x - h \sum_j \sigma_j^z$$
.

 $\xi = 1/2$ has been set in the plots. $\mathcal{P} = \text{Some determinant}$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle 00000000

Full counting statistics

$$\chi_{\ell}(\lambda) = \left\langle e^{-\lambda \sum_{j=1}^{z} (1-\sigma_{j}^{z})/2} \right\rangle \to \left\langle e^{-i\lambda \int dx \, \psi(x) \overline{\psi}(x)} \right\rangle$$

 $\psi(x)$ is a Majorana fermion field. The system is still cut into two, but the effect of $\psi(x)\overline{\psi}(x)$ is exactly marginal [Oshikawa & Affleck, NBP 1997], [Fendley Fisher & Nayak, Ann. Phys 2009]

Result:

$$c = \frac{1}{2} \rightarrow c_{\text{eff}} = \frac{8}{\pi^2} \arctan^2 \left[\tanh \frac{\lambda}{2} \right]$$

$$\xi = \frac{1}{2} \rightarrow ? \quad (\text{Non universal})$$

- Definition, physical motivations
- Magnetization string as a conformal boundary condition
- Universal and semi-universal terms

2 Connection with the theory of Toeplitz determinants

- Known results: Onsager, Szegő and Fisher-Hartwig
- Application to our problem

3 Non conformal case, and arctic circle

- Imaginary time behavior
- What about quantum quenches?

Connection with the theory of Toeplitz determinants ${\scriptstyle \bullet o o o o o o o o o }$

Non conformal case, and arctic circle 00000000

For the Ising chain

$$A_k = \frac{\delta_{k0}}{2} + \frac{1}{2L} \csc\left[\frac{\pi(k+1/2)}{L}\right]$$

The EFP is given by

$$\mathcal{P}_{p} = \det_{\substack{1 \le i, j \le \ell}} (A_{i-j})$$
(1)
$$\mathcal{P}_{o} = \det_{\substack{1 \le i, j \le \ell}} (A_{i-j} + A_{i+j-1})$$
(2)

Take the limit $L \to \infty$. This gives $A_k = \frac{\delta_{k0}}{2} + \frac{1}{2\pi(k+1/2)}$

- \mathcal{P}_p is a Toeplitz determinant.
- \mathcal{P}_o is a Toeplitz+Hankel determinant.

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Fun with Toeplitz

$$D_{N} = \det T_{N}(g)$$

$$= \det_{1 \le i,j \le N} (g_{i-j})$$

$$= \det_{1 \le i,j \le N} \begin{pmatrix} g_{0} & g_{1} & g_{2} & g_{3} & \dots & g_{N-1} \\ g_{-1} & g_{0} & g_{1} & g_{2} & \dots & g_{N-2} \\ g_{-2} & g_{-1} & g_{0} & g_{1} & \dots & g_{N-3} \\ g_{-3} & g_{-2} & g_{-1} & g_{0} & \dots & g_{N-4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{1-N} & g_{2-N} & g_{3-N} & g_{4-N} & \dots & g_{0} \end{pmatrix}$$

Onsager-Ising spontaneous magnetization problem, monomer correlators, full counting statistics, entanglement entropy, Random matrix theory, ...

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Fun with Toeplitz

$$D_{N} = \det T_{N}(g)$$

$$= \det_{1 \leq i,j \leq N} (g_{i-j})$$

$$= \det_{1 \leq i,j \leq N} \begin{pmatrix} g_{0} & g_{1} & g_{2} & g_{3} & \dots & g_{N-1} \\ g_{-1} & g_{0} & g_{1} & g_{2} & \dots & g_{N-2} \\ g_{-2} & g_{-1} & g_{0} & g_{1} & \dots & g_{N-3} \\ g_{-3} & g_{-2} & g_{-1} & g_{0} & \dots & g_{N-4} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ g_{1-N} & g_{2-N} & g_{3-N} & g_{4-N} & \dots & g_{0} \end{pmatrix}$$

Question: asymptotic behavior of det $T_N(g)$ when $N \to \infty$.

Connection with the theory of Toeplitz determinants ${\rm oo}{\rm \bullet}{\rm oo}{\rm oo}{\rm oo}{\rm oo}{\rm o}$

Non conformal case, and arctic circle 00000000

Fun with Toeplitz (II)

First intuition: write down T_N in Fourier space. Introduce

$$g(\theta) = \sum_{k \in \mathbb{Z}} g_k e^{ik\theta} \qquad , \qquad g_k = [g]_k = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) e^{-ik\theta} \, d\theta$$

 $g(\boldsymbol{\theta})$ is called the symbol of the Toeplitz determinant. We have

$$U^{\dagger}T_{N}U \simeq \operatorname{diag}\left(g(0), g(\frac{2\pi}{N}), \dots, g(2\pi - \frac{2\pi}{N})\right) , \quad U_{jl} = e^{2\pi i j l/N}$$

Connection with the theory of Toeplitz determinants ${\tt oo}{\tt oo}$

Non conformal case, and arctic circle 00000000

Fun with Toeplitz (II)

First intuition: write down T_N in Fourier space. Introduce

$$g(\theta) = \sum_{k \in \mathbb{Z}} g_k e^{ik\theta} \qquad , \qquad g_k = [g]_k = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) e^{-ik\theta} \, d\theta$$

 $g(\boldsymbol{\theta})$ is called the symbol of the Toeplitz determinant. We have

$$U^{\dagger}T_{N}U \simeq \operatorname{diag}\left(g(0), g(\frac{2\pi}{N}), \dots, g(2\pi - \frac{2\pi}{N})\right) , \quad U_{jl} = e^{2\pi i j l/N}$$

$$\det T_N(g) \approx \prod_{k=0}^{N-1} g(\frac{2k\pi}{N}) \approx \exp\left(\frac{N}{2\pi} \int_0^{2\pi} \log g(\theta) \, d\theta\right)$$

Connection with the theory of Toeplitz determinants ooooooooo

Non conformal case, and arctic circle 00000000

Toeplitz (III)

The Szegő strong limit theorem (SSLT)

Provided the symbol is sufficiently smooth, we have

$$\det T_N \sim \exp\left(\frac{N}{2\pi} \left[\log g\right]_0 + \sum_{k=1}^\infty k \left[\log g\right]_k \left[\log g\right]_{-k}\right)$$

 $\log g$ needs to be well-defined $\Rightarrow g$ has winding number 0.

Connection with the theory of Toeplitz determinants ooooooooo

Non conformal case, and arctic circle 00000000

Toeplitz (III)

The Szegő strong limit theorem (SSLT)

Provided the symbol is sufficiently smooth, we have

$$\det T_N \sim \exp\left(\frac{N}{2\pi} \left[\log g\right]_0 + \sum_{k=1}^\infty k \left[\log g\right]_k \left[\log g\right]_{-k}\right)$$

 $\log g$ needs to be well-defined $\Rightarrow g$ has winding number 0.

Example: spontaneous magnetization in Ising (Kaufman-Onsager)

$$g(\theta) = \left(\frac{1 - K_0 e^{-i\theta}}{1 - K_0 e^{i\theta}}\right)^{1/2} , \qquad K_0 = \left(\sinh[2\beta J_1]\sinh[2\beta J_2]\right)^{-1}$$
$$M = \left(1 - K_0^2\right)^{1/8} \sim (T - T_c)^{1/8}$$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Toeplitz (IV): Coulomb-Gas interpretation

$$D_N = \frac{1}{N!} \int \frac{d\theta_1}{2\pi} g(\theta_1) \int \frac{d\theta_2}{2\pi} g(\theta_2) \dots \int \frac{d\theta_N}{2\pi} g(\theta_N) \prod_{j < k} \left| e^{i\theta_j} - e^{i\theta_k} \right|^2$$

Non conformal case, and arctic circle 00000000

Toeplitz (IV): Coulomb-Gas interpretation

$$D_N = \frac{1}{N!} \int \frac{d\theta_1}{2\pi} g(\theta_1) \int \frac{d\theta_2}{2\pi} g(\theta_2) \dots \int \frac{d\theta_N}{2\pi} g(\theta_N) \prod_{j < k} \left| e^{i\theta_j} - e^{i\theta_k} \right|^2$$

 D_N is the partition function for a 2d Coulomb gas in an external potential $V(\theta) = -\log g(\theta)$:

$$D_N = \frac{1}{N!} \int \frac{d\theta_1}{2\pi} \frac{d\theta_2}{2\pi} \dots \frac{d\theta_N}{2\pi} e^{-E(\theta_1, \theta_2, \dots, \theta_N)}$$

$$E(\theta_1, \theta_2, \dots, \theta_N) = -2\sum_{j < k} \log \left| e^{i\theta_j} - e^{i\theta_k} \right| + \sum_j V(\theta_j)$$

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Toeplitz (V): Coulomb-Gas interpretation

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Toeplitz (V): Coulomb-Gas interpretation

$$D_N = (2\pi)^{-N} \int d\theta_1 \dots d\theta_N \exp\left(-E_0(\theta_1, \dots, \theta_N) + \sum_j V(\theta_j)\right)$$

$$\sim \exp\left(\sum_j V(2j\pi/N)\right)$$

$$\sim \exp\left(\frac{N}{2\pi} \int_0^{2\pi} V(\theta) d\theta\right)$$

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Toeplitz (V): Coulomb-Gas interpretation

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle 00000000

Toeplitz (V): Coulomb-Gas interpretation

$$\delta E = \frac{1}{2} \int_0^{2\pi} d\theta \int_0^{2\pi} d\phi \, \frac{|h(\theta) - h(\phi)|^2}{|e^{i\theta} - e^{i\phi}|} + \frac{1}{2\pi} \int_0^{2\pi} d\phi \, V'(\phi) h(\phi)$$

Find $h(\phi)$ that minimizes δE . We get

$$\delta E_{min} = -\sum_{k=1}^{\infty} k([V]_k)^2$$

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Fisher-Hartwig singularities (I)

For the EFP, we have:
$$g(\theta) = \frac{1}{2} + \frac{1}{2} \operatorname{sign} (\cos \theta) e^{-i\theta/2}$$

Singularity in the generating function at $\theta = \pi$.

Connection with the theory of Toeplitz determinants 000000000000

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Fisher-Hartwig singularities (II)

$$g(\theta) = f(\theta) \prod_{r=1}^{R} \exp(i\beta_r \arg[e^{i(\theta - \theta_r)}])$$

$$-\log D_N = \frac{N}{2\pi} [\log f]_0 - \left(\sum_{r=1}^R \beta_r^2\right) \log N + o(1)$$

Connection with the theory of Toeplitz determinants 000000000000

Non conformal case, and arctic circle 00000000

Fisher-Hartwig singularities (II)

$$g(\theta) = f(\theta) \prod_{r=1}^{R} \exp(i\beta_r \arg[e^{i(\theta - \theta_r)}])$$

$$-\log D_N = \frac{N}{2\pi} [\log f]_0 - \left(\sum_{r=1}^R \beta_r^2\right) \log N + o(1)$$

• There are proof in several cases: [Basor, Ehrhardt, Böttcher, Tracy, Widom, Deift, Its, Krasovsky,...]

Connection with the theory of Toeplitz determinants 00000000000

Non conformal case, and arctic circle 00000000

Fisher-Hartwig singularities (II)

$$g(\theta) = f(\theta) \prod_{r=1}^{R} \exp(i\beta_r \arg[e^{i(\theta - \theta_r)}])$$

$$-\log D_N = \frac{N}{2\pi} [\log f]_0 - \left(\sum_{r=1}^R \beta_r^2\right) \log N + o(1)$$

- There are proof in several cases: [Basor, Ehrhardt, Böttcher, Tracy, Widom, Deift, Its, Krasovsky,...]
- Heuristic way: regularize the SSLT term $\sum_k k[\log g]_k[\log g]_{-k}$

Connection with the theory of Toeplitz determinants oooooooooooo

Non conformal case, and arctic circle 00000000

Fisher-Hartwig singularities (III)

Ambiguity in the Fisher-Hartwig representation: to see that, make a shift $\beta_r \to \beta_r + n_r$, with $\sum n_r = 0$.

$$D_N = \det(T_N(g)) \sim (G[f])^N \sum_{\{n_r\}}' N^{\omega(\{\beta_r, n_r\})} E[g]$$

provided $f(\theta)$ is smooth [Deift Its & Krasovsky, Ann. Math. 2011]

Conjecture for the general structure [Kozlowki, 2008]

$$D_N = (G[f])^N \sum_{\{n_r\}}' N^{\omega(\{\beta_r, n_r\})} E[g, \{\beta_r, n_r\}] \left(1 + \sum_{i=1}^\infty \alpha_{\{\beta_r, n_r\}}^{(i)} N^{-i}\right)$$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Application to our problem

Here $\beta_1 = -\frac{1}{4}$, and one recovers the $\frac{c}{8}\log \ell = \frac{1}{16}\log \ell$ for PBC

Connection with the theory of Toeplitz determinants $\circ\circ\circ\circ\circ\circ\circ\circ\bullet\circ$

Non conformal case, and arctic circle 00000000

Application to our problem

Here
$$\beta_1 = -\frac{1}{4}$$
, and one recovers the $\frac{c}{8}\log \ell = \frac{1}{16}\log \ell$ for PBC

Where does the $\ell^{-1} \log \ell$ come from?

Conjecture: it comes from the cusp at $\theta = \pi$ for the "regular part" $f(\theta)$ of the symbol. New parametrization:

$$g(z) = f(z)(1+z)^{-\nu(z)}(1+1/z)^{-\overline{\nu}(z)}$$
, $z = e^{i\theta}$

Use $\nu(z)$ and $\bar{\nu}(z)$ to make f(z) smooth:

$$\nu(z) = -\frac{1}{4} - a \times (z+1) - a \times (z+1)^2 + \dots$$

$$\bar{\nu}(z) = \frac{1}{4} + a \times (1+1/z) - a \times (1+1/z)^2 + \dots$$

Connection with the theory of Toeplitz determinants $\circ\circ\circ\circ\circ\circ\circ\circ\bullet\circ$

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Application to our problem

Here
$$\beta_1 = -\frac{1}{4}$$
, and one recovers the $\frac{c}{8}\log \ell = \frac{1}{16}\log \ell$ for PBC

Following the Riemann-Hilbert analysis of [Kitanine, Kozlowski, Maillet, Slavnov & Terras, Comm. Math. Phys 2009] [Kozlowki, 2008], we get a contribution

$$-2\beta^2 a \times \ell^{-1}\log\ell = -\frac{1}{32\pi}\ell^{-1}\log\ell$$

We recover $\xi = 1/2$ for the LEFP Ising chain. Bonus: $\xi = \frac{1}{2} \tanh \lambda$ for the full counting statistics generating function.

Non conformal case, and arctic circle ${\scriptstyle 00000000}$

Remarks

• Better derivation of the $\ell^{-1}\log\ell$

• Toeplitz + Hankel case?

• Finite aspect ratio ℓ/L

• Other subleading corrections

- Definition, physical motivations
- Magnetization string as a conformal boundary condition
- Universal and semi-universal terms

2 Connection with the theory of Toeplitz determinants
 • Known results: Onsager, Szegő and Fisher-Hartwig
 • Application to our problem

- 3 Non conformal case, and arctic circle
 - Imaginary time behavior
 - What about quantum quenches?

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle $\bullet o o \circ \circ \circ \circ \circ \circ$

Imaginary time behavior

Now let us look at the imaginary time pictures

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle •••••••

Imaginary time behavior

Infinite

Semi-infinite

All degrees of freedom are frozen in a region of area $\propto \ell^2$. Hence

$$\mathcal{E} = a_2 \ell^2 + a_1 + b \log \ell + o(1)$$

Agrees with exact results [Kitanine Maillet Slavnov & Terras, JPA 2001 – JPA 2002] [Kozlowski, JSM 2008] for the leading term in XXZ.

Connection with the theory of Toeplitz determinants 0000000000

Non conformal case, and arctic circle 00000000

Imaginary time behavior (II)

• Same phenomenon as for the "arctic circle" in dimer models.

In dimer language, $|\uparrow\uparrow\uparrow\uparrow\rangle = |1010\rangle$.

• Shape is non universal, but the logarithms seem universal

• In the fluctuating region, possibly [work in progress]

$$S = \frac{\kappa_0}{4\pi} \int \kappa(x,\tau) (\nabla \varphi)^2 \, dx d\tau$$

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle $_{\texttt{OOOOOOO}}$

Imaginary time behavior (III)

The arctic circle as an emptiness formation probability

Connection with the theory of Toeplitz determinants ${\tt 00000000000}$

Non conformal case, and arctic circle

The Antal quench

Prepare an XX chain in

$$|\psi(0)\rangle = |\ldots\downarrow\downarrow\downarrow\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow\ldots\rangle$$

Evolve with the critical Hamiltonian $H = H_{XX}$. [Antal Racz Rakos Schütz, PRE 1999],...

$$|\psi(t)\rangle = e^{iHt}|\psi(0)\rangle$$

- Magnetization profile
- Stationary behavior
- XXZ [Sebetta & Misguich, in preparation]

Connection with the theory of Toeplitz determinants ${\tt oooooooooo}$

Imaginary time Loschmidt echo

$$\mathcal{L}(\tau) = \left\langle \psi(0) \, \middle| \, e^{-\tau H} \, \middle| \, \psi(0) \right\rangle$$

au = L/2 au = L au = 2L

For $\tau < L$, the imaginary time Loschmidt echo grows as

$$\mathcal{L}(\tau) \sim \exp\left(\alpha \tau^2\right)$$

Analytic continuation $\tau \rightarrow it$:

$$\mathcal{L}(t) \sim \exp\left(-\alpha t^2\right)$$

Connection with the theory of Toeplitz determinants 0000000000

Non conformal case, and arctic circle

Loschmidt echo (exact result)

In terms of fermions,

$$H = \sum_{i,j} t_{ij} c_i^{\dagger} c_j + h.c = \sum_k \epsilon(k) d_k^{\dagger} d_k$$

• PBC: For t < L, $\mathcal{L}(t)$ is a $L \times L$ Toeplitz determinant. The symbol is

$$g(\theta) = e^{-i\epsilon(\theta)}$$

Apply the Szegő theorem:

$$\mathcal{L}(t) = \exp\left(-\alpha t^2\right) \qquad , \qquad \alpha = \sum_k k[\epsilon]_k^2$$

- OBC: Toeplitz+Hankel. Substitution $\alpha \rightarrow \alpha/2$.
- Correction is exponentially small $O(e^{-A_t/L})$.

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle 0000000

Conclusion

 $\bullet \ U(1) \ {\rm vs} \ {\rm non} \ U(1).$

• Universal logarithm in the U(1) case.

• Other semi-universal terms?

• Better understanding of the connection with quenches: density profile, guess the field theory outside of the frozen region, ...

Emptiness	formation	probability

Connection with the theory of Toeplitz determinants

Non conformal case, and arctic circle $\circ\circ\circ\circ\circ\circ\circ\bullet$

Thank you!