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Dimers on a brickwall (honeycomb) lattice
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Dimers (in blue) cover the whole lattice: each site is occupied
by exactly one dimer.

Weight u > 0 for some horizontal dimers, 1 for the others.

P(configuration shown in the picture) = u4/Z.
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|011001〉

〈101010|

T

T ′

T

T ′

Mapping to particle configurations: vertical dimers are holes ’0’,
while empty vertical edges are particles ’1’ shown in red.
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Can reconstruct the dimer configuration from the particle
configuration.
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Mapping to fermions (Jordan-Wigner)

|1〉 =

(
1
0

)
|0〉 =

(
0
1

)
c† =

(
0 1
0 0

)
s =

(
−1 0
0 1

)
|011001〉 = |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ |1〉

c†j = s⊗ . . .⊗ s︸ ︷︷ ︸
j−1

⊗ c† ⊗ I2 ⊗ . . .⊗ I2︸ ︷︷ ︸
L−j

, cj = (c†j)
†

cic
†
j = δijI − c†jci , cicj = −cjci

Dimer configurations in terms of ordered fermionic operators, e.g.

|110101〉 = c†1c
†
2c
†
4c
†
6 |0〉

where |0〉 = |000000〉 is called the vacuum.
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Transfer matrix as free fermions

T, T ′ constructed such that Z = 〈101010|T ′TT ′T |011001〉 in the
previous picture. [Onsager, Lieb, Baxter, . . . ]

T = T ′T satisfies T |0〉 = |0〉, and

T c†i =
(
uc†i−1 + (1 + u2)c†i + uc†i+1

)
T =

∑
j

Aijc
†
j

 T

T = T ′T = exp

∑
i,j

Bijc
†
icj

 , B = logA
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Broader picture

Related to many other topics in Mathematical Physics and
Probability Theory: Schur functions, determinantal point
processes, non-intersecting lattice paths, six vertex model, free
fields, conformal field theory . . .

From the perspective of integrability, write T = T (u). Then

T (u)T (v) = T (v)T (u)
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Transfer matrix as free fermions (2)

Infinite lattice: by translation invariance, and introducing
c†(k) =

∑
x∈Z e

ikxc†x, T reads in momentum space

T = exp

(∫ π

−π

dk

2π
ε(k)c†(k)c(k)

)
or T c†(k) = eε(k)c†(k)T

T = eH , where H is a quadratic Hamiltonian with dispersion ε(k).

For dimers, we have

ε(k) = log
[
(1 + ueik)(1 + ue−ik)

]
= log

[
1 + u2 + 2u cos k

]



Motivation: Fermions in statistical mechanics Limit shapes Fermionic limit shapes

Fermions anticommute, why is this supposed to be positive?

For dimers it follows from the relation

T c†j =
(
uc†j−1 + (1 + u2)c†j + uc†j+1

)
T

which implies the fermions never change order. Using this one can
show 〈φ|T |ψ〉 ≥ 0 for all particle configurations |φ〉 , |ψ〉.
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Fermions anticommute, why is this supposed to be positive?

Positive dispersions can be classified, since this problem is related
to the notion of total positivity for matrices [Edrei 1952, Thoma 1964]

The only positive dispersions are linear combinations of the

1 , eik , e−ik

with positive coeffcients, and the

log(1+αeik) , log(1+βe−ik) , log
1

1− γeik
, log

1

1− δe−ik

with positive integer coefficients, and α, β, γ, δ ≥ 0.
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Limit shapes
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Uniform dimer coverings on the Aztec diamond
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Arctic circle theorem [Jockusch, Propp and Shor 1998]
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|ψ1〉

〈ψ1|

Domain wall: |ψ1〉 = |111111000000〉
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|ψ1〉

〈ψ1|
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Average density profile

Recall T = eH . Top/bottom boundaries at y = ±R.

Using the transfer matrix formalism

〈nx(y)〉 =
〈ψ1|e(R−y)Hc†xcxe

(R+y)H |ψ1〉
〈ψ1|e2RH |ψ1〉

.

Exact formulas are sometimes possible: Wick’s theorem buys you a
ratio of semi-infinite determinants.



Motivation: Fermions in statistical mechanics Limit shapes Fermionic limit shapes

Average density profile (dimers u = 1/2)

0
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Density is frozen (to 1 or 0) outside an “arctic” ellipse in the limit
R→∞ with fixed X = x/R, Y = y/R.
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Average density profile for ε(k) = cos k

Previously studied in relation to growth models [Prähofer, Spohn 2000]

0 0.2 0.4 0.6 0.8 1.0

Density is frozen (to 1 or 0) outside an “arctic” circle.
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What about dispersions such as

ε(k) = cos k + α cos(2k)

which are not guaranteed to be positive?
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α = 1
15 , new “crazy regions” in red with density not in [0, 1].
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α = 1
4 , new “crazy regions” in red with density not in [0, 1].
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Sign issues

eτH |ψ1〉 =
∑
C
aC(τ) |C〉 , aC(τ) = 〈C|eτH |ψ1〉

aC(τ) =

∞∑
m=0

τm

m!
〈C|Hm|ψ1〉 .

H |ψ1〉 = H |..1111100000..〉
= |..1111010000..〉+ α |..1111001000..〉 − α |..1110110000..〉

so for sufficiently small τ , some aC(τ) are negative. Hence

P(C, y) =
aC(R− y)aC(R+ y)∑
C aC(R− y)aC(R+ y)

can be negative (if y 6= 0).
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More general wall states

|ψn〉 for n ∈ {1, 2, 3 . . .}

|ψ1〉 = |. . . 111111111000000 . . .〉

|ψ2〉 = |. . . 101010101000000 . . .〉

|ψ3〉 = |. . . 100100100100000 . . .〉

One fermion every n-th site, then no fermions.
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A new exact formula (using standard techniques)

nx(y) =

∫ π

−π

dk

2π

∫ π+iη

−π+iη

dq

2π

eΦn(k,x,y)−Φn(q,x,y)eΩn(k)+Ωn(q)

1− e−in(k−q)

Φn(k, x, y) = −ikx− yε(k) + iRε̃n(nk),

Ωn(k) = R [ε(k)− εn(nk)]

εn(k) =
1

2R
log

 1

n

n−1∑
p=0

e2Rε( k+2pπ
n

)


ε̃n denotes the periodic Hilbert transform of εn.

This formula works only for the initial states |ψn〉.
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Consider initial states of the form |ψ〉 = c†s(1) . . . c
†
s(l) |0〉.

Kij =
〈ψ|eτ1Hc†ieτ2Hcjeτ3H |ψ〉
〈ψ|e(τ1+τ2+τ3)H |ψ〉

=
Wick

det

(
0 u
v M

)
det

(
1 0
0 M

)

Mab = 〈0|cs(a)e
(τ1+τ2+τ3)Hc†s(b)|0〉 =

∫
dk

2π
e−ik(s(a)−s(b))e(τ1+τ2+τ3)ε(k)

u a is a l-line vector with elements 〈0|caeτ1Hc†i |0〉 and v a

l−column vector with elements 〈0|cjeτ3Hc†b|0〉

For initial states |ψn〉, s(a)− s(b) = s(a− b), so M is a Toeplitz
matrix, which can be inverted.
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Saddle point analysis for n = 1 (α = 0)

Known positive case, fluctuating region
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Blue region Reϕ(q) < Reϕ(z+). Orange Reϕ(k) > Reϕ(z+).

With the deformation shown Re(ϕ(k)− ϕ(q)) < cst < 0, so
integrant is exponentially small.
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Saddle point analysis for n = 1 (α = 0)

Known positive case, fluctuating region
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Blue region Reϕ(q) < Reϕ(z+). Orange Reϕ(k) > Reϕ(z+).

With the deformation shown Re(ϕ(k)− ϕ(q)) < cst < 0, so
integrant is exponentially small + residue contribution.



Motivation: Fermions in statistical mechanics Limit shapes Fermionic limit shapes

Saddle point analysis for n = 1 (α > 0)

Four saddle points. Still normal
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Saddle point analysis for n = 1 (α > 0)

Four saddle points. New crazy region
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Cannot do a similar deformation. Can show exponential blow-up.
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Comparison to simulations in finite size

α = 1/4. Violet curve is the boundary of the crazy region.
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Dilution argument

Minus signs occur when one fermion hop around another, e.g.

|1010110111〉

so if one thinks of density as reasonably smooth, minus signs are
only generated in regions with high –but not too high– densities.

Makes sense to look at lower density boundary conditions, such as
|ψ2〉 , |ψ3〉, etc.
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Saddle point analysis for n = 2

α > 0. Only two relevant saddle points.
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Can show there are no crazy regions for R→∞, and compute the
density profile exactly. Sign problem disappears for n ≥ 2!
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Density profile (simulations in finite size)

0 0.2 0.4 0.6 0.8 1.0

No sign of crazy region, even for finite R.
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Discussion/conclusion

Always positive for y = 0. Edge behavior is interesting [Betea,

Bouttier, Walsh 2020] related to higher order Tracy-Widom
behavior [Di Francesco, Ginsparg, Zinn-Justin 1995] [Akemann, Atkin 2012]

[Le Doussal, Majumdar, Schehr 2018].

There are many (weaker) forms of positivity.

Similar story in the presence of several bands.

Presumably similar story in the presence of interactions (add
higher order charges to the XXZ Hamiltonian).
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Thank you!
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