XI.— Entiers algébriques

On dira qu'un nombre $z \in \mathbb{C}$ est un entier algébrique s'il est racine d'un polynôme unitaire à coefficients entiers.

Montrer que si $\alpha \in \mathbb{Q}$ est un entier algébrique, alors $\alpha \in \mathbb{Z}$.

Exercice 1 a) Soient α , β deux entiers algébriques. Montrer que si F(X,Y) est un polynôme à coefficients entiers, alors $F(\alpha,\beta)$ est aussi à coefficients entiers.

- b) Montrer qu'un nombre algébrique est entier si et seulement si son polynôme minimal unitaire est à coefficients entiers.
- c) Soient $f, g \in \mathbb{Q}[X]$ deux polynômes unitaires tels que $fg \in \mathbb{Z}[X]$. Montrer que f, g sont à coefficients entiers.

Exercice 2 Soit $d \neq 0$ un entier sans facteur carré. On note \mathfrak{O} l'anneau des entiers de $\mathbb{Q}(\sqrt{d})$.

Montrer que :

$$\mathfrak{O} = \left\{ \begin{array}{l} \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} \ si \ d \neq 1 \ \mathrm{mod} \ 4, \\ \mathbb{Z} \oplus \mathbb{Z} \frac{1+\sqrt{d}}{2} \ si \ d = 1 \ \mathrm{mod} \ 4. \end{array} \right.$$

Exercice 3 Soit A une matrice carrée à coefficients entiers telle que tous les coefficients de A-I sont divisibles par $n \geq 2$. On suppose que $A \neq I$.

- a) Montrer que si n > 2, $A^m \neq I$ pour tout m > 0.
- b) Si n=2 et si $A^2 \neq I$, montrer que $A^m \neq I$ pour tout m>0.
- c) En déduire que pour tout r, il n'y a qu'un nombre fini de sous-groupes finis de $GL_r(\mathbb{Z})$ à isomorphisme près.

Exercice 4 Soit $f = X^n + a_1 X^{n-1} + ... + a_n$ un polynôme à coefficients entiers unitaire. Montrer que le discriminant de f vérifie : $\Delta(f) = 0$ ou $1 \mod 4$.

(indications: introduire $\delta_1 := \prod_{i < j} (x_i + x_j)$; vérifier que δ_1 est un entier et que $\Delta(f) - \delta_1^2 = 4U(x_1, ..., x_n)$ où U est un polynôme à coefficients entiers symétrique).

Exercice 5 (Entiers des corps cyclotomiques) a) Montrer que le discriminant du polynôme $\Phi_n(X)$ est :

$$(-1)^{\varphi(n)/2} \frac{n^{\varphi(n)}}{\prod\limits_{\substack{p|n\\ n \text{ premier}}} p^{\frac{\varphi(n)}{p-1}}}$$

b) Soient p un nombre premier et z une racine primitive p-ième de l'unité.

On note A l'anneau des entiers de $\mathbb{Q}(z)$. Montrer que :

$$p = (1 - z)...(1 - z^{p-1})$$

et en déduire que :

$$A(1-z) \cap \mathbb{Z} = p\mathbb{Z}$$

Montrer que pour tout $y \in A$, $tr(y(1-z)) \in p\mathbb{Z}$.

On suppose que $x = a_0 + ... + a_{p-2}z^{p-2}$ est entier sur \mathbb{Z} avec les $a_i \in \mathbb{Q}$. En calculant $\operatorname{tr}(x(1-z), montrer que \ a_0 \in \mathbb{Z}$ puis que tous les a_i sont entiers (indication : calculer d'abord $\operatorname{tr}(z^j)$, $0 \le j \le p-1$). En déduire que $A = \mathbb{Z}[z]$.

- c) Traiter le cas où z est une racine primitive p^r -ième de l'unité.
- d) Traiter le cas général : montrer que si z est une racine primitive n-ième de l'unité, alors $\mathbb{Z}[z]$ est l'anneau des entiers de $\mathbb{Q}(z)$.