XII.— Calculs de groupes de Galois

Exercice 1 Montrer que le polynôme $X^5 + 10X^3 - 10X^2 + 35X - 18$ a pour groupe de Galois sur \mathbb{Q} le groupe alterné A_5 .

Exercice 2 Déterminer le groupe de Galois de $X^5 + 10X^3 - 15$ sur \mathbb{Q} .

Exercice 3 *Soit* $P := X^7 - 56X - 48$.

a) Montrer que

$$P = (X^2 + 6X - 6)(X^2 - 9X + 5)(X^3 + 3X^2 - 5X - 3) \bmod 23.$$

- b) Montrer que le groupe de Galois de P sur \mathbb{Q} est contenu dans A_7 .
- c) En utilisant a), montrer que le groupe de Galois de P sur \mathbb{Q} est A_7 indication : vérifier d'abord que :

$$\langle (123), (1234567) \rangle = \dots = \langle (127), (1234567) \rangle$$
.

Exercice 4 a) Soit G un sous-groupe transitif de S_n . Montrer que si G contient une transposition et un (n-1) cycle, alors $G = S_n$.

b) Soit f_1 un polynôme entier unitaire de degré n irréductible modulo 2. Soit f_2 un polynôme unitaire entier de degré n qui a un facteur irréductible de degré n-1 modulo 3. Soit f_3 un polynôme unitaire entier de degré n qui modulo 5 a un facteur de degré 2 et 1 ou 2 facteurs de degrés impairs (distincts) tous irréductibles. Montrer que de tels polynômes existent si n>3 et que dans ce cas, le polynôme

$$f := -15f_1 + 10f_2 + 6f_3$$

a pour groupe de Galois S_n sur \mathbb{Q} .