III.— Morphismes de corps et extensions finies

Exercice 1 a) Déterminer les automorphismes du corps Q.

- b) Déterminer les automorphismes du corps $\mathbb{Q}(\sqrt{2})$.
- c) Déterminer les automorphismes du corps \mathbb{R} . Indication : Montrer d'abord qu'un tel automorphisme est croissant puis qu'il est continu.
 - d) Déterminer les automorphismes continus du corps C.
- e) Déterminer les automorphismes de \mathbb{Q}_p (si on connaît les corps p-adiques). Indication : vérifier cette caractérisation des unités de l'anneau \mathbb{Z}_p : si $x \in \mathbb{Q}_p$, alors $x \in \mathbb{Z}_p^{\times} \Leftrightarrow x^{p-1}$ a une racine n-ième dans \mathbb{Q}_p pour une infinités d'entiers n > 0; en déduire qu'un automorphisme de \mathbb{Q}_p est forcément continu.
- f) Déterminer les morphismes de $\mathbb{Q}(i)$ dans \mathbb{C} . Déterminer les morphismes de $\mathbb{Q}(j)$ dans \mathbb{C} . Les corps $\mathbb{Q}(i)$ et $\mathbb{Q}(j)$ sont-ils isomorphes?
 - g) Déterminer tous les morphismes de corps $\mathbb{Q}(\sqrt[3]{2}) \to \mathbb{C}$.
- h) Soient p un nombre premier et $q := p^n$ une puissance de p. Vérifier que $F : \mathbb{F}_q \to \mathbb{F}_q$ est un automorphisme de corps et que $\operatorname{Aut}(\mathbb{F}_q)$ est un groupe cyclique d'ordre n engendré par F.
- i) Montrer que l'identité est le seul automorphisme du corps $\mathbb{F}_p(t^{\frac{1}{p}})$ qui laisse fixe les éléments de $\mathbb{F}_p(t)$.
- j) Montrer que $\operatorname{Aut}_{\mathbb{C}}(\mathbb{C}(t)) \simeq \operatorname{PGL}_2(\mathbb{C})$. Indication : montrer que si $\frac{p}{q} \in \mathbb{C}(t)$, alors $[\mathbb{C}(t) : \mathbb{C}(\frac{p}{q})] = \max\{\deg p, \deg q\}$.

Exercice 2 a) Déterminer les extensions algébriques de \mathbb{R} .

- b) Montrer que l'extension $\overline{\mathbb{Q}}/\mathbb{Q}$ n'est pas finie.
- c) On pose: $R := \overline{\mathbb{Q}} \cap \mathbb{R}$. Montrer que $\overline{\mathbb{Q}} = R(i)$.

Remarque : le théorème d'Artin-Schreier affirme que si K/k est une extension finie et si K est algébriquement clos, alors k est de caractéristique 0, [K:k]=2 et il existe $i \in K$ tel que $i^2=-1$ et K=k(i).

Théorème de Steinitz

Exercice 3 Soit K un corps.

- a) Si P est un polynôme de degré > 0 sur K, montrer qu'il existe une extension algébrique finie de K où P a une racine.
- b) Soit \mathscr{P} l'ensemble des polynômes de degré > 0 sur K. Soit $A := K[X_f : f \in \mathscr{P}]$. Montrer que l'idéal de A engendré par les $f(X_f)$, $f \in \mathscr{P}$ est un idéal propre.
- c) En admettant que tout idéal propre de A est contenu dans un idéal maximal (cela repose sur le lemme de Zorn), montrer qu'il existe K_1 une extension algébrique de K où chaque polynôme de K[X] de degré > 0 a au moins une racine.

d) En déduire l'existence d'une extension algébrique et algébriquement close de K. Indication : construire une suite croissante par récurrence $K \subseteq K_1 \subseteq K_2 \subseteq ...$ et prendre la réunion des K_i .

Corps finis

Exercice 4 Soit p un nombre premier.

a) Montrer que si P est un polynôme irréductible de degré n sur \mathbb{F}_p , alors P divise $X^{p^n} - X$ sur \mathbb{F}_p . Soit \mathscr{I}_d l'ensemble des polynômes unitaires irréductibles de degré d sur \mathbb{F}_p . Montrer que :

$$X^{p^n} - X = \prod_{\substack{d \mid n \\ P \in \mathscr{I}_d}} P \ .$$

- b) Soit K un corps fini de carac téristique p. Montrer que K est de cardinal p^n pour un certain n.
- c) Montrer qu'il existe un corps de cardinal p^n , unique à isomorphisme près.

Indications: pour l'existence, si Ω est une clôture algébrique de \mathbb{F}_p , considérer $\{x \in \Omega : x^{p^n} = x\}$; pour l'unicité, si P est un polynôme irréductible sur \mathbb{F}_p de degré n et si K est un corps de cardinal p^n , montrer que P a au moins une racine x_0 dans K et que le morphisme $\mathbb{F}_p[X]/(P) \to K$, $Q \mapsto Q(x_0)$ est un isomorphisme.

Exercice 5 Soit P un idéal maximal de $\mathbb{Z}[i]$, l'anneau des entiers de Gauss. Montrer que $\mathbb{Z}[i]/P$ est un corps fini de cardinal p où p^2 pour un certain nombre premier p. Déterminer $\mathbb{Z}[i]/(7)$ et $\mathbb{Z}[i]/(2+i)$.