V.— Extensions galoisiennes finies

Exercice 1 Déterminer le corps de décomposition du polynôme $X^3 - 2$ sur \mathbb{Q} et déterminer son groupe de Galois G. Décrire les sous-groupes de G et les extensions de \mathbb{Q} correspondantes.

Exercice 2 Montrer que l'extension $\mathbb{F}_{q^n}/\mathbb{F}_q$ est galoisienne cyclique.

Exercice 3 Soit f un polynôme irréductible sur \mathbb{Q} de degré n. Montrer que son groupe de Galois est d'ordre un multiple de n. (Indication : vérifier que le groupe de Galois agit transitivement sur les racines de f).

Exercice 4 a) Montrer que le polynôme $f(X) := X^p - X - t$ est irréductible sur $\mathbb{F}_p(t)$.

- b) Montrer que si α est une racine de f, alors $\alpha + i$ aussi $(i \in \mathbb{Z})$.
- c) Montrer que le groupe de Galois de f sur $\mathbb{F}_p(t)$ est $\mathbb{Z}/p\mathbb{Z}$.

Exercice 5 Soit k un corps de caractéristique p. Soit F une extension galoisienne cyclique de degré p de k. Soit σ un générateur du groupe de Galois de F sur k.

a) Montrer que l'endomorphisme k-linéaire de F:

$$S: \alpha \mapsto \alpha - \sigma(\alpha)$$

est nilpotent.

- b) Soit $\alpha \in \ker S^2 \setminus \ker S$. Montrer que $\beta := \frac{\alpha}{\sigma(\alpha) \alpha}$ vérifie $\sigma(\beta) = \beta + 1$.
- c) En déduire que β vérifie une équation de la forme $X^p X a = 0$.

Exercice 6 Soient trois corps : $K_1 \subseteq K_2 \subseteq K_3$. On suppose que K_3/K_1 est galoisienne finie. Montrer que si $\sigma \in \operatorname{Gal}(K_3/K_1)$, alors :

$$\sigma \operatorname{Gal}(K_3/K_2)\sigma^{-1} = \operatorname{Gal}(K_3/\sigma(K_2))$$
.

Exercice 7 Soit G le sous-groupe des automorphismes de $\mathbb{C}(t)$ engendré par:

$$t \mapsto \zeta t \text{ et } t \mapsto t^{-1}$$

où ζ est une racine primitive n-ième de 1.

- a) Montrer que G est isomorphe au groupe diédral d'ordre 2n.
- b) Montrer que $\mathbb{C}(t)^G = \mathbb{C}(t^n + t^{-n})$.

Exercice 8 Soit k un corps. Soit Z le sous-groupe des matrices diagonales de $GL_2(k)$.

a) Soit $g \in GL_2(k)$ une matrice qui laisse fixes les droites

$$x = 0, y = 0, y = x$$
.

Montrer que $g \in Z$.

b) Montrer que le sous-groupe de $\mathrm{GL}_2(k)/Z$ engendré par les classes des matrices :

$$\left(\begin{array}{cc} -1 & 1 \\ 0 & 1 \end{array}\right) , \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

est isomorphe à S_3 .

c) Soit K le sous-corps des fractions rationnelles $f \in k(t)$ invariantes par les changements de variables

$$t \mapsto 1 - t \text{ et } t \mapsto t^{-1}$$
.

Montrer que $K = k \left(\frac{(t^2 - t + 1)^3}{t^2(t - 1)^2} \right)$.

d) En déduire que l'extension :

$$k\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right) \subset k(t)$$

est galoisienne de groupe de Galois S_3 .