Fiche VIII, exo. 1 : Soient $p_1 < ... < p_t$ des nombres premiers tels que : t est impair ≥ 3 et $p_1 + p_2 > p_t$. On pose $n := p_1...p_t$ et $p := p_t$

Alors grâce à la formule d'inversion de Möbius, on a :

$$\Phi_n(X) = \prod_{d|n} (X^d - 1)^{\mu(n/d)}$$
.

Or, les diviseurs de n sont $1, p_1, ..., p_t$ et les produits :

$$p_{i_1}...p_{i_k} : 2 \le k \le t, 1 \le i_1 < ... < i_k \le t$$
.

Or, si $d = p_{i_1}...p_{i_k}$ avec $k \ge 2$, alors $d \ge p_1p_2 > p_1 + p_2 > p$ et donc $X^d = 0 \mod X^{p+1}$.

Donc dans l'anneau $\mathbb{Q}[X]/(X^{p+1})$, on a :

$$\Phi_n(X) = (X-1)^{\mu(n)} (X^{p_1} - 1)^{\mu(n/p_1)} ... (X^{p_t} - 1)^{\mu(n/p_t)} (-1)^e$$

où
$$e = \sum_{\substack{2 \le k \le t \\ 1 \le i_1 < \dots < i_k \le t}} \mu(n/p_{i_1} \dots p_{i_k}).$$

Or, comme t est impair, $\mu(n) = -1$, $\mu(n/p_i) = 1$ et :

$$e = \sum_{\substack{2 \le k \le t \\ 1 \le i_1 < \dots < i_k \le t}} (-1)^{k+1}$$

$$= -\sum_{2 \le k \le t} \binom{n}{k} (-1)^k$$
$$= -((1-1)^t - 1 + 1) = 0.$$

donc:

$$\Phi_n(X) = (X^{p_1} - 1)...(X^{p_t} - 1)(X - 1)^{-1} \mod X^{p+1}$$

$$= (1 - X^{p_1})...(1 - X^{p_t})(1 - X)^{-1} \mod X^{p+1}$$

$$= (1 - X^{p_1}... - X^{p_t})(1 + X + ... + X^p) \mod X^{p+1}$$

car $p_1 + p_2 \ge p + 1$ et $(1 - X)^{-1} = 1 + \dots + X^p \mod X^{p+1}$.

Si on développe on trouve les coefficients c_{p-2} et c_p devant X^{p-2} et X^p de $\Phi_n(X)$:

(1)
$$c_{p-2} = 2 - t \text{ et } c_p = 1 - t$$
.

Si m > 2, alors $\varphi(m)$ est pair. Donc $\Phi_m(-X)$ est de degré pair et donc unitaire.

Si m est impair ≥ 3 , alors

$$-e^{2i\pi/2m} = e^{2i\pi/2m + i\pi}$$
$$= e^{2i(\frac{m+1}{2})\pi/m}.$$

Comme $\frac{m+1}{2}$ et m sont premiers entre eux, $e^{2i(\frac{m+1}{2})\pi/m}$ est une racine de Φ_m . Donc $\Phi_m(-e^{2i\pi/2m})=0$.

Par conséquent, $\Phi_m(-X)$ est un multiple dde $\Phi_{2m}(X)$ dans $\mathbb{Q}[X]$, car $\Phi_{2m}(X)$ est le polynôme minimal sur \mathbb{Q} de $e^{2i\pi/2m}$. Comme de plus $\Phi_m(-X)$ et $\Phi_{2m}(X)$ sont unitaires de même degré $\varphi(m) = \varphi(2m)$, on a $\Phi_m(-X) = \Phi_{2m}(X)$.

Donc si $n=p_1...p_t$ avec $p_1,...,p_t=:p$ comme au début et $p_1\geq 3$, alors n est impair, $\Phi_n(-X)=\Phi_{2n}(X)$ et donc les coefficients de $\Phi_{2n}(X)$ devant X^{p-2} et X^p sont respectivement :

$$(2) t-2 et t-1.$$

Ainsi tout entier non nul (tout entier non nul est de la forme $\pm (t-1)$ ou $\pm (t-2)$ pour un t impair ≥ 3) peut apparaître comme coefficient d'un polynôme cyclotomique pour peu que la propriété suivante soit vérifiée :

 (\mathscr{P}) : pour tout t impair ≥ 3 , il existe des nombres premiers $3 \leq p_1 < ... < p_t$ tels que $p_1 + p_2 > p_t$.

Il se trouve que (\mathcal{P}) est vraie.

En effet, supposons par l'absurde que (\mathscr{P}) est fausse pour un certain $t \geq 3$ impair. Si $k \geq 2$ et si $2^{k-1} < p_1 < ... < p_t \leq 2^k$ sont des nombres premiers, alors :

$$p_1 + p_2 \le p_t \le 2^k < 2p_1$$
$$\Rightarrow p_2 < p_1$$

impossibile! Donc on aurait moins de t nombres premiers entre 2^{k-1} et 2^k . En particulier si on note $\pi(j)$ le nombre de nombre premiers entre 1 et j, on a :

$$\pi(2^k) \le 1 + \sum_{r=2}^k t = (k-1)t + 1$$

 $\le kt$.

Mais alors : $\pi(2^k) \leq kt$ pour tout $k \geq 2$. Cela est impossible car d'après le théorème de répartition des nombres premiers ou théorème fondamental de l'analyse :

$$\pi(n) \sim n/\log n$$

quand n tend vers l'infini (cf. par exemple Hlawka, Schoissengeier, Taschner, Geometric and analytic number theory, Springer university, 1991, th. 3, ch.5).

Fiche VIII, exo. 4:

Soit $t \in \mathbb{Q}\pi$. On suppose que $\cos t \in \mathbb{Q}$. Le polynôme $X^2 - 2\cos tX + 1 =$ $(X-e^{it})(X-e^{-it})$ est à coefficients rationnels et annule e^{it} . Donc e^{it} est de degré 1 ou 2 sur \mathbb{Q} . Or $t=2p\pi/q$ pour certains entiers p,q premiers entre eux. Donc e^{it} est une racine primitive q-ième de l'unité et par conséquent e^{it} est de degré $\varphi(q)$ sur Q. On a donc : $\varphi(q) = 1$ ou 2.

Or si $q = p_1^{\alpha_1} \dots p_r^{\alpha_r}$ est la décomposition de q en produits de nombres premiers $p_1 < ... < p_r$ avec $\alpha_1, ..., \alpha_r \ge 1$. Alors:

$$\varphi(q) = p_1^{\alpha_1 - 1}(p_1 - 1)...p_r^{\alpha_r - 1}(p_r - 1)$$

donc $\varphi(q) = 1, 2 \Rightarrow p_r \leq 3$ et donc q = 1, 2, 3, 4 ou 6.

ainsi : $\cos t = (\cos 2\pi p/q) = 0, \pm 1$ ou $\pm 1/2$.

Si $\sin t \in \mathbb{Q}$, alors $\sin t = \cos(\pi/2 - t)$ et comme $\pi/2 - t \in \mathbb{Q}\pi$, on a aussi $\sin t = 0, \pm 1 \text{ ou } \pm 1/2.$

Si $\tan t \in \mathbb{Q}$, alors $\cos(2t) = \frac{2}{\tan^2 t + 1} - 1 \in \mathbb{Q}$.

Donc:

$$\tan^2 t = 0$$
, $\frac{1}{1 \pm 1} - 1$, ou $\frac{1}{1 \pm 1/2} - 1$
 $\Rightarrow \tan t = 0$ ou ± 1

les autre solutions ne sont pas rationnelles.

Fiche IX exo.7 : Calcul de $\Phi_{15}(X)$:

$$\Phi_{15}(X) = \frac{(X^{15} - 1)(X - 1)}{(X^5 - 1)(X^3 - 1)}$$
$$= \frac{X^{10} + X^5 + 1}{X^2 + X + 1}$$
$$= X^8 - X^7 + X^5 - X^4 + X^3 - X + 1 .$$

Soit ζ une racine primitive n-ième de l'unité. Alors $\zeta + \zeta^{-1} \in \mathbb{Q}(\zeta) \cap \mathbb{R}$. De plus ζ est racine du polynôme $X^2 - (\zeta + \zeta^{-1})X + 1$. Donc ζ est de degré 1 ou 2 sur $\mathbb{Q}(\zeta + \zeta^{-1}) \subseteq \mathbb{Q}(\zeta) \cap \mathbb{R}$.

Si n > 2, alors $\zeta \notin \mathbb{R}$ donc ζ est de degré 2 sur $\mathbb{Q}(\zeta + \zeta^{-1})$. Comme

$$\mathbb{Q}(\zeta+\zeta^{-1})\subseteq\mathbb{Q}(\zeta+\zeta^{-1})\cap\mathbb{R}\subseteq\mathbb{Q}(\zeta)$$

on a forcément $\mathbb{Q}(\zeta + \zeta^{-1}) = \mathbb{Q}(\zeta) \cap \mathbb{R}$. De plus, $\zeta + \zeta^{-1}$ est de degré $\varphi(n)/2$ sur \mathbb{Q} .

Si par exemple $\zeta=e^{2i\pi/15},\,\zeta+\zeta^{-1}=2\cos(2\pi/15).$ Soit P(X) le polynôme minimal de $\zeta+\zeta^{-1}$ sur \mathbb{Q} . Alors P(X) est de degré $\varphi(n)/2$. La fraction rationnelle :

$$X^{\varphi(n)/2}P(X+X^{-1})$$

est en fait un polynôme rationnel unitaire de degré $\varphi(n)$ qui annule ζ . C'est donc forcément $\Phi_n(X)$:

$$\Phi_n(X) = X^{\varphi(n)/2} P(X + X^{-1})$$
.

Soit $Q(X):=X^4-X^3-4X^2+4X+1.$ On vérifie que $X^4Q(X+X^{-1})=\Phi_{15}(X).$ On a donc :

$$X^{4}P(X+X^{-1}) = X^{4}Q(X+X^{-1})$$

$$\Leftrightarrow Q = P .$$

Fiche VII, exo. 4:

Soit A un anneau factoriel (par exemple $A = \mathbb{Z}$ ou k[t]). Si $f = a_0 + ... + a_d X^d \in A[X]$, on pose c(f) := le contenu de A: c'est le pgcd des coefficients $a_0, ..., a_d$. C'est un élément de A défini à multiplication par un élément de A^{\times} près. On note K le corps des fractions de A.

Lemme 0.1

(i) f est irréductible dans A[X];

 \Leftrightarrow

(ii) f est irréductible dans K[X] et c(f) = 1 .

démo : Soient $f,g \in A[X]$. Alors c(fg) = c(f)c(g). En effet, soit $\gamma := c(f)c(g)$. On a :

$$c(fg) = c\left(\gamma \frac{f}{c(f)} \frac{g}{c(g)}\right) = \gamma c\left(\frac{f}{c(f)} \frac{g}{c(g)}\right)$$

il suffit donc de vérifier que $c\left(\frac{f}{c(f)}\frac{g}{c(g)}\right)=1$. Pour cela, on peut supposer que c(f)=c(g)=1. Montrons que c(fg)=1. On raisonne par l'absurde : si $c(fg)\neq 1$, alors il existe un élément irréductible p de A (si $A=\mathbb{Z}$: un nombre premier, si A=k[X], un polynôme irréductible) qui divise c(fg) i.e. qui divise tous les coefficients de fg. Mais alors dans l'anneau A/(p)[X], si on note \overline{f} et \overline{g} les classes de f,g mod p, on a :

$$\overline{f}\overline{g}=0\ .$$

Or, si p est irréductible, l'idéal (p) est premier donc l'anneau A/(p) est intégre et donc l'anneau A/(p)[X] aussi. par conséquent \overline{f} ou $\overline{g}=0$ i.e. f ou g a tous ses coefficients divisibles par p ce qui est impossible vu que c(f)=c(g)=1.

Supposons que $f \in A[X]$ est irréductible dans A[X]. En particulier, f n'est divisible par aucun élément irréductible de A. Donc c(f) = 1. Supposons que f = pq avec $p, q \in K[X]$. Alors, il existe $a, b \in A$ non nuls tels que $ap, bq \in A[X]$. On a alors :

$$abf = (ap)(bq)$$

$$\Rightarrow ab = c(ap)c(bq)$$

$$\Rightarrow f = pq = \frac{ap}{c(ap)} \frac{bq}{c(bq)}$$

et donc comme f est irréductible dans A[X], $\frac{ap}{c(ap)}$ ou $\frac{bq}{c(bq)}$ est inversible dans A[X]. D'où p ou q inversible dans K[X]. On a donc bien f irréductible sur K. Réciproquement, si $f \in A[X]$ est irréductible sur K et si c(f) = 1, alors si f = pq avec $p, q \in A[X]$ alors p ou q est inversible dans K[X]. Donc p ou q est constant. Par exemple si p est constant, alors $p \in A$ et p|c(f). Or c(f) = 1 donc $p \in A^{\times}$.

Soit k un corps. Soit $f \in k(T)$ une fraction rationnelle non constante. Soient $P, Q \in k[T]$ deux polynômes premiers entre eux tels que f = P/Q. Montrons que

$$[k(T):k(f)] = \max\{\deg P,\deg Q\} \ .$$

En effet, le polynôme :

$$F(X) := fQ(X) - P(X) \in k(f)[X]$$

est un polynôme non nul qui annule T.

Donc, comme k(T) = k(f)(T), T est de degré \leq deg F sur k(f). En particulier l'extension $k(f) \subseteq k(T)$ est algébrique. Le degré de F est max deg P, deg Q.

Démontrons que F(X) est irréductible sur k(f). On remarque que

$$k[Y] \to k[f]$$
 , $Y \mapsto f$

est un isomorphisme d'algèbres (car f est non constante). Cet isomorphisme se prolonge en un isomorphisme de corps : $k(f) \simeq k(Y)$. Il s'agit donc de montrer que $\tilde{F}(X) := YQ(X) - P(X)$ est irréductible sur k(Y). Il suffit de montrer que le polynôme \tilde{F} est irréductible sur k[Y] i.e. dans k[Y][X] = k[X,Y] = k[X][Y]. Or, vu comme polynôme en la variable Y et à coefficients dans k[X], le polynôme $\tilde{F}(X,Y)$ est de degré 1 donc irréductible dans

k(X)[Y] et son contenu est $c(\tilde{F}) = 1$ car ses « coefficients » sont P(X) et Q(X) qui sont premiers entre eux. Donc \tilde{F} est irréductible dans k[X,Y] donc dans k(Y)[X]. Ainsi, F est irréductible sur k(f).

Soit $k = \mathbb{F}_q$ le corps fini à q éléments. Alors on sait que $q = p^r$ pour un certain nombre premier p et un certain $r \ge 1$.

certain nombre premier
$$p$$
 et un certain $r \ge 1$.
On a $|\operatorname{PGL}_2(k)| = \frac{|\operatorname{GL}_2(k)|}{|k^{\times}|} = \frac{(q^2-1)(q^2-q)}{q-1} = q^3 - q$.

Si
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(k)$$
, on pose $h_g(t) := \frac{at+b}{ct+d}$.

On remarque que si
$$g' = g \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
, alors $h_{g'} = h_g$.

Donc on peut définir sans ambiguïté h_g pour une classe $g \in \mathrm{PGL}_2(k)$.

On remarque que:

$$h_g(h'_g(t)) = h_{gg'}(t)$$

pour tous $g, g' \in \operatorname{PGL}_2(k)$. En particulier :

$$h_g(h_{q^{-1}}(t)) = t$$
.

De plus, si
$$g=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PGL}_2(k)$$
, on a $k(h_g(t))=k(t)$ En effet, $k(h_g(t))\subseteq k(t)$ et

$$[k(t): k(h_g(t))] = \max\{\deg(at+b), \deg(ct+d)\} = 1$$
.

Réciproquement, si $f \in k(t)$ est telle que k(t) = k(f), alors f est non constante et le numérateur et le dénominateur de f sont de degré ≤ 1 . Donc il exite $g \in \mathrm{PGL}_2(k)$ tel que $f = h_q$.

Soit:

$$\Phi: \mathrm{PGL}_2(k) \to \mathrm{Aut}_k(k(t)) \ , \ g \mapsto \sigma_{g^{-1}}$$

où pour tout $g \in \mathrm{PGL}_2(k)$, $\sigma_g : k(t) \to k(t)$ est l'automorphisme qui laisse fixes les éléments de k et qui envoie t sur $h_g(t)$.

L'application Φ est un isomorphisme de groupes. D'après ce qui précède,

il ne reste plus qu'à montrer l'injectivité. Or, si $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PGL_2(k)$

vérifie $\sigma_g = \mathrm{Id}_{k(t)},$ alors $\sigma_g(t) = h_g(t) = t$ d'où :

$$\frac{at+b}{ct+d} = t$$

$$\Leftrightarrow at + b = ct^2 + dt$$
$$\Leftrightarrow a = d \text{ et } b = c = 0$$

et g est une homothétie (i.e. g = 1 dans $PGL_2(k)$).

Comme k est un corps, on sait (grâce à la méthode du pivot de Gauss) que $GL_2(k)$ est engendré par les matrices :

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ c & 1 \end{array}\right), \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right)$$

pour $a \in k^{\times}, b, c \in k$.

Or, on a:

$$\begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} .$$

donc le groupe $GL_2(k)$ est engendré par les matrices :

$$\left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

 $b \in k, a \in k^{\times}$

Les automorphismes correspondants de k(t) sont (respectivement) les changements de variables :

$$t \mapsto t + b$$
, $t \mapsto at$, $t \mapsto t^{-1}$.

Ces automorphismes engendrent donc le groupe $Aut_k(k(t))$.

Donc si on pose $G := Aut_k(k(t))$, on a:

$$[k(t):k(t)^G] = |G| = q^3 - q$$
.

Or, $f:=\frac{(t^{q^2}-t)^{q+1}}{(t^q-t)^{q^2+1}}$ est invariante par les changements de variables $t\mapsto t+b$, $t\mapsto at$ et $t\mapsto t^{-1}$ comme de simples calculs le démontrent. Donc $f\in k(t)^G$. Or,

$$t^{q^2} - t = t^{q^2} - t^q + t^q - t$$
$$= (t^q - t)^q + t^q - t$$
$$= (t^q - t)((t^q - t)^{q-1} + 1)$$

donc on a:

$$f = \frac{(t^q - t)^{q+1}((t^q - t)^{q-1} + 1)^{q+1}}{(t^q - t)^{q+1}}$$
$$= \frac{((t^q - t)^{q-1} + 1)^{q+1}}{(t^q - t)^{q^2 - q}}.$$

La fraction est sous-forme irréductible donc :

$$[k(t):k(f)] = \max\{(q+1)(q^2-q), q(q^2-q)\} = q^3-q.$$

On a donc :

$$k(f) \subseteq k(t)^G \subseteq k(t)$$

et:

$$k(t): k(t)^G] = [k(t): k(f)] = q^3 - q$$

ce qui entraı̂ne que :

$$k(f) = k(t)^G .$$