Feuille 4 Applications linéaires et matrices

Exercice 1.

Soit $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans les base canonique de \mathbb{R}^4 et \mathbb{R}^3 est

$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -5 \end{pmatrix}$$

- 1. Déterminer une base du noyau de f.
- 2. Déterminer une base de l'image de f. Quel est le rang de A?

Exercice 2.

Déterminer le rang de la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Exercice 3.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est :

$$A = \begin{pmatrix} 1 & 4 & 4 \\ -1 & -3 & -3 \\ 0 & 2 & 3 \end{pmatrix}$$

Soient $a = e_1 - e_2 + e_3$, $b = 2e_1 - e_2 + e_3$ et $c = 2e_1 - 2e_2 + e_3$ trois vecteurs de \mathbb{R}^3

- 1. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 2. Déterminer la matrice de passage P de β à β' . Calculer P^{-1} .
- 3. Déterminer la matrice R de u dans la base β' .

4.

- a) Calculer $P^{-1}AP$ en fonction de R
- b) Calculer R^4
- c) En déduire les valeurs de A^{4n} .

Exercice 4.

Soit $\beta = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Soit u une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par :

$$u(e_1) = -3e_1 + 2e_2 - 4e_3$$

$$u(e_2) = e_1 - e_2 + 2e_3$$

$$u(e_3) = 4e_1 - 2e_2 + 5e_3$$

- 1. Déterminer la matrice de u dans la base canonique.
- 2. Montrer que $E = \{x \in \mathbb{R}^3, u(x) = x\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Montrer que la dimension de E est 1 et donner un vecteur non nul a de E.
- 3. Montrer que $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3, -2x_1 + 2x_2 + 3x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Donner une base (b, c) de F.
- 4. Montrer que $\beta' = (a, b, u(b))$ est une base de \mathbb{R}^3 .

- 5. Montrer que $E \oplus F = \mathbb{R}^3$.
- 6. Déterminer la matrice R de u dans la base β' .

Exercice 5.

Soit u l'endomorphisme de \mathbb{R}^3 défini pour tout $x=(x_1,x_2,x_3)$ par

$$u(x) = (-10x_1 + 3x_2 + 15x_3, -2x_1 + 3x_3, -6x_1 + 2x_2 + 9x_3)$$

- 1. Déterminer la matrice A de u dans la base canonique de \mathbb{R}^3 .
- 2. Déterminer la dimension du novau et de l'image de u. On donnera un vecteur directeur a de ker(u).
- 3. A-t-on $\ker(u) \oplus Im(u) = \mathbb{R}^3$?
- 4. Déterminer un vecteur b tel que a = u(b).
- 5. Montrer que $E_{-1} = \{x \in \mathbb{R}^3, u(x) = -x\}$ est un sous-espace vectoriel de \mathbb{R}^3 , déterminer un vecteur directeur de E_{-1} que l'on notera c.
- 6. Montrer que $\beta' = (a, b, c)$ est une base de \mathbb{R}^3 .
- 7. Déterminer la matrice A' de u dans la base β' et donner la relation reliant A et A'.

Exercice 6.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit $\beta = (e_1, e_2, e_3, e_4)$ in once can be soit β . Soit β l'endomorphisme de \mathbb{R}^4 dont la matrice par rapport à la base β est : $A = \begin{pmatrix} -6 & -3 & 0 & 0 \\ 6 & 3 & 0 & -6 \\ 0 & 0 & -3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

Soit $\beta' = (a, b, c, d)$ une famille de \mathbb{R}^4 définie par :

$$a = e_1 - e_2$$
, $b = e_1 - e_2 - e_3$, $c = 2e_1 - 2e_2 + e_3 + e_4$ et $d = -e_1 + 2e_2$

- 1. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 2. Calculer f(a), f(b), f(c) et f(d) et les exprimer dans la base $\beta' = (a, b, c, d)$.
- 3. Déterminer la matrice de f dans la base β' .

Exercice 7.

Soit $\mathbb{R}_2[X] = \{a_0 + a_1X + a_2X^2, a_i \in \mathbb{R}\}$ l'espace des polynômes réels de degré au plus 2 et soit $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$? On considère l'application

$$f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$$

 $P \mapsto (X+1)P'$

- 1. Montrer que *f* est linéaire.
- 2. Montrer que la matrice A de f par rapport aux bases \mathcal{B} et \mathcal{B} est :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

- 3. Montrer que $\mathcal{B}' = (1, X + 1, (X + 1)^2)$ est une base de $\mathbb{R}_2[X]$.
- 4. Trouver la matrice B de f par rapport aux bases \mathcal{B}' et \mathcal{B}' .
- 5. Calculer A^2 , A^3 et B^k pour tout $k \in \mathbb{N}$.
- 6. Déterminer le rang de f.
- 7. Trouver une base de l'image de f.
- 8. Trouver une base de noyau de f.

Exercice 8.

Soit $u: \mathbb{R}_2[X] \to \mathbb{R}[X]$, l'application définie pour tout polynôme de $\mathbb{R}_2[X]$ par :

$$u(P) = 2P - (X-1)P'$$

2

Soit $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$.

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.
- 2. Déterminer la matrice A de u dans β .
- 3. Déterminer le noyau de u. On notera P_2 un vecteur directeur du noyau.
- 4. Donner une base de l'image de u.
- 5. Déterminer un polynôme P_1 tel que $u(P_1) = P_1$
- 6. Montrer que $\beta' = (1, P_1, P_2)$ est une base de $\mathbb{R}_2[X]$.
- 7. Déterminer la matrice D de u dans la base β' .

Exercice 9.

Soit $f: \mathbb{R}_2[X] \to \mathbb{R}[X]$ définie par f(P) = P - (X - 2)P'

- 1. Montrer que f est une application linéaire
- 2. Montrer que f est un endomorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer le noyau et l'image de f.
- 4. Déterminer la matrice de f dans la base $(1, X, X^2)$.
- 5. Montrer que $\beta' = (1, X 2, (X 2)^2)$ est une base de $\mathbb{R}_2[X]$.
- 6. Déterminer la matrice de passage P de β à β' . Calculer P^{-1} .
- 7. Quelle est la matrice de f dans la base β' .

Exercice 10.

Soit $u : \mathbb{R}_2[X] \to \mathbb{R}[X]$ une application définie pour tout $P \in \mathbb{R}_2[X]$ par

$$u(P) = P + (1 - X)P' + 2P''$$

On appelle $P_1 = 1 - X$, $P_2 = 1$ et $P_3 = 1 + 2X - X^2$

On appelle $\beta = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$ et $\beta' = (P_1, P_2, P_3)$

- 1. Montrer que *u* est une application linéaire.
- 2. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$.
- 3. Déterminer la matrice A de u dans la base canonique.
- 4. Montrer que β' est une base de $\mathbb{R}_2[X]$.
- 5. Déterminer la matrice D de u dans la base β' .

Exercice 11.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base β est :

$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ -3 & 1 & 0 & -2 \end{pmatrix}$$

- 1. Déterminer un vecteur a qui engendre le noyau de u.
- 2. Soit $\lambda \in \mathbb{R}$. Montrer que $E_{\lambda} = \{x \in \mathbb{R}^4, u(x) = \lambda x\}$ est un sous-espace vectoriel de \mathbb{R}^4 .
- 3. Trouver un vecteur directeur b de E_{-1} . Déterminer une base (c, d) de E_1 .
- 4. Montrer que $\beta' = (a, b, c, d)$ est une base de \mathbb{R}^4 .
- 5. Déterminer la matrice de u dans la base β' .

Exercice 12.

Soit $\beta = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 .

Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est :

$$A = Mat_{\beta}(u) = \begin{pmatrix} -1 & 2 & -2 & -2 \\ -2 & 3 & -2 & -2 \\ -2 & 2 & -1 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

On pose $a_1 = e_1 + 2e_2 + 3e_3 - 2e_4$, $a_2 = e_2 + e_3$, $a_3 = e_1 + 3e_2 + 5e_3 - 3e_4$ et $c = -e_1 - e_2 - e_3$ On pose $F = Vect(a_1, a_2, a_3)$.

- 1. Montrer que $\beta' = (a_1, a_2, a_3, c)$ est une base de \mathbb{R}^4 et donner la matrice P de passage de β à β' .
- 2. Déterminer la matrice D de u dans la base β' .
- 3. Montrer que pour tout $x \in F$, $u(x) \in F$ en déduire que $v: F \to F$ définie par v(x) = u(x) est un endomorphisme de F, déterminer la matrice de v dans la base $\beta_a = (a_1, a_2, a_3)$.
- 4. Montrer que $\mathbb{R}^4 = F \oplus Vect(c)$.
- 5. Montrer que pour tout $x \in \mathbb{R}^4$ il existe un unique couple de vecteurs $(f, g) \in F \times Vect(c)$ tels que : x = f + g, calculer u(x).

Exercice 13.

Soit $\beta=(e_1,e_2,e_3)$ la base canonique de \mathbb{R}^3 . On considère l'application linéaire f définie par $f(e_1)=2e_2+3e_3; f(e_2)=2e_1-5e_2-8e_3; f(e_3)=-e_1+4e_2+6e_3$

On note $f^2 = f \circ f$.

- 1. Déterminer la matrice de f dans β .
- 2. Montrer que $E_1 = \ker(f id_{\mathbb{R}^3})$ et que $N_{-1} = \ker(f^2 + id_{\mathbb{R}^3})$ sont des sous-espaces vectoriels de \mathbb{R}^3 .
- 3. Déterminer a, b deux vecteurs tels que $E_1 = Vect(a)$ et $N_{-1} = Vect(b, f(b))$. A-t-on $E_1 \oplus N_{-1} = \mathbb{R}^3$?
- 4. Montrer que $\beta' = (a, b, f(b))$ est une base de \mathbb{R}^3 .
- 5. On appelle $\beta' = (a, b, f(b))$, quelle est la matrice de f dans β' .
- 6. Quelle est la matrice de f^2 dans β'

Exercice 14.

Partie I

Soit g une application de $\mathbb{R}_3[X]$ dans \mathbb{R}^2 définie par :

$$g(P) = (P(-1), P(1))$$

- 1. Montrer que g est une application linéaire.
- 2. Déterminer une base du noyau et déterminer l'image de g.

Partie II

Soit h une application linéaire de $\mathbb{R}_1[X]$ dans \mathbb{R}^2 définie par :

$$h(P) = (P(-1), P(1))$$

3. Montrer que *h* est bijective.