

FONDAMENTAUX DES MATHÉMATIQUES II

2019-2020

EXERCICES D'ENTRAÎNEMENT SUR LES MATRICES ET LES FONCTIONS TRIGONOMÉTRIQUES RÉCIPROQUES

		$\sqrt{-3}$	0	1	$\binom{2}{}$	
Question 1	Le produit de matrices	$\begin{pmatrix} 0 \\ 5 \end{pmatrix}$	$\begin{array}{c} 2 \\ -1 \end{array}$	$\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\begin{pmatrix} 7 \\ -3 \end{pmatrix}$	vaut

Question 2 Le produit de matrices $\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -2 & 0 \\ 4 & 1 \end{pmatrix}$ vaut

Question 3 Le produit de matrices $\begin{pmatrix} 5 & 0 & 1 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ vaut

$$\square$$
 $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

Le produit de matrices $\begin{pmatrix} -1 & 0 & 2 \end{pmatrix}$ vaut Question 4

$$\begin{bmatrix}
 -5 & -3 & -1 \\
 0 & 0 & 0 \\
 10 & 6 & 2
 \end{bmatrix}$$

$$\begin{bmatrix}
 -5 & -3 & -1 \\
 0 & 0 & 0 \\
 10 & 6 & 2
 \end{bmatrix}$$

$$\begin{bmatrix}
 -5 & -3 & -1 \\
 0 & 0 & 0 \\
 10 & 0 & 2
 \end{bmatrix}$$

$$\begin{bmatrix}
 -5 & 0 & 2
 \end{bmatrix}$$

Question 5 Le produit de matrices $\begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 3 & -1 \end{pmatrix}$ vaut

Question 6 Le produit de matrices $\begin{pmatrix} 1 & -3 & 2 \\ 5 & 7 & -2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ -2 & 0 \\ 4 & 1 \end{pmatrix}$ vaut

$$\square \quad \begin{pmatrix} 15 & 4 \\ -5 & 8 \\ 0 & 0 \end{pmatrix} \qquad \square \quad \underset{impossible}{\text{produit}} \qquad \qquad \square \quad \begin{pmatrix} 15 & 4 & -2 \\ -5 & 8 & 2 \end{pmatrix} \qquad \qquad \square \quad \begin{pmatrix} 17 & 4 \\ -7 & 8 \end{pmatrix}$$

Question 7 Le produit de matrices $\begin{pmatrix} 2 & -2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 2 & 7 \\ 1 & 0 & -2 \end{pmatrix}$ vaut

$$\square \begin{pmatrix} 4 & 4 & 18 \\ 13 & 6 & 13 \end{pmatrix} \qquad \square \begin{pmatrix} 5 & 10 & 16 \\ 4 & 0 & -8 \end{pmatrix} \qquad \square \text{ produit impossible} \qquad \square \begin{pmatrix} 6 & 1 \\ 10 & -5 \\ 14 & -15 \end{pmatrix}$$

Question 8 Le produit de matrices $\begin{pmatrix} 7 \\ -1 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 1 & 3 & 0 \end{pmatrix}$ vaut

Question 9 Le produit de matrices $\begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 5 & 2 \end{pmatrix}$ vaut

Question 10 Le produit de matrices $\begin{pmatrix} 2 & 3 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ -3 & 1 \end{pmatrix}$ vaut

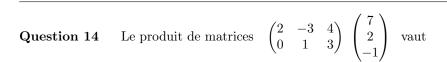
Le produit de matrices $\begin{pmatrix} 2 & -2 & 1 \\ 3 & 4 & -7 \end{pmatrix} \begin{pmatrix} 3 & 2 & 7 \\ 1 & 0 & -2 \end{pmatrix}$ vaut

Le produit de matrices $\begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} -3 & 2 \\ 1 & -1 \\ 2 & 1 \end{pmatrix}$ vaut Question 12

$$\square \begin{pmatrix} 2 & 2 & 3 \\ 4 & -3 & 0 \\ 0 & 9 & -1 \end{pmatrix} \qquad \square \text{ produit} \qquad \square \begin{pmatrix} 4 & 6 \\ -1 & -3 \end{pmatrix} \qquad \square \begin{pmatrix} -3 & 0 & 2 \\ -4 & 1 & -1 \end{pmatrix}$$

Question 13 Le produit de matrices $\begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 7 & -2 & 1 \\ 0 & 3 & -1 \end{pmatrix}$ vaut

$$\begin{bmatrix}
 14 & 1 & 1 \\
 7 & 5 & 4 \\
 35 & 10 & 5
 \end{bmatrix}$$



$$\square \begin{pmatrix} 14 & -6 & -4 \\ 0 & 2 & -3 \end{pmatrix} \qquad \square \text{ produit impossible} \qquad \square \begin{pmatrix} 4 \\ -1 \end{pmatrix} \qquad \square \begin{pmatrix} 14 & 0 \\ -6 & 2 \\ -4 & -3 \end{pmatrix}$$

$$\begin{bmatrix}
 14 & 0 \\
 -6 & 2 \\
 -4 & -3
 \end{bmatrix}$$

Question 15 Le produit de matrices $\begin{pmatrix} 7 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$ vaut

$$\Box$$
 (4)

Question 16 Le produit de matrices $\begin{pmatrix} 1 & 2 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 0 \\ 1 & 5 \end{pmatrix}$ vaut

$$\square \begin{pmatrix} 2 & 11 \\ 2 & 4 \\ -4 & 27 \end{pmatrix} \qquad \square \quad \text{produit} \\ \text{impossible} \qquad \qquad \square \begin{pmatrix} 5 & 2 \\ 2 & -2 \\ 11 & 26 \end{pmatrix} \qquad \square \begin{pmatrix} 5 & 2 & 11 \\ 2 & -2 & 26 \end{pmatrix}$$

Le produit de matrices $\begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 1 \\ -1 & 0 & 2 \end{pmatrix}$ vaut Question 17

$$\square \begin{pmatrix} -5 & 10 \\ -5 & 15 \\ 3 & 1 \end{pmatrix} \qquad \square \begin{pmatrix} -5 & -5 & 3 \\ 10 & 15 & 1 \end{pmatrix} \qquad \square \begin{pmatrix} -6 & -5 & 5 \\ 7 & 10 & 0 \end{pmatrix} \qquad \square \text{ produit impossi}$$

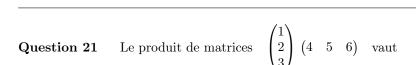
Question 18 Le produit de matrices $\begin{pmatrix} -1\\0\\2 \end{pmatrix}$ (5 3 1) vaut

$$\square \begin{pmatrix}
-5 & -3 & -1 \\
0 & 0 & 0 \\
10 & 6 & 2
\end{pmatrix} \qquad \square \begin{pmatrix}
-5 \\
0 \\
2
\end{pmatrix} \qquad \square \text{ produit impossible}$$

Question 19 Le produit de matrices $\begin{pmatrix} 5 & -3 & 1 \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ vaut

$$\square$$
 $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$

Question 20 Le produit de matrices $\begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & -2 \\ -3 & 1 \end{pmatrix}$ vaut



Question 22 Le produit de matrices $\begin{pmatrix} 2 & -1 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 5 & 7 \\ 1 & 0 & -2 \end{pmatrix}$ vaut

(32)

Question 23 Le produit de matrices $\begin{pmatrix} 5 & 3 & 1 \\ -1 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ vaut

Question 24 Le produit de matrices $\begin{pmatrix} -1\\2\\-3 \end{pmatrix} \begin{pmatrix} 5&0\\1&7\\2&3 \end{pmatrix}$ vaut

L'inverse de la matrice $\begin{pmatrix} 5 & 3 \\ 3 & 2 \end{pmatrix}$ est la matrice Question 25

- $\square \text{ l'inverse } \qquad \square \quad \begin{pmatrix} -2 & -3 \\ -3 & -5 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -5 & 3 \\ 3 & -2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$ est la matrice Question 26

- $\square \quad \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} \qquad \square$
- l'inverse

L'inverse de la matrice $\begin{pmatrix} 12 & 6 \\ 6 & 3 \end{pmatrix}$ est la matrice Question 27

- \square l'inverse \square $\begin{pmatrix} 1 & -3 \\ -3 & 6 \end{pmatrix}$ \square $\begin{pmatrix} -12 & 6 \\ 6 & -3 \end{pmatrix}$ \square $\begin{pmatrix} 3 & -6 \\ -6 & 12 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 6 & 3 \\ 5 & 2 \end{pmatrix}$ est la matrice Question 28

$$\square \quad \begin{pmatrix} -2 & 1 \\ 5/3 & -2/3 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -2/3 & 1 \\ 5/3 & -2 \end{pmatrix} \qquad \square \quad \text{l'inverse} \\ \text{n'existe pas} \qquad \square \quad \begin{pmatrix} 2/3 & -1 \\ -5/3 & 2 \end{pmatrix}$$

Question 29 L'inverse de la matrice $\begin{pmatrix} 1 & 8 \\ 0 & 2 \end{pmatrix}$ est la matrice

Question 30 L'inverse de la matrice $\begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}$ est la matrice

$$\square \quad \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$$

L'inverse de la matrice $\begin{pmatrix} 0 & 2 \\ 1 & 6 \end{pmatrix}$ est la matrice Question 31

L'inverse de la matrice $\begin{pmatrix} 4 & 8 \\ 2 & 4 \end{pmatrix}$ est la matrice Question 32

L'inverse de la matrice $\begin{pmatrix} -3 & 2 \\ -2 & 1 \end{pmatrix}$ est la matrice Question 33

L'inverse de la matrice $\begin{pmatrix} -3 & -5 \\ 2 & 3 \end{pmatrix}$ est la matrice Question 34

$$\square \quad \begin{pmatrix} 3 & 5 \\ -2 & -3 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -3 & 5 \\ -2 & 3 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 3 & -5 \\ 2 & -3 \end{pmatrix} \qquad \square \quad \stackrel{\text{l'inverse}}{\text{n'existe}}$$

Question 35 L'inverse de la matrice $\begin{pmatrix} 9 & 1 \\ 3 & 0 \end{pmatrix}$ est la matrice

$$\square \begin{pmatrix} -3 & 1/3 \\ 1 & 0 \end{pmatrix} \qquad \square \qquad \begin{array}{c} \text{l'inverse} \\ \text{n'existe pas} \end{array} \qquad \square \quad \begin{pmatrix} 0 & 1/3 \\ 1 & -3 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 0 & -1 \\ -1/3 & 3 \end{pmatrix}$$



- l'inverse \Box $\begin{pmatrix} -1 & 3 \\ 2 & -5 \end{pmatrix}$ \Box $\begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$ \Box $\begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 2 & 3 \\ 4 & 6 \end{pmatrix}$ est la matrice Question 37

- $\square \quad \begin{pmatrix} 6 & -3 \\ -4 & 2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} -6 & 3 \\ 4 & -2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 2 & 4 \\ 3 & 6 \end{pmatrix}$

L'inverse de la matrice $\begin{pmatrix} 5 & 2 \\ 8 & 3 \end{pmatrix}$ est la matrice Question 38

L'inverse de la matrice $\begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix}$ est la matrice Question 39

- $\square \begin{pmatrix} 1 & 1 \\ 3 & 2 \end{pmatrix} \qquad \square \begin{pmatrix} 1 & -1 \\ -3 & 2 \end{pmatrix} \qquad \square \begin{pmatrix} 2 & 1 \\ 3 & 1 \end{pmatrix} \qquad \square$
- l'inverse n'existe pas

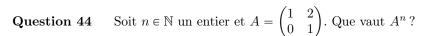
L'inverse de la matrice $\begin{pmatrix} 7 & 3 \\ 4 & 2 \end{pmatrix}$ est la matrice Question 40

- $\square \quad \begin{pmatrix} 1 & -3/2 \\ -2 & 7/2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 1 & -2 \\ -3/2 & 7/2 \end{pmatrix} \qquad \square \quad \begin{pmatrix} 7/2 & -3/2 \\ -2 & 1 \end{pmatrix} \qquad \square \quad \text{l'inverse n'existe pas}$

L'inverse de la matrice $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ est la matrice Question 41

L'inverse de la matrice $\begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix}$ est la matrice Question 42

Soit $n \in \mathbb{N}$ et $A = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$. Que vaut A^n ? Question 43



$$\Box A^n = \begin{pmatrix} 1 & 2n \\ 0 & 1 \end{pmatrix} \qquad \Box A^n = \begin{pmatrix} 1 & 2n^2 \\ 0 & 1 \end{pmatrix} \qquad \Box A^n = \begin{pmatrix} 1 & 0 \\ 2n & 1 \end{pmatrix} \qquad \Box A^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Box A^n = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Question 45 Soit $n \in \mathbb{N}$ un entier et $A = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$. Que vaut A^n ?

$$\Box A^{n} = \begin{pmatrix} (-1)^{n} & n(-1)^{n} \\ 0 & (-1)^{n} \end{pmatrix} \qquad \Box A^{n} = \begin{pmatrix} (-1)^{n} & n(-1)^{n-1} \\ 0 & (-1)^{n} \end{pmatrix} \qquad \Box A^{n} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Box A^{n} = \begin{pmatrix} (-1)^{n} & 0 \\ n(-1)^{n-1} & (-1)^{n} \end{pmatrix} \qquad \Box A^{n} = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

Question 46 Soit $n \in \mathbb{N}$ un entier et $A = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$. Que vaut A^n ?

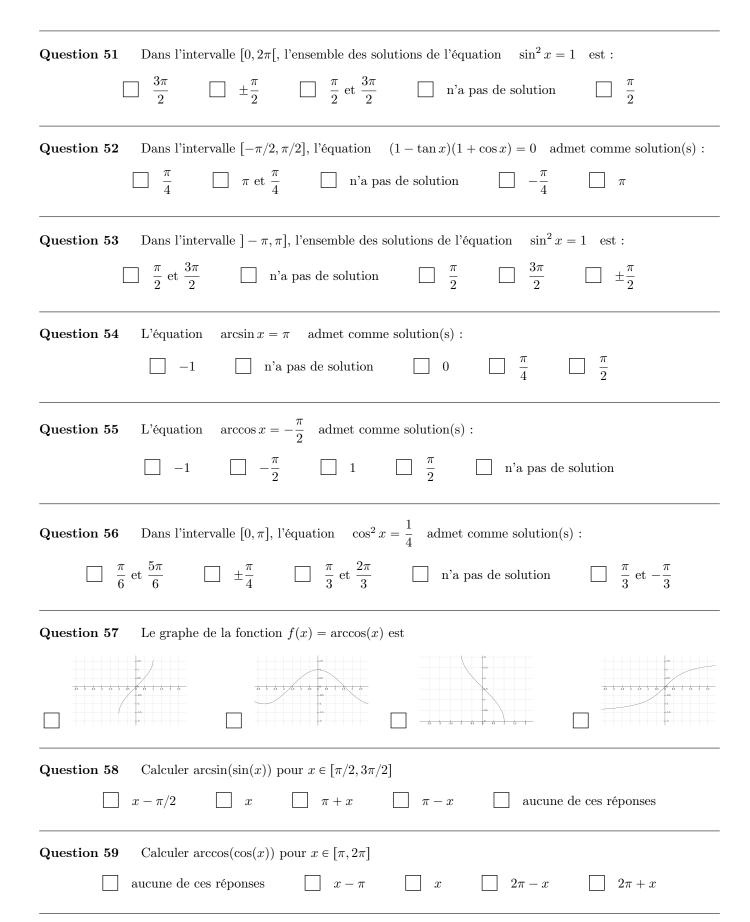
Question 47 Soit $n \in \mathbb{N}$ un entier et $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Que vaut A^n ?

Question 48 Soit $n \ge 3$ un entier et $A = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$. Que vaut A^n ?

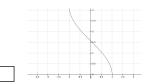
Question 49 Soit $n \in \mathbb{N}$ et $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. Que vaut A^n ?

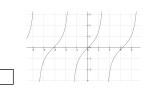
Question 50 L'équation $\arctan x = \frac{\pi}{2}$ admet comme solution(s) :

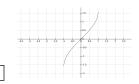
$$\frac{\pi}{4}$$
 $\frac{\pi}{2}$ $\frac{\pi}{2}$ n'a pas de solution 0 1

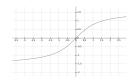


Question 60 Le graphe de la fonction $f(x) = \arctan(x)$ est









Calculer $f(x) = \arctan(x) + \arctan(1/x)$ pour x > 0. Indication : on pourra dériver f. Question 61

- $\arctan(x+1/x)$
- 0
- aucune de ces réponses
- $\pi/2$

Soit $f(x) = \arccos(1 - 2x^2)$ pour $x \in]-1,0[$. Calculer f'(x). Question 62

Question 63

- aucune de ces réponses
- arctan $(x^2 + 1/x^2)$

Calculer $f(x) = \arctan(x^2) + \arctan(1/x^2)$ pour $x \neq 0$. Indication : on pourra dériver f.

- $\pi/2$

Calculer $\arctan(\tan(x))$ pour $x \in]\pi/2, 3\pi/2[$ Question 64

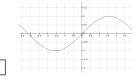
- $x-\pi/2$
- aucune de ces réponses

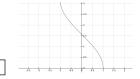
Question 65 Soit $f(x) = \arcsin(1/x)$ pour x < -1. Calculer f'(x).

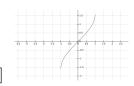
- $f'(x) = \frac{-1}{x\sqrt{x^2 1}}$

 $f'(x) = \frac{x}{\sqrt{1-x^2}}$ aucune de ces réponses $\int f'(x) = \frac{1}{x\sqrt{x^2-1}}$

Le graphe de la fonction $f(x) = \arcsin(x)$ est Question 66





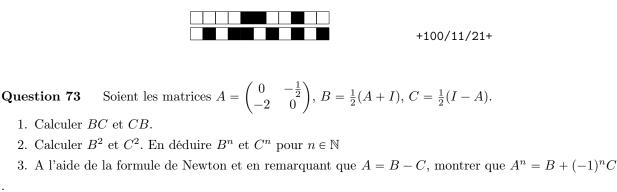


Soient les matrices $A = \begin{pmatrix} 0 & -2 \\ -\frac{1}{2} & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 67

- 1. Calculer BC et CB.
- 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$
- 3. A l'aide de la formule de Newton et en remarquant que A = B C, montrer que $A^n = B + (-1)^n C$

3.5 4.5 5 5.5 6 6.5 7 7.5 8

Soient les matrices $A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 68 1. Calculer BC et CB. 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$ 3. A l'aide de la formule de Newton et en remarquant que A = B - C, montrer que $A^n = B + (-1)^n C$ 4.5 5.5 6 6.5 7 7.5 3.5 5 Soient les matrices $A = \begin{pmatrix} 0 & \frac{1}{4} \\ 4 & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 69 1. Calculer BC et CB. 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$ 3. A l'aide de la formule de Newton et en remarquant que A = B - C, montrer que $A^n = B + (-1)^n C$ 3.5 4.55 5.5 6 | 6.5 | 7 | 7.5 Soient les matrices $A = \begin{pmatrix} 0 & 2 \\ \frac{1}{2} & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 70 1. Calculer BC et CB. 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$ 3. A l'aide de la formule de Newton et en remarquant que A = B - C, montrer que $A^n = B + (-1)^n C$ 4.55 5.5 6 6.5Soient les matrices $A = \begin{pmatrix} 0 & 3 \\ \frac{1}{3} & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 71 1. Calculer BC et CB. 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$ 3. A l'aide de la formule de Newton et en remarquant que A = B - C, montrer que $A^n = B + (-1)^n C$ |4.5|Soient les matrices $A = \begin{pmatrix} 0 & \frac{1}{2} \\ 2 & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 72 1. Calculer BC et CB. 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$ 3. A l'aide de la formule de Newton et en remarquant que A = B - C, montrer que $A^n = B + (-1)^n C$ 3.5 |4.5|5.5 6.57.5



Soient les matrices $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 74

- 1. Calculer BC et CB.
- 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$
- 3. A l'aide de la formule de Newton et en remarquant que A = B C, montrer que $A^n = B + (-1)^n C$

Soient les matrices $A = \begin{pmatrix} 0 & 4 \\ \frac{1}{4} & 0 \end{pmatrix}$, $B = \frac{1}{2}(A+I)$, $C = \frac{1}{2}(I-A)$. Question 75

- 1. Calculer BC et CB.
- 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$
- 3. A l'aide de la formule de Newton et en remarquant que A = B C, montrer que $A^n = B + (-1)^n C$

Soient les matrices $A = \begin{pmatrix} 0 & \frac{1}{3} \\ 3 & 0 \end{pmatrix}, B = \frac{1}{2}(A+I), C = \frac{1}{2}(I-A).$ Question 76

- 1. Calculer BC et CB.
- 2. Calculer B^2 et C^2 . En déduire B^n et C^n pour $n \in \mathbb{N}$
- 3. A l'aide de la formule de Newton et en remarquant que A = B C, montrer que $A^n = B + (-1)^n C$

