Chapitre V Fonctions arcsin, arccos, arctan

1 Définitions

1.1 arcsin

Proposition 1.1 La fonction sin : $[-\pi/2, \pi/2] \rightarrow [-1, 1]$ est une bijection.

On note $\arcsin: [-1,1] \to [-\pi/2,\pi/2]$ la fonction réciproque i.e. si $-1 \le x \le 1$, alors $y = \arcsin x \Leftrightarrow \sin y = x$ ET $-\pi/2 \le x \le \pi/2$. Par exemple, $\arcsin(\frac{\sqrt{3}}{2}) \ne 2\pi/3$ mais $=\pi/3$.

Démonstration de la proposition : $\forall -\pi/2 \le x \le \pi/2$, $\sin' x = \cos x \ge 0$, > 0 si $-\pi/2 < x < \pi/2$. Donc sin est strictement croissante sur $[-\pi/2, \pi/2]$. En particulier, la fonction $\sin : [-\pi/2, \pi/2] \to [-1, 1]$ est injective. Surjectivité : comme $\sin(-\pi/2) = -1$ et comme $\sin \pi/2 = 1$, d'après le théorème des valeurs intermédiaires, pour tout $-1 \le y \le 1$, il existe $-\pi/2 \le x \le \pi/2$ tel que $\sin x = y$.

1.2 arccos

Proposition 1.2 La fonction $\cos : [0, \pi] \to [-1, 1]$ est une bijection.

On note $\arccos: [-1,1] \to [0,\pi]$ la fonction réciproque *i.e.* $\sin -1 \le x \le 1$, alors $y = \arccos x \Leftrightarrow \cos y = x$ ET $0 \le x \le \pi$.

1.3 arctan

Proposition 1.3 La fonction tan : $[-\pi/2, \pi/2] \to \mathbb{R}$ est une bijection.

On note $\arctan : \mathbb{R} \to [-\pi/2, \pi/2]$ la fonction réciproque *i.e.* si $x \in \mathbb{R}$, alors $y = \arctan x \Leftrightarrow \tan y = x \to -\pi/2 < x < \pi/2$.

2 Propriétés

Proposition 2.1 a) Les fonctions arctan et arcsin sont impaires mais arccos n'est pas paire;

- b) les fonctions arctan et arcsin sont strictement croissantes et la fonction arccos strictement décroissante.
- c) les fonctions arcsin et arccos sont continues sur [-1,1], la fonction arctan est continue sur \mathbb{R} .
- d) arcsin est dérivable sur] -1,1[et \forall -1 < x < 1, arcsin' $x = \frac{1}{\sqrt{1-x^2}}$, arccos est dérivable sur] -1,1[et \forall -1 < x < 1, arccos' $x = -\frac{1}{\sqrt{1-x^2}}$, arctan est dérivable sur \mathbb{R} et \forall x \in \mathbb{R} , arctan' $x = \frac{1}{1+x^2}$;
- e) $\arcsin(0) = 0$, $\arcsin(1/2) = \pi/6$, $\arcsin(1/\sqrt{2}) = \pi/4$, $\arcsin(\sqrt{3}/2) = \pi/3$, $\arcsin(1) = \pi/2$; $\arccos(0) = \pi/2$, $\arccos(1/2) = \pi/3$, $\arccos(1/\sqrt{2}) = \pi/4$, $\arccos(\sqrt{3}/2) = \pi/6$, $\arccos(1) = 0$, $\arctan(0) = 0$, $\arctan(1) = \pi/4$, $\arctan(1) = \pi/4$, $\arctan(\sqrt{3}) = \pi/3$, $\lim_{x\to\infty}\arctan(x) = \pi/2$;

3 Quelques formules concernant arctan

Proposition 3.1 a) $\arctan 1 + \arctan 2 + \arctan 3 = \pi$;

- b) $\arctan(1/2) + \arctan 1/5 + \arctan 1/8 = \pi/4$;
- c) $4\arctan(1/5) \arctan(1/239) = \pi/4$;
- d) $2\arctan(1/3) + \arctan(1/7) = \pi/4$;
- e) $\lim_{n\to\infty} \sum_{k=0}^n \frac{(-1)^k}{2k+1} = \pi/4$.

 $\begin{array}{ll} \textit{D\'{e}monstration} & : \text{a,b,c,d}) : \text{on utilise que } \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \text{ et donc} \\ \text{que} : \tan(x+y+z) = \frac{\tan x + \tan y + \tan z - \tan x \tan y \tan z}{1 - \tan x \tan y - \tan y \tan z - \tan x \tan z}. \text{ Par exemple pour a}) : \\ \tan(\arctan 1 + \arctan 2 + \arctan 3) = \frac{1 + 2 + 3 - 1 \cdot 2 \cdot 3}{1 - 1 \cdot 2 - 2 \cdot 3 - 1 \cdot 3} = 0. \text{ Donc arctan } 1 + \arctan 2 + \arctan 3 = k\pi, \ k \in \mathbb{Z}. \text{ Or, la fonction arctan est strictement croissante major\'{e}e par } \pi/2 \text{ donc} : 0 < \arctan 1 + \arctan 2 + \arctan 3 < 3\pi/2 \\ \text{d'où arctan } 1 + \arctan 2 + \arctan 3 = \pi. \end{array}$

Pour e) : par une simple étude de fonctions sur $[0, +\infty[$, on montre que :

$$\forall x \ge 0, \sum_{k=0}^{2p+1} \frac{(-1)^k}{2k+1} \le \arctan x \le \sum_{k=0}^{2p} \frac{(-1)^k}{2k+1}$$

pour tout $p \in \mathbb{N}$. En particulier, si $u_n = \sum_{k=0}^n \frac{(-1)^k}{2k+1}$, la suite u_{2n} est décroissante minorée par $\arctan 1 = pi/4$, la suite u_{2n+1} est croissante majorée par $\pi/4$. La différence $u_{2n} - u_{2n+1} = \frac{1}{4n+1}$ tend vers 0. Donc les deux suites ont la même limite qui est forcément $\pi/4$ car pour tout n:

$$u_{2n+1} \le \arctan 1 = \pi/4 \le u_{2n} .$$

q.e.d.

Chapitre VI Intégration

1 Intégrales des fonctions en escaliers

Soient $a \leq b \in \mathbb{R}$.

Définition 1 On dit qu'une fonction $f:[a,b] \to \mathbb{R}$ est en escaliers s'il existe $\Delta = \{a = t_0 < ... < t_n = b\}$ une subdivision de l'intervalle telle que pour tout $0 \le i \le n-1$, f est constante (égale à une certaine constante $c_i \in \mathbb{R}$) sur l'intervalle ouvert $]t_i, t_{i+1}[$. Dans ce cas, on dit que la subdivision Δ est adaptée à f.

Exemple : soit $I\subseteq [a,b]$ un intervalle. On pose $\chi_I:[a,b]\to\mathbb{R}$ la fonction telle que

$$\chi_I(x) = \begin{cases} 1 \text{ si } x \in I, \\ 0 \text{ si } x \notin I. \end{cases}$$

La fonction χ_I est en escaliers.

Exercice 1 L'ensemble $\mathscr{E}([a,b])$ des fonctions en escaliers sur [a,b] est un sous- \mathbb{R} -espace vectoriel de $\mathbb{R}^{[a,b]}$ l'espace des fonctions : $[a,b] \to \mathbb{R}$. Les fonctions χ_I , I intervalle ouvert de \mathbb{R} , forment une famille génératrice de l'espace $\mathscr{E}([a,b])$.

Remarques:

- a) on a $f([a,b]) = \{c_i : 0 \le i \le n-1\} \cup \{f(t_i) : 0 \le i \le n\}$; en particulier f ne prend qu'un nombre fini de valeurs et est bornée;
- b) si $\Delta \subseteq \Delta'$ sont des subdivisions de [a, b] (on dit que Δ' est une subdivision plus fine que Δ), alors si Δ est adaptée à f, fonction en escaliers, Δ' aussi.

Définition 2 Soit f une fonction en escaliers sur [a, b]. Le nombre :

$$\sum_{i=0}^{n-1} (t_{i+1} - t_i) c_i$$

où $\Delta = \{a = t_0 < ... < t_n = b\}$ est une subdivision adaptée à f et $f|_{]t_i,t_{i+1}[} = c_i$, est indépendant de la subdivision adaptée à f choisie. On le note :

$$\int_a^b f .$$

Démonstration de l'indépendance vis à vis de la subdivision :

Si Δ est une subdivision adaptée à f, notons $I_{\Delta} = \sum_{i=0}^{n-1} (t_{i+1} - t_i) c_i$ la somme correspondante. Si Δ et Δ' sont des subdivisions adaptées, $\Delta'' = \Delta \cup \Delta'$ est une subdivision adaptée à f et plus fine que Δ et Δ' . Il suffit donc de montrer que $I_{\Delta} = I_{\Delta''} = I_{\Delta'}$. Posons $\Delta'' = \{x_0, ..., x_m\}$ pour certains $a = x_0 < ... < x_m = b$ dans [a, b]. Alors $\Delta = \{x_{i_0}, ..., x_{i_n}\}$ pour certains indices $0 = i_0 < ... < i_n = m$. On a alors en notant c_j la valeur constante de f sur $]x_{i_j}, x_{i_{j+1}}[$:

$$I_{\Delta} = \sum_{j} (x_{i_{j+1}} - x_{i_{j}}) c_{j}$$

$$= \sum_{j} \sum_{i=i_{j}}^{i_{j+1}-1} (x_{i+1} - x_{i}) c_{j}$$

$$= \sum_{i} (x_{i+1} - x_{i}) c''_{i} = I_{\Delta''}$$

(où c_i'' est la valeur constante de f sur $]x_i, x_{i+1}[)$. De même, $I_{\Delta'} = I_{\Delta''}$. $\underline{q.e.d.}$

Exercice 2 Soit I un intervalle contenue dans [a,b]. On a $\int_a^b \chi_I = l(I)$ la longueur de l'intervalle I.