5.2 Intégrale de la valeur absolue

Théorème 5.1 Soit $f:[a,b] \to \mathbb{R}$ une fonction Ri. Alors |f| est aussi Ri et

$$\left| \int_a^b f \right| \le \int_a^b |f| \ .$$

Contre-exemple: soit $f:[0,1] \to \mathbb{R}, x \mapsto \begin{cases} 1 \text{ si } x \in \mathbb{Q}, \\ -1 \text{ sinon.} \end{cases}$; alors |f| est Ri

(c'est la fonction constante 1) mais montrer que f ne l'est pas.

Démonstration du théorème : Soit $\Delta = \{a = t_0 < ... < t_n = b\}$ une subdivision de [a,b]. Soient $t_i \leq x, y \leq t_{i+1}$. On a :

$$|f(x)| - |f(y)| \le |f(x) - f(y)| \le M_i - m_i$$

où $m_i = \inf_{[t_i, t_{i+1}]} f \le f(x), f(y) \le M_i = \sup_{[t_i, t_{i+1}]} f.$ Donc $\sup_{[t_i, t_{i+1}]} |f| \le M_i - m_i + |f(y)|$ pour tous $y \in [t_i, t_{i+1}]$. Donc :

$$\sup_{[t_i, t_{i+1}]} |f| - M_i + m_i \le \inf_{[t_i, t_{i+1}]} f .$$

En sommant sur i, on obtient :

$$S^{\Delta}(|f|) + S_{\Delta}(f) \le S_{\Delta}(|f|) + S^{\Delta}(f)$$

$$\Rightarrow I^*(f) - I_*(f) \le S^{\Delta}(f) - S_{\delta}(f)$$
.

Cela étant vrai pour toute subdivision Δ on en déduit :

$$\forall \epsilon > 0, \ I^*(|f|) - I_*(|f|) \le \epsilon$$

puis $I^*(|f|) - I_*(f) \leq 0 \Rightarrow I^*(|f|) = I_*(|f|)$. Donc |f| est Ri. Comme $f \leq |f|$, on a $\int_a^b f \leq \int_a^b |f|$. De même, on a $-\int_a^b f \leq \int_a^b |f|$. Donc $|\int_a^b f| \leq \int_a^b |f|$. q. e. d.

6 Intégrale des fonctions continues, primitives

Théorème 6.1 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Alors f est Ri. De plus, il existe F telle que F'=f et on $a:\int_a^b f=F(b)-F(a)$.

Lemme 6.2 Si $f:[a,b] \to \mathbb{R}$ est continue, alors f est bornée.

 $D\acute{e}monstration$: Si par exemple f n'était pas majorée, posons pour tout $n, x_n = \sup f^{-1}([n, +\infty[)])$. La suite x_n décroît. Soit x sa limite dans [a, b]. Comme f est continue, $\lim_n f(x_n) = f(x)$ or $\lim_n f(x_n) = +\infty$ absurde! q.e.d.

Démonstration du théorème : Soit $\epsilon > 0$. Pour tout $x \in [a,b]$, il existe $\delta_x > 0$ tel que

$$|y - x| \le 2\delta_x \Rightarrow |f(y) - f(x)| < \epsilon$$
.

Lemme 6.3 Il existe $x_1, ..., x_n \in [a, b] : [a, b] \subseteq \bigcup_i [x_i - \delta_{x_i}, x_i + \delta_{x_i}].$

Démonstration de ce lemme : Soit $E = \{a \leq t \leq b : \exists x_1, ..., x_n \in [a, b] : [a, t] \subseteq \cup_i [x_i - \delta_{x_i}, x_i + \delta_{x_i}] \}$. Comme a est dans cet ensemble, il est non vide et $c = \sup E$ existe. Par définition de la borne sup, il existe $t \in E$ tel que $a \leq t > c - \delta_c$. Alors $[a, c + \delta_c] \subseteq \cup_i [x_i - \delta_{x_i}, x_i + \delta_{x_i}] \cup [c - \delta_c, c + \delta_c]$. Donc $c + \delta_c \in E$ contradiction sauf si c = b et dans ce cas $[a, b] \subseteq \cup_i [x_i - \delta_{x_i}, x_i + \delta_{x_i}] \cup [b - \delta_b, b + \delta_b]$.

Soit $\eta = \min_{i} \{\delta_{x_i}\} > 0$. Alors $|x - y| \le \eta \Rightarrow \exists i, |x - x_i| \le \delta_i$ et alors $|y - x_i| \le |x - y| + |x - x_i| \le 2\delta_i \Rightarrow |f(x) - f(y)| \le |f(x) - f(x_i)| + |f(x_i) - f(y)| \le 2\epsilon$.

Donc si $\Delta = \{a + i\frac{b-a}{n} : 0 \le i \le n\}$ avec n assez grand pour que $\frac{b-a}{n} \le \eta$, on a pour tout i, $M_i - mi_i \le 2\epsilon$ où $x_i = a + i\frac{b-a}{n}$ et $M_i = \sup_{[x_i, x_{i+1}]} f$ et $m_i = \inf_{[x_i, x_{i+1}]} f$. Donc $S^{\Delta} f - S_{\Delta} f \le 2\epsilon$.

Ainsi f est bien Ri. q.e.d.

Corollaire 6.3.1 Si $f:[a,b] \to \mathbb{R}$ est continue par morceaux, i.e. il existe $\Delta = \{a = x_0 < ... < x_n = b\}$ une subdivision de [a,b] telle que $\forall k, f \mid_{]x_k, x_{k+1}[}$ est continue et $\lim_{\substack{x \to x_k \\ x < x_k}} f$, $\lim_{\substack{x \to x_k \\ x > x_k}} existent pour tout <math>k$, alors f est Ri sur [a,b].

Proposition 6.4 Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Alors $F:x \mapsto \int_a^x f$ est une fonction dérivable sur [a,b] et F'=f

 $D\'{e}monstration:$ Nous allons montrer que si f est Ri sur [a,b], si $\lim_{\substack{x\to c\\x\neq c}} f=l$ existe alors $x\mapsto \int_a^x f$ est dérivable en c de dérivée F'=l. On a si $x\neq c$:

$$\frac{F(x) - F(c)}{x - c} - l = \frac{1}{x - c} \int_{c}^{x} (f - l) .$$

Soit epsilon > 0. Il existe $\eta > 0$ tel que $|x - c| < \eta \Rightarrow |f(x) - f(c)| < \epsilon$. Donc $|x - c| < \eta \Rightarrow \left| \left[\frac{F(x) - F(c)}{x - c} - l \right| \le \frac{1}{|x - c|} |\int_{c}^{x} |f - l|| \le \epsilon$. $\underline{q.e.d.}$

Théorème 6.5 (fondamental de l'analyse) Soit $f : [a, b] \to \mathbb{R}$ une fonction dérivable telle que f' est Ri sur [a, b].

Alors
$$f(b) - f(a) = \int_a^b f'$$
.

Contre-exemple: la fonction $f:[0,1]\to\mathbb{R},\ x\mapsto\begin{cases} x^2\sin(x^{-2})\ \text{si}\ x\neq 0,\\ 0\ \text{sinon} \end{cases}$

est dérivable mais sa dérivée n'est pas Ri, n'étant pas bornée ...

 $D\'{e}monstration$: Soit $\Delta = \{x_0 < \ldots < x_n\}$ une subdivision de [a,b]. Alors :

$$f(b) - f(a) = \sum_{i=0}^{n-1} f(x_{i+1}) - f(x_i) = \sum_{i=0}^{n-1} (x_{i+1} - x_i) f'(c_i)$$

pour certains $x_i < c_i < x_{i+1}$ (théorème des accroissements finis). Mais alors :

$$S_{\Delta}f \le f(b) - f(a) \le S^{\Delta}f$$

et cela étant vrai pour toute subdivision Δ , $f(b) - f(a) = \int_a^b f$. $\underline{q.e.d.}$

7 Intégration par parties

Théorème 7.1 Si u, v sont \mathfrak{C}^1 sur [a, b], alors :

$$\int_a^b u'v = [uv]_a^b - \int_a^b uv' .$$

Exercice 1 Calculer $\int_0^{\pi} x \sin x dx$, $\int_0^1 x^2 e^x dx$, $\int_1^x \ln t dt$, $\int_0^1 \arctan x dx$.

8 Changement de variables

Théorème 8.1 Soit $\phi : [a,b] \to \mathbb{R}$ de classe \mathfrak{C}^1 , soit $f : I \to \mathbb{R}$ continue. On suppose que $\phi([a,b]) \subseteq I$. Alors :

$$\int_a^b f(\phi(t))\phi'(t)dt = \int_{\phi(a)}^{\phi(b)} f(x)dx .$$

b) Si de plus ϕ est bijective $[a,b] \rightarrow [\phi(a),\phi(b)]$, alors

$$\int_{a}^{b} f(x)dx = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t))\phi'(t)dt .$$

Exercice 2 Calculer $\int_0^1 \sqrt{1-t^2} dt$.