COURS DU MARDI 11/4/17

1.2 Cas général

Théorème 1.1 Soit :

$$y' = a(x)y + b(x)$$

(E)

où a, b sont continues sur I.

a) Si y_P est une solution particulière de (E), alors les solutions de (E) sont les fonctions :

$$y = y_P + y_h$$

où y_h est solution de l'équation homogène associée :

$$y' = a(x)y$$

 (E_h) .

b) **méthode de variation de la constante** : On peut trouver une solution particulière de (E) sous la forme :

$$y_P(x) = C(x) \exp A(x)$$

où C est une fonction dérivable à déterminer et A une primitive de a sur I.

c) Si $t_0 \in I$ et si $y_0 \in \mathbb{R}$, alors il existe une unique solution sur I à l'équation :

$$y' = a(x)y + b(x), y(t_0) = y_0.$$

 $D\'{e}monstration$:

- a) $(y y_P)' = a(x)(y y_P)$.
- b) si $y = C \exp A$, alors $y' = a(x)y + b(x) \Leftrightarrow C' \exp A + a(x)C \exp A = a(x)C \exp A + b(x)$

$$\Leftrightarrow C' = b(x) \exp(-A)...$$

c) D'après ce qui précède, y' = a(x) + b(x) et $y(t_0) = y_0 \Leftrightarrow y = C(x) \exp A(x)$ avec $C(x) = y_0 + \int_{t_0}^x b(s) \exp(-A(s)) ds$.

q.e.d.

Exercice 1 Résoudre $y' + y = \sin x$ et $(1 + x^2)y' = xy + (1 + x^2)$.

2 Équations différentielles d'ordre 2 à coefficients constants

Ce sont les équations de la forme :

$$y'' + by' + cy = f(x)$$

(E)

où f est une fonction continue sur un intervalle I. L'inconnue est une fonction y deux fois dérivable sur I.

2.1 Cas homogène

Soient $a, b \in \mathbb{R}$. Soit l'équation :

$$y'' + ay' + by = 0$$

(E)

Remarque : l'ensemble des solutions y de (E) est un sous- \mathbb{R} -espace vectoriel de l'espace des fonctions $\mathbb{R} \to \mathbb{R}$.

Théorème 2.1 i) Si $x^2 + aX + b$ a deux racines réelles $r_1 \neq r_2$, alors

$$\{solutions\ de\ (E)\} = \{\lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x}\ :\ \lambda_1, \lambda_2 \in \mathbb{R}\}$$

 $Si X^2 + aX + b$ a une racine double r, alors

$$\{solutions\ de\ (E)\} = \{(\lambda x + \mu)e^{rx} : \lambda, \mu \in \mathbb{R}\}\ .$$

 $Si X^2 + aX + b$ a deux racines complexes conjuguées non réelles : $r \pm i\omega$, $r \in \mathbb{R}$, $\omega \in \mathbb{R}^*$, alors :

$$\{solutions\ de\ (E)\} = \{e^{rx}(\lambda\cos\omega x + \mu\sin\omega x) : \lambda, \mu \in \mathbb{R}\}\ .$$

ii) L'espace des solutions de (E) est de dimension 2 et l'application linéaire :

$$y \mapsto (y(x_0), y'(x_0))$$

est un isomorphisme (pour tout $x_0 \in \mathbb{R}$).

iii) En particulier, si $x_0 \in \mathbb{R}$, $y_0, y_1 \in \mathbb{R}$, alors il existe une unique solution de E telle que $y(x_0) = y_0$, $y'(x_0) = y_1$.

Démonstration : b) Montrons que si y'' + by' + cy = 0, $y(x_0) = y'(x_0) = 0$, alors y = 0.

Posons pour $x \ge x_0, Y(x) = \sup_{x_0 \le t \le x} \{|y(t)|, |y'(t)|\}$ et $M = \max\{1, |a| + |b|\}$. Par récurrence sur $n \ge 0$:

$$\forall n \geq 0, \ \forall x_0 \leq t \leq x, \ \max\{|y(t)|, |y'(t)|\} \leq Y(x)M^n \frac{(t-x_0)^n}{n!}$$
.

Or $\lim_{n\to\infty} r^n/n!=0$ pour tout $r\geq 0$. Donc y(x)=0 si $x\geq x_0$. De même si $x\leq x_0$... q.e.d.

Exemples:

- a) $y'' + y = 0 \Leftrightarrow y(x) = A\cos x + B\sin x$, A, B constantes;
- b) $y'' + 2y' + y = 0 \Leftrightarrow y(x) = (Ax + B)e^{-x}$, A, B constantes;
- c) y'' 3y' + 2y = 0, $y(0) = y'(0) = 1 \Leftrightarrow y(x) = Ae^x + Be^{2x}$ avec :

$$\begin{cases} A+B=1\\ A+2B=1 \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} A \\ B \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\Leftrightarrow A = 1, B = 0.$$

Donc y'' - 3y' + 2y = 0, $y(0) = y'(0) = 1 \Leftrightarrow y(x) = e^x$.