Définition. Soient E, F deux K-espaces vectoriels. Soit $f: E \to F$ une application. On dit que f est linéaire ou que f est un morphisme, si

$$\forall x, y \in E, f(x+y) = f(x) + f(y) \text{ ET}$$

Si E = F, on dit que f est un endomorphisme.

Homothéties. Pour tout $\lambda \in K$, l'application $E \to E$, $x \mapsto \lambda x$ est linéaire. C'est l'homothétie de rapport λ . Notation : $\lambda \mathrm{Id}_E$.

$$K[X] \to K[X], P(X) \mapsto P'(X)$$

$$K[X] \rightarrow K, P \mapsto P(0)$$

$$\mathcal{M}_n(K) \to K, M \mapsto \mathrm{Tr} M$$

Si $A \in \mathcal{M}_{mn}(K)$, alors

$$\mathcal{M}_{n1}(K) \to \mathcal{M}_{m1}(K), X \mapsto AX$$

est linéaire.

$$\mathbb{R} \to \mathbb{R}, x \mapsto x^2$$

$$\mathbb{R} \to \mathbb{R}$$
, $x \mapsto x + 1$

ne sont pas linéaires.

$$\mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$$

n'est pas $\mathbb{C}-\text{lin\'eaire}.$

Exercice. Si f est linéaire alors f(0) = 0.

Proposition. Une application $f: K^n \to K$ est linéaire si et seulement s'il existe certains coefficients $a_1, ..., a_n \in K$ tels que :

$$\forall x_1,....,x_n \in K, f(x_1,...,x_n) = a_1x_1 + ... + a_nx_n$$
.

Propriétés. Soit $\lambda \in K$. Si f,g sont des applications linéaires, alors

$$f + g$$
, λf , $f \circ g$

sont linéaires (chaque fois que cela a un sens).

Notation. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires $E \to F$. **Exercice**. $\mathcal{L}(E,F)$ est un K-espace vectoriel de dimension dim E dim F.

Soient E, F deux espaces vectoriels. Soit $e_1, ... e_n$ une base de E. Soient $v_1, ..., v_n \in F$, alors il existe une unique application linéaire $f: E \to F$ telle que $f(e_i) = v_i$ pour tout i. C'est l'application définie par :

$$f(a_1e_1 + ... + a_ne_n) = a_1v_1 + ... + a_nv_n$$
.

Définition Une application linéaire bijective est un isomorphisme. *Remarque.* si $f: E \to F$ est un isomorphisme, alors $f^{-1}: F \to E$ est aussi linéaire.

Notation. $E \simeq F$.

Exemple.

$$\mathbb{R}^2 o \mathbb{C}$$
 $(a,b) \mapsto a + ib$

est un isomorphisme.

D'inverse:

$$(\operatorname{re}(z),\operatorname{im}(z)) \longleftrightarrow z$$
.

Proposition. Soit $f: E \to F$ linéaire. Alors : f isomorphisme $\Leftrightarrow f$ envoie une base de E sur une base de F.

En particulier si f isomorphisme, dim $E = \dim F$. Remarque. En particulier, si $m \neq n$, $\mathbb{R}^m \not\simeq \mathbb{R}^n$.

Exercice. Soit $f: E \rightarrow F$ linéaire.

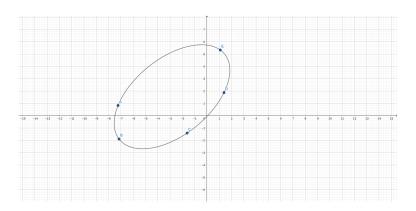
- Si f est injective, alors l'image par f d'une famille libre de E est une famille libre de F.
- Si f est sur jective, alors l'image par f d'une famille génératrice de E est une famille génératrice de F.
- Si f est bijective, alors l'image par f d'une base de E est une base de F.

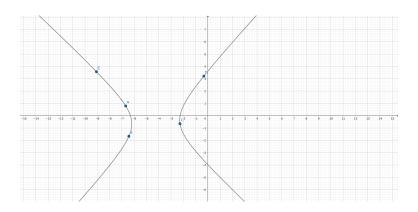
Exercice (suite). En particulier, si $f: E \to F$ est linéaire, alors f injective $\Rightarrow \dim E \leq \dim F$ et f est surjective $\Rightarrow \dim E \geq F$.

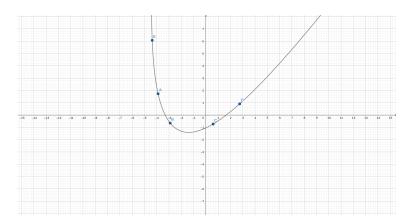
Exemples. Soient $A(x_0, y_0)$, $B(x_1, y_1)$, $C(x_2, y_2)$, $D(x_3, y_3)$, $E(x_4, y_4)$ cinq points du plan \mathbb{R}^2 . L'application $\mathbb{R}^6 \to \mathbb{R}^5$, $(a, b, c, d, e, f) \mapsto (F_{abcdef}(x_0, y_0), F_{abcdef}(x_1, y_1), F_{abcdef}(x_2, y_2), F_{abcdef}(x_3, y_3), F_{abcdef}(x_4, y_5)$ st linéaire non injective! (où $F_{abcdef}(X, Y) = aX^2 + bY^2 + cXY + dX + eY + f$). Donc il existe toujours (au moins) une conique $\mathscr C$ qui passe par

cinq points du plan quelconques. Une conique est une courbe d'équation

 $ax^2 + by^2 + cxy + dx + ey + f = 0$ où a, b, c, d, e, f sont des réels non tous nuls.







Définition. Si $f: E \rightarrow F$ est linéaire, on pose

$$\operatorname{Ker} f = f^{-1}(0) = \{ x \in E : f(x) = 0 \},$$

c'est le *noyau de f* et

Imf :=
$$f(E) = \{ y \in F, \exists x \in E, f(x) = y \},\$$

c'est l'image de f.

Ce sont des sous-espaces vectoriels de E et de F, respectivement.

Plus généralement, si $F_1 \leq F$, alors $f^{-1}(F_1) \leq E$ et si $E_1 \leq E$, alors $f(E_1) \leq F$. **Définition.** Si $f: E \to F$ est linéaire, on pose rang $f = \dim \operatorname{Im} f$.

Soit
$$f \in \mathcal{L}(E, F)$$
. **Proposition**. f injective $\Leftrightarrow \ker f = 0$.

Théorème du rang. $\dim E = \dim \operatorname{Im} f + \dim \ker f$

Démonstration. Soit $G \leq E$ tel que ker $f \oplus G = E$. Alors la restriction $f: G \to F$, $x \mapsto f(x)$ est injective donc $f: G \stackrel{\cong}{\to} f(G)$ est un isomorphisme.

Or
$$f(G) = f(E)$$
 donc

 $\dim G + \dim \ker f = \dim E \Leftrightarrow \dim f(G) + \dim \ker f = \dim E$

$$\Leftrightarrow \operatorname{rg}(f) + \dim \ker f = \dim E$$
.

Corollaire. Formule de Grassmann. Si
$$E_1, E_2 \leq E$$
, alors $\dim(E_1 + E_2) = \dim E_1 + \dim E_2 - \dim(E_1 \cap E_2)$.

Proposition. Si $f: E \to F$ est linéaire, si dim $E = \dim F$ est finie, ALORS :

f bijective $\Leftrightarrow f$ injective $\Leftrightarrow f$ surjective.

Contre-exemples.

- **1** $K[X] \to K[X]$, $P \mapsto P'$ est surjective mais non injective.

Soient $z_0,...,z_n\in\mathbb{C}$ des nombres complexes 2 à 2 distincts. Proposition. L'application :

$$\mathbb{C}_n[X] \longrightarrow \mathbb{C}^{n+1} \qquad \text{ est un isomorphisme}.$$

$$P(X) \longmapsto (P(z_0), ..., P(z_n))$$

Proposition. L'application : $\mathbb{R}_n[X] \longrightarrow \mathbb{R}_{n-1}[X]$

$$P(X) \longmapsto P(X+1) - P(X)$$

est surjective.

Par exemple,
$$\frac{X^{n-1}}{(n-1)!} = P(X+1) - P(X)$$
 avec $P(X) = \sum_{i=0}^{n-1} \frac{B_i}{i!} \frac{X^{n-i}}{(n-i)!}$.

Définition Isomorphismes Noyau et image Applications

Soit
$$\mathscr{F} = \{(f_n)_{n \in \mathbb{N}} : \forall n \geq 2, f_n = f_{n-1} + f_{n-2}\}.$$

Proposition. L'application
$$\mathscr{F} \longrightarrow \mathbb{R}^2$$

$$(f_n) \longmapsto (f_0, f_1)$$
 est un isomorphisme.

Soit
$$\mathscr{E} = \{y \in \mathscr{C}^2(\mathbb{R}, \mathbb{R}) : y'' + y = 0\}.$$

Proposition. L'application $\mathscr{E} \longrightarrow \mathbb{R}^2$

$$y \longmapsto (y(0), y'(0))$$
 est un isomorphisme.

Soit $F: E \rightarrow E$ linéaire.

Définition. On dit que f est une projection (ou un projecteur) si $f^2 = f$.

Exemple. $f: \mathbb{R}^2 \to \mathbb{R}^2 (x,y) \mapsto (4x-2y,6x-3y)$ est une projection sur la droite d'équation $y=\frac{3}{2}x$ parallèlement à la droite d'équation y=2x.

Proposition. Si f est un projecteur, alors $\ker f \oplus \operatorname{Im} f = E$.

Exemples.
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto ((\cos \theta)x - (\sin \theta)y, (\sin \theta)x + (\cos \theta)y)$$

rotation (de centre 0 d'angle θ)

Exemples.
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto ((\cos \theta)x + (\sin \theta)y, (\sin \theta)x - (\cos \theta)y)$$

symétrie (orthogonale) d'axe Δ_{θ} .

Exercice.

$$s_{\theta}^2 = r_{\theta}$$
.