Partiel: durée 1h30 14 mars 2018

Tous les documents sont interdits, l'usage des calculatrices et des téléphones portables sont interdits.

Exercice 1.

Soit $\mathcal{B} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4

Soit
$$E = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4, x_1 + x_2 + x_3 + x_4 = 0\}$$
 et $F = Vect(u_1, u_2)$ où $u_1 = (1, -1, 1, 1)$ et $u_2 = (1, 1, -1, 1)$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^4 .
- 2. Donner une base de E et une base de F.
- 3. A-t-on $E \oplus F = \mathbb{R}^4$?

Exercice 2.

Soient P_0 , P_1 , P_2 , P_3 et P_4 cinq polynômes de $\mathbb{R}_4[X]$ définis par $P_0(X) = 1$, $P_1(X) = X - 1$, $P_2(X) = (X - 1)^2$, $P_3(X) = (X - 1)^3$ et $P_4(X) = (X - 1)^4$.

Soit $E = \{P \in \mathbb{R}_4[X], P(1) = 0, P'(1) = 0 \text{ et } P''(1) = 0\}$. on admettra que E est un sous-espace vectoriel de \mathbb{R}^4 et que $\mathcal{B} = (P_0, P_1, P_2, P_3, P_4)$ est une famille libre de $\mathbb{R}_4[X]$.

- 1. Montrer que $\mathcal{B} = (P_0, P_1, P_2, P_3, P_4)$ est une base de $\mathbb{R}_4[X]$.
- 2. Montrer que (P_3, P_4) est une base de E.
- 3. On pose $F = Vect(P_0, P_1, P_2)$, en donner une base.
- 4. A-t-on $E \oplus F = \mathbb{R}_4[X]$?

Exercice 3.

1. Sans faire de calcul, calculer le développement limité à l'ordre 3, en 0 de la fonction f définie par :

$$f(x) = (\sin(x) + x)^{15}x^3 + 1 + 2x^3$$

2. Calculer le développement limité à l'ordre 3, en 0 de la fonction q définie par :

$$g(x) = e^x \cos(2x)$$

3.

- a. Calculer le développement limité à l'ordre 4 de $x \ln(1+x)$ en 0.
- b. En déduire le développement limité à l'ordre 2, de h au voisinage de 0, où h est définie par :

$$h(x) = \frac{1 - \cos(x)}{x \ln(1 + x)}$$

Exercice 4.

Calculer, sans préjuger qu'elle existe la limite suivante :

$$\lim_{x\to 0} \frac{\cos(x) - \sqrt{1-x^2}}{x^4}$$

Exercice 5.

On pose $u_0=1$ et $v_0=0$, puis pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n+v_n$ et $v_{n+1}=u_n+2v_n$.

Soient
$$J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} = I + J$

- 1. Calculer A^n en fonction de n, pour cela, on pourra montrer que A = I + J, que pour tout k > 0, $J^k = 2^{k-1}J$ et appliquer la formule du binôme de Newton.
- 2. En déduire u_n et v_n en fonction de n.

Exercice 6.

Soient
$$A = \begin{pmatrix} 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 1 \\ 1 & -2 & 5 & -5 \end{pmatrix} \in \mathcal{M}_{3,4}(\mathbb{R}), X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}, O = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \text{ et } Y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Résoudre le système AX = 0.