Exercice 28.

Soit A un anneau fini. Soit P < A idéal premier.

Montrer que P est un idéal maximal.

Rappel. P est un idéal premier si $P \neq A$ et si $\forall x, y \in A, xy \in P \Rightarrow x$ ou $y \in P$.

 \Leftrightarrow l'anneau quotient A/P est intègre.

P est maximal si pour tout idéal $P \leq I \leq A$, on a I = P ou A.

 \Leftrightarrow l'anneau quotient A/P est un corps.

Donc maximal \Rightarrow premier mais en général premier \Rightarrow maximal : exemple 0 est premier mais non maximal dans \mathbb{Z} .

Indication : raisonner avec A/P. Vérifier qu'un anneau intègre fini est un corps.

 $A \text{ fini} \Rightarrow A/P \text{ est fini. Or un anneau intègre fini est un corps.}$

En effet si A' est un anneau intègre fini, alors pour tout $0 \neq a \epsilon A'$, l'application :

 $A' \to A' \ x \mapsto ax$ est injective \Rightarrow surjective. Donc il existe x tel que ax = 1.

a inversible!.

Si A est fini, si P < A est premier, alors A/P est intègre fini \Rightarrow corps $\Rightarrow A/P =$ corps $\Rightarrow P$ maximal.

Exercice 29.

Soit A idéal, soit M < A idéal maximal. Si $M^n \leqslant P$ et P idéal premier, alors P = M.

Il suffit de montrer que $M \leq P$ car M idéal maximal. Soit $x \in M$. Alors $x^n \in P$.

Comme P premier, $x^n \epsilon P \Rightarrow x \epsilon P$.

En effet $x^n \epsilon P \Leftrightarrow x^n = 0$ dans A/P. Or A/P est intègre donc $x^n = 0$ dans $A/P \Rightarrow x = 0$ dans A/P c-à-d $x \epsilon P$.

Ou bien : P premier signifie que $x, y \notin P \Rightarrow xy \notin P$ en particulier, $x \notin P \Rightarrow x^n \notin P$.

C'est vrai pour tout $x \in M$ donc $M \leq P$.

Exemple : si p|27, alors p=3. (M=(3), n=3, P=(p))

Exercice 30.

Cardinal de $\mathbb{Z}[\sqrt{d}]/(m)$. On suppose d entier sans facteur carré. Si $d = c^2 d'$, alors $\sqrt{d} = c\sqrt{d'} \Rightarrow \mathbb{Z}[\sqrt{d}] = \mathbb{Z}[\sqrt{d'}]$

$$\mathbb{Z}[\sqrt{d}] = \mathbb{Z} \oplus \mathbb{Z}\sqrt{d} = \{a + b\sqrt{d} : a, b\epsilon\mathbb{Z}\}.$$

$$(m) = \{m \cdot (a + b\sqrt{d}) : a, b \in \mathbb{Z}\} = \{m \cdot a + m \cdot b\sqrt{d} : a, b \in \mathbb{Z}\}\$$

$$a + b\sqrt{d}\epsilon(m) \Leftrightarrow m \mid a$$

et m|b.

$$\mathbb{Z}[\sqrt{d}]/(m) \leftrightarrow (\mathbb{Z}/m\mathbb{Z})^2$$
 bijection!

$$a + b\sqrt{d} \operatorname{mod} m \longleftrightarrow (a, b)$$

Donc $|\mathbb{Z}[\sqrt{d}]/(m)| = m^2$.

Ex.
$$|\mathbb{Z}[\sqrt{2}]/(3)| = 9$$
. $(\mathbb{Z}[\sqrt{2}]/(3) = \mathbb{F}_9)$.

(2) est premier dans $\mathbb{Z}[\sqrt{d}] \Leftrightarrow \mathbb{Z}[\sqrt{d}]/(2)$ est intègre.

1er cas : d pair. $0 \neq \sqrt{d}$ dans $\mathbb{Z}[\sqrt{d}]/(2)$. Mais $\sqrt{d}^2 = d = 0$ dans $\mathbb{Z}[\sqrt{d}]/(2)$.

Donc non intègre!

2ème cas :
$$d$$
 est impair , alors : $d-1=0$ $\mathbb{Z}[\sqrt{d}]/(2) \Rightarrow (d-1) = \underbrace{(\sqrt{d}-1)}_{\neq 0} (\sqrt{d}+1) = \underbrace{(\sqrt{d}-1)}_{\neq 0} (\sqrt{d}+1)$

donc l'anneau $\mathbb{Z}[\sqrt{d}]/(2)$ n'est pas intègre.

Donc 2 n'est pas premier dans $\mathbb{Z}[\sqrt{d}]$.

Exercice 31.

1)

$$I, J \leq A. \ \pi_I: A \rightarrow A/I \ a \mapsto a+I.$$

$$\bar{J} = \pi_{I}(J)$$

 $\pi_{_I}$ surjectif $\Rightarrow \pi_{_I}(J)=$ idéal de $A\,/\,I.$ En effet, si $\bar{a}\epsilon A\,/\,I,$ si $x\epsilon J,\,$ alors $\bar{a}\pi_I(x)=\pi_{_I}(a\,x)\epsilon\bar{J}.$

2)
$$A/I/_{\bar{J}}\cong A/(I+J)$$

$$I+J = \{x+y \colon x\epsilon I\,,\, y\epsilon J\,\}$$

$$A/(I+J) \rightarrow A/I/_{\bar{I}}$$

$$x+I+J \mapsto (x+I)+\bar{J}$$

$$x+I+J \longleftrightarrow (x+I)+\bar{J}$$

Ces deux applications sont bien définies et sont réciproques l'une de l'autre (et ce sont des morphismes d'anneaux)

Corollaire. Comme I + J = J + I, on a : $A/I/_{\pi_I(J)} \cong A/J/_{\pi_J(I)}$

Exemple .
$$\mathbb{Z}[\sqrt{2}]/(3) \cong \mathbb{F}_3[X]/(X^2-2) \cong \mathbb{Z}[X]/(3, X^2-2)$$

$$(A = \mathbb{Z}[X], I = (3), J = (X^2 - 2) \Rightarrow \mathbb{Z}[\sqrt{2}]/(3)$$
 est un corps).

 $\pi_I(J)=$ l'idéal engendré par X^2-2 dans l'anneau $\mathbb{F}_3[X]$

J = 1'idéal engendré par $X^2 - 2$ dans $\mathbb{Z}[X]$.

Exercice 33.

1)

 $(5, X^2+3)$ n'est pas principal dans $\mathbb{Z}[X]$.

Sinon:
$$\exists P(X) \in \mathbb{Z}[X], (P) = (5, X^2 + 3) \dots$$

$$\Rightarrow 5\epsilon(P) \Rightarrow P \mid 5 \text{ dans } \mathbb{Z}[X] \Rightarrow P(X) = \text{constante } = \pm 5 \text{ ou } \pm 1$$

Or
$$P|X^2 + 3 \operatorname{dans} \mathbb{Z}[X] \Rightarrow P = \pm 1 \text{ (car 5 ne divise pas 1)}$$

Donc
$$(P) = \mathbb{Z}[X]$$
. Or $(5, X^2 + 3) \neq \mathbb{Z}[X]$.

En effet, si $1 = A(X)5 + B(X)(X^2 + 3)$ avec A,B $\epsilon \mathbb{Z}[X]$, alors :

$$1 = A(i\sqrt{3}) \times 5 = (a + i\sqrt{3}b) \times 5$$
 pour certains $a, b \in \mathbb{Z} \Rightarrow 1 = (a^2 + 3b^2) \times 5$ absurde.

 $(X^2+1,X+2)$ n'est pas principal dans $\mathbb{Z}[X]$.

Sinon : il existerait $P \in \mathbb{Z}[X]$ tel que $(P) = (X^2 + 1, X + 2)$

 $\Rightarrow P|X^2 + 1 \text{ dans } \mathbb{Z}[X] \Rightarrow P = \pm 1 \text{ ou } \pm (X^2 + 1).$

Or
$$P|X+2 \Rightarrow P = \pm 1 = >(X^2+1, X+2) = (1) = \mathbb{Z}[X]$$

Maissi $1 = A(X)(X^2 + 1) + B(X)(X + 2)$ avec $A, B \in \mathbb{Z}[X] \Rightarrow 1 = A(-2) \times 5$ absurde!

(X^3-1,X^4-1) est principal dans $\mathbb{Z}[X]$

$$X^3 - 1 = (X - 1)(X^2 + X + 1), X^4 - 1 = (X - 1)(X + 1)(X^2 + 1)$$

Si
$$(X^3-1,X^4-1)=(X-1)(X^2+X+1,(X+1)(X^2+1))=(P)$$
 avec $P(X)\in\mathbb{Z}[X]$

$$\Rightarrow (X^2 + X + 1, (X + 1)(X^2 + 1)) = (Q) \text{ où } Q = \frac{P}{X - 1} \epsilon \mathbb{Z}[X].$$

$$\Rightarrow Q = \pm 1$$

Or,
$$(X+1)(X^2+1) = X(X^2+X+1) + 1$$
 donc

$$(X^2 + X + 1, (X + 1)(X^2 + 1)) = (1) \Rightarrow (X^3 - 1, X^4 - 1) = (X - 1).$$

2) (application du n°30)

$$(x, x+1) = (1) = \mathbb{Z}[x]$$

ATTENTION : ce n'est pas un idéal propre.

$$\mathbb{Z}[x]/(5, x^2+4) \cong \mathbb{F}_5[x]/(x^2+4) = \mathbb{F}_5[x]/(x^2-1) = \mathbb{F}_5[x]/((x-1)(x+1))$$

$$\cong \mathbb{F}_5[x]/(x-1) \times \mathbb{F}_5[x]/(x+1) \cong \mathbb{F}_5 \times \mathbb{F}_5$$

donc non intègre (car (1,0).(0,1)=(0,0)) donc l'idéal $(5,x^2+4)$ n'est pas premier!

En effet
$$(x-1) = \ker \left(P(x) \mapsto P(1)\right) \Rightarrow \mathbb{F}_5[x]/(x-1) \cong \mathbb{F}_5$$

 $\mathbb{Z}[x]/(5,x^2+3) \cong \mathbb{F}_5[x]/(x^2+3) = \text{corps à 25 \'el\'ements car } x^2+3 \text{ est un polynôme}$ irréductible sur \mathbb{F}_5 . Donc $(5,x^2+3)$ est maximal dans $\mathbb{Z}[x]$.

$$\mathbb{Z}[x]/(x^2+1,x+2) \cong \mathbb{Z}[x]/(x+2)/(x^2+1) \cong \mathbb{Z}/(5) = \mathbb{Z}/5\mathbb{Z} = \text{corps }!$$

Donc $(x^2+1, x+2)$ est un idéal maximal de $\mathbb{Z}[x]$.