Théorie de Galois

Alexis TCHOUDJEM
Institut Camille Jordan
Université Claude Bernard Lyon I
Boulevard du Onze Novembre 1918
69622 Villeurbanne
FRANCE

Villeurbanne, le 26 février 2014

Table des matières

In	trod	uction	3	
	0.1	Caractéristique	4	
	0.2	Polynômes symétriques	4	
	0.3	Équations de degré $2 \ldots \ldots \ldots \ldots$	5	
	0.4	Degré 3	5	
	0.5	Degré 4	6	
	0.6	$\mathrm{Degr\'e} \geq 5 \ldots \ldots \ldots \ldots \ldots$	6	
1	Ext	ensions, algébricité	6	
	1.1	Polynômes irréductibles	6	
	1.2	Extensions, degré	7	
	1.3	Éléments algébriques	7	
	1.4	Corps de rupture	7	
	1.5	Corps de décomposition	8	
2	Car	actères et morphismes de corps	9	
	2.1	Indépendance	9	
	2.2	Corps des invariants	9	
3	Cor	respondance de Galois	10	
	3.1	Extensions galoisiennes	10	
	3.2	Surjectivité	11	
	3.3	Théorème fondamental	12	
	3.4	Caractérisation des extensions galoisiennes	12	
	3.5	Séparabilité	12	
	3.6	Normalité	13	
	3.7	Composée de corps	13	
4	Cor	ps finis	14	
	4.1	Sous-groupes finis de K^{\times}	14	
	4.2	Structure	14	
	4.3	Polynômes sur les corps finis	15	
		4.3.1 Nombre de polynômes irréductibles de degré donné	15	
		4.3.2 Ordre d'un polynôme, polynôme primitif	16	
	4.4	Algorithme de Berlekamp	18	
5	Clôture algébrique 19			
	5.1	Retour sur la notion de séparabilité	21	
6	Bas	e normale	21	
	6.1	Éléments primitifs	21	
	6.2	Théorème de la base normale	22	

7	Extensions cyclotomiques	24
	7.1 Racines primitives n —ièmes	24
	7.2 Polynômes cyclotomiques sur \mathbb{Q}	24
	7.3 Théorème de Kronecker-Weber	25
8	Norme et trace	27
9	Extensions cycliques	27
	9.1 Théorème 90 de Hilbert	27
10	Résolubilité par radicaux	28
11	Calcul du groupe de Galois	30
	11.1 Discriminant	30
	11.2 Réduction	30
12	Cohomologie galoisienne	31
	12.1 <i>G</i> —modules	31
	12.2 Groupes de cohomologie	32
	12.2.1 En degré 1	
	12.2.2 En tout degré	
13	Théorie de Kummer	34
14	Extensions d'Artin-Schreier	36
	14.1 Forme additive du théorème 90 de Hilbert	36
	14.2 Théorie des extensions d'exposant \boldsymbol{p} en caractéristique \boldsymbol{p}	36
	14.3 Théorème d'Artin-Schreier	37

Cours du mercredi 22/1/14

Introduction

0.1 Caractéristique

Soit K un corps.

Définition 1 Soit $p \geq 0$ tel que $p\mathbb{Z} = \ker(\varphi : \mathbb{Z} \to K, n \mapsto n1_K)$. Le nombre p est la caractéristique du corps K.

Proposition 0.1 La caractéristique de K est 0 ou un nombre premier > 0.

Remarque : si $p=0, \mathbb{Q}$ est le plus petit sous-corps de K si p>0, c'est $\mathbb{F}_p:=\mathbb{Z}/p\mathbb{Z}.$

0.2 Polynômes symétriques

Soit K un corps. Si $s \in \mathfrak{S}_n$, si $P \in K[X_1, ..., X_n]$, on note $P^s(X_1, ..., X_n) := P(X_{s(1)}, ..., X_{s(n)})$. (C'est une action à droite). On note $K[X_1, ..., X_n]^{\mathfrak{S}_n}$ les polynômes invariants ou polynômes symétriques.

On note $\sigma_k(X_1,...,X_n):=\sum_{1\leq i_1<...< i_k\leq n}X_{i_1}...X_{i_k}$ les polynômes symétriques élémentaires :

Proposition 0.2 $K[X_1,...,X_n]^{\mathfrak{S}_n}=K[\sigma_1,...,\sigma_n]$

Démonstration : Par récurrence sur le degré donné par l'ordre lexicographique $X_1 > ... > X_n$. Q.e.d.

Remarque : c'est vrai si on remplace K par \mathbb{Z} !

Exercice: Si K est de caractéristique $\neq 2$, alors $K[X_1,...,X_n]^{A_n} = K[\sigma_1,...,\sigma_n] + \delta K[\sigma_1,...,\sigma_n]$ où $\delta := \prod_{1 \leq i < j \leq n} (X_i - X_j)$ (indication: soit P tel que $\forall \sigma$, $P^{\sigma} = \epsilon(\sigma)P$, alors P est divisible par δ (en effet, le monôme dominant de P est de la forme X^{α} avec $\alpha_1 > > \alpha_n$ qui est divisible par $X_1^{n-1}....X_{n-1}$, monôme dominant de δ)).

Proposition 0.3 (relations coefficients-racines) Soit $P(X) := X^n + a_1X^{n-1} + ... + a_n \in K[X]$. On suppose que P a n racines $x_1, ..., x_n$ dans une extension de K i.e. :

$$P = (X - x_1)...(X - x_n)$$
.

Alors $a_k = (-1)^k \sigma_k(x_1, ..., x_n)$.

0.3 Équations de degré 2

$$f(x) = x^{2} + px + q = (x - x_{1})(x - x_{2})$$

$$\Rightarrow x_{1} + x_{2} = -p, x_{1}x_{2} = q, x_{1} - x_{2} = \pm\sqrt{\Delta}$$

où $\Delta = (x_1 - x_2)^2 = p^2 - 4q$.

Donc:

$$x_1, x_2 = \frac{-p \pm \sqrt{\Delta}}{2}$$

Exercice : Vérifier que $2\cos(2\pi/5) = \frac{1+\sqrt{5}}{2}$ et $2\sin(2\pi/5) = \sqrt{\frac{5-\sqrt{5}}{2}}$.

0.4 Degré 3

$$f(x) = x^3 + px + q = (x - x_1)(x - x_2)(x - x_3)$$

$$\Rightarrow \delta^2 = ((x_1 - x_2)(x_2 - x_3)(x_1 - x_3))^2 = -4p^3 - 27q^2.$$

c'est le discriminant de $x^3 + px + q$. Soient $a := x_1 + jx_2 + j^2x_3$, $b := x_1 + j^2x_2 + jx_3$.

Alors:

$$x_1 = \frac{a+b}{3}, \ x_2 = \frac{j^2a+jb}{3}, \ x_3 = \frac{ja+j^2b}{3},$$
 et : $a^3 = -\frac{27q}{2} + \frac{\sqrt{-27}\delta}{2}, \ b^3 = -\frac{27q}{2} - \frac{\sqrt{-27}\delta}{2}$ et $ab = -3p$.

Réciproquement, si on choisit une racine carrée : $\sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}$ et une racine cubique : $\sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$, on peut choisir une racine cubique $\sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$ telle que :

$$\sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} = -3p \ .$$

Si on pose:

$$x_{1}, x_{2}, x_{3} = \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}}} + \sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}}},$$
$$j^{2} \sqrt[3]{-\frac{q}{2} + \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}} + j\sqrt[3]{-\frac{q}{2} - \sqrt{\left(\frac{q}{2}\right)^{2} + \left(\frac{p}{3}\right)^{3}}},$$

$$j\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{q}{2}\right)^2+\left(\frac{p}{3}\right)^3}}+j^2\sqrt[3]{-\frac{q}{2}-\sqrt{\left(\frac{q}{2}\right)^2+\left(\frac{p}{3}\right)^3}},$$

on a: $(X - x_1)(X - x_2)(X - x_3) = X^3 + pX + q$. Exemples:

i) l'unique racine réelle de $x^3 - x - 1$ est :

$$\sqrt[3]{\frac{1}{2} + \frac{1}{2}\sqrt{\frac{23}{27}}} + \sqrt[3]{\frac{1}{2} - \frac{1}{2}\sqrt{\frac{23}{27}}} \ .$$

ii) $x^3 - 3x + 1$ a 3 racines réelles mais aucune n'est résoluble par radicaux réels : c'est le casus irreducibilis. Une des racines est :

$$2\cos\left(\frac{2\pi}{9}\right) = \sqrt[3]{j} + \sqrt[3]{j^2} .$$

où on pose $\sqrt[3]{re^{it}} := r^{\frac{1}{3}}e^{\frac{it}{3}}$ si r > 0 et $-\pi < t < \pi$.

Exercise: Montrer que $2\cos(2\pi/7) = -\frac{1}{3} + \frac{1}{3}\left(\sqrt[3]{\frac{7+21i\sqrt{3}}{2}} + \sqrt[3]{\frac{7-21i\sqrt{3}}{2}}\right)$ (indication: $1 + 2\cos(2\pi/7) + 2\cos(4\pi/7) + 2\cos(6\pi/7) = 0$ et $(2\cos 3t) = (2\cos t)^3 - 3(2\cos t)$).

Exercice: Si $P = X^3 + a_1 X^2 + a_2 X + a_3$, alors $\Delta = a_1^2 a_2^2 - 4a_2^3 - 4a_1^3 a_3 - 27a_3^2 + 18a_1 a_2 a_3$.

0.5 Degré 4

Il y a aussi des formules avec des radicaux mais la place me manque ...

0.6 Degré ≥ 5

 $x^5-2 = (x-x_1)(x-x_2)(x-x_3)(x-x_4)(x-x_5)$ où $x_k = \sqrt[5]{2}(\cos(2k\pi/5) + i\sin(2k\pi/5))$ donc x^5-2 est résoluble par radicaux.

En revanche nous verrons plus tard que x^5-x-1 n'est pas résoluble par radicaux.

1 Extensions, algébricité

1.1 Polynômes irréductibles

Proposition 1.1 Soit K un corps. soit $P \in K[X]$. Alors P est irréductible $\Leftrightarrow K[X]/(P)$ est un corps.

Remarque : K[X]/(P) est un K-espace vectoriel de dimension $d = \deg P$.

1.2 Extensions, degré

Soient $K \leq L$ deux corps. On dit que L est une extension de K.

Dans ce cas L est aussi un K-espace vectoriel. On note $[L:K]:=\dim_K L:$ c'est le degré de L sur K.

Proposition 1.2 (multiplicativité des degrés) Soient $K_1 \leq ... \leq K_n$ des corps. Alors $[K_n : K_1] = [K_n : K_{n-1}]...[K_2 : K_1]$.

Exemple: $[\mathbb{Q}(\sqrt[3]{2},j):\mathbb{Q}]=6.$

1.3 Éléments algébriques

Proposition 1.3 Soit $K \leq E$ une extension de corps. Soit $x \in E$. Sont équivalentes :

- (i) il existe $0 \neq P \in K[X]$ tel que P(x) = 0;
- (ii) $\dim_K K[x]$ est finie;
- (iii) K[x] = K(x).

On dit que x est algébrique sur K s'il existe un polynôme $P \in K[X]$ non nul tel que P(x) = 0.

Dans ce cas, K[x] = K(x), K[x] est un K-espace vectoriel de dimension finie

De plus, l'idéal $\{P \in K[X] : P(x) = 0\}$ est un idéal premier non nul engendré par un unique polynôme unitaire P_x : le polynôme minimal de x sur K.

Remarque, P_x est irréductible sur K et si P est un polynôme irréductible sur K qui annule x, $P = cP_x$ pour un $c \in K^{\times}$.

On a : $[K[x]:K] = \deg P_x$: c'est le degré de x sur K.

Proposition 1.4 L'ensemble $\{x \in E : x \text{ est algébrique sur } K\}$ est un souscorps de E.

Proposition 1.5 Si $K \leq E$ est une extension finie (i.e. [E:K] est fini), alors E est algébrique sur K i.e. tous les éléments de E sont algébriques sur K.

 $Remarque: \overline{\mathbb{Q}}$ est une extension algébrique infinie de \mathbb{Q} .

1.4 Corps de rupture

Soit $P \in K[X]$ un polynôme irréductible. Dans le corps K[X]/(P), l'élément $\overline{X} := X \mod P$ est une racine de P car $P(\overline{X}) = P(X) = 0 \mod P$.

Théorème 1.6 Soit L une extension de K et $\alpha \in L$ une racine de P telle que $K[\alpha] = L$. Alors $K[X]/(P) \to k[\alpha]$, $Q(X) \mod P \mapsto Q(\alpha)$ est un isomorphisme de corps.

Une extension L de K comme dans le théorème est un corps de rupture de P sur K.

En particulier $1, \alpha, ..., \alpha^{\deg P-1}$ est une K-base de α .

Exemple : $\mathbb{Q}(\sqrt[3]{2})$, $\mathbb{Q}(j\sqrt[3]{2})$, $\mathbb{Q}(j^2\sqrt[3]{2})$ sont des corps de rupture de X^3-2 sur \mathbb{Q} .

Réalisation du corps de rupture

Si $P(X) = X^n + a_1 X^{n-1} + ... + a_n \in K[X]$ est irréductible, alors $K[X]/(P) \simeq K[A]$ où A est la matrice :

$$\begin{pmatrix} 0 & -a_n \\ 1 & & \\ 0 & & \\ 0 & & \\ 0 & -0 & 1 & -a_1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

$$\text{Par exemple} : \mathbb{C} \simeq \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) : a,b \in \mathbb{R} \right. \right\} \text{ et } \mathbb{F}_{25} \simeq \left\{ \left(\begin{array}{cc} a & 2b \\ b & a \end{array} \right) : a,b \in \mathbb{F}_5 \right.$$

1.5 Corps de décomposition

Soit $P \in K[X]$. On suppose que $E \geq K$ est un corps où P est scindé : $P = c(X - x_1)...(X - x_n)$. On dit que $K(x_1, ..., x_n)$ est le corps de décomposition de P dans E.

Proposition 1.7 Un cops de décomposition existe toujours.

Démonstration: PAr récurrence sur deg P en utilisant l'existence de corps de rupture. Q.e.d.

Nous allons voir qu'il y a unicité à isomorphisme près.

Théorème 1.8 (prolongement d'isomorphisme) Soit $\sigma: K \to K'$ un isomorphisme de corps. Soit $P \in K[X]$ un polynôme irréductible. Alors $P^{\sigma} \in K'[X]$ est irréductible. Si α, α' sont des racines de P et P^{σ} dans des extensions de K, K', alors σ se prolonge en un isomorphisme $K(\alpha) \simeq K'(\alpha')$ qui envoie α sur α' .

Théorème 1.9 (unicité du corps de décomposition) Soit $\sigma: K \to K'$ un isomorphisme de corps. Soit $P \in K[X]$. Soit $E \geq K$ un corps où P est scindé $:P = c(X - x_1)...(X - x_n)$. Soit $E' \geq K'$ un corps où P^{σ} est scindé $:P^{\sigma} = c'(X - x'_1)...(X - x'_n)$. Soient $B := K(x_1, ..., x_n), B' := K'(x'_1, ..., x'_n)$. Alors σ se prolonge en un isomorphisme $B \simeq B'$.

Corollaire 1.9.1 Soient L, L' deux corps de décomposition de P sur K. Alors il existe un K-isomorphisme $L \simeq L'$.

Exemples: \mathbb{F}_{q^n} est un corps de décomposition de $X^{q^n} - X$ sur \mathbb{F}_q et on a donc l'unicité à isomorphisme près des corps finis de cardinaux donnés.

Cours du mercredi 29 Janvier 2014

2 Caractères et morphismes de corps

Si G est un groupe et K un corps, un carctère de G dans K est un morphisme de groupes $G \to K^{\times}$. L'ensemble des caractères est une partie du K-espace vectoriel des fonctions $G \to K$.

Exemple : $G = \mathbb{Z}/n\mathbb{Z}$, $K = \mathbb{C}$, les caractères de G dans \mathbb{C} sont les $k \mapsto \zeta^k$ où $\zeta = \exp(2i\pi/n)$.

2.1 Indépendance

Théorème 2.1 (d'indépendance des caractères d'Artin) $Soient \sigma_1, ..., \sigma_n$ n caractères distincts de G dans K. Alors les σ_i sont K-linéairement indépendants.

Corollaire 2.1.1 Soient E, E' deux corps. Si $\sigma_1, ..., \sigma_n$ sont n morphismes distincts de corps $E \to E'$. Alors les σ_i sont E'-linéairement indépendants.

Exercice : si G abélien, on pose G^{\vee} le groupe des caractères de G dans \mathbb{C} . Montrer que $G^{\vee} \simeq G$ (non canonique).

Exercice : si G fini, $|\text{Hom}(G, K^{\times})| \leq |G|$.

2.2 Corps des invariants

Théorème 2.2 Soient $\sigma_1, ..., \sigma_n$ n morphismes distincts $E \to E'$. Alors si $F := E^{\{\sigma_1, ..., \sigma_n\}}, [E : F] \ge n$.

Démonstration: Si $e_1, ..., e_m$ est une famille génératrice de E comme F-espace vectoriel, alors les lignes de la matrice $(\sigma_i(e_j))_{\substack{1 \leq i \leq n \\ 1 \leq j \leq m}} \in \mathcal{M}_{n,m}(E')$ sont indépendantes. Donc $n \leq m$. Q.e.d.

Corollaire 2.2.1 Si G est un sous-groupe fini de Aut(E), alors $[E : E^G] \ge |G|$.

Exemple: $E = \mathbb{C}$, $G = \{1, \sigma\}$ où σ est la conjugaison complexe, $[\mathbb{C} : \mathbb{R}] = 2$.

3 Correspondance de Galois

3.1 Extensions galoisiennes

Soit E un corps. Soit $G \leq \operatorname{Aut}(E)$ fini. On dit que E/E^G est une extension galoisienne de groupe de Galois G.

Notation : si $F = E^G$, G =: Gal(E/F).

Exemples: \mathbb{C}/\mathbb{R} , $\mathbb{F}_{q^n}/\mathbb{F}_q$, $\mathbb{Q}(\zeta)/\mathbb{Q}$, $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$, contre-exemple: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$.

Exemple: $\mathbb{Q}(\sqrt[3]{2},j)/\mathbb{Q}$.

Théorème 3.1 Soit E un corps. Soit $G \leq \operatorname{Aut}(E)$ un groupe fini. Alors $[E:E^G]=|G|$.

Démonstration: On utilise la forme F-linéaire $\operatorname{Tr}: E \to F, x \mapsto \sigma_1(x) + \ldots + \sigma_n(x)$ où $F = E^G, G = \{\sigma_1, \ldots, \sigma_n\}$. Soient g_1, \ldots, g_n les éléments de G. Si e_1, \ldots, e_{n+1} sont des éléments de E, alors les colonnes de la matrices $(g_i(e_j))_{\substack{1 \le i \le n \\ 1 \le j \le n+1}} \in \mathcal{M}_{n,n+1}$ sont liées. Donc $\forall i, \sum_j x_j g_i(e_j) = 0$ pour certains $x_i \in E$. D'où :

$$\forall i, \sum_{j} g_i^{-1}(x_j)e_j = 0$$

et $\sum_i \sum_j g_i^{-1}(x_j)e_j = 0 \Rightarrow \sum_j \operatorname{Tr}(x_j)e_j = 0$. C'est encore vrai si on remplace x_j par xx_j , $x \in E$. Donc on peut choisir les x_j tels que $x_1 \in E$ et $\operatorname{Tr}(x_1) \neq 0$ par exemple. Mais alors, les e_j sont liés sur E^G . Q.e.d.

Corollaire 3.1.1 (Maximalité du groupe de Galois) Soit E/F galoisienne de groupe G. Alors si $\sigma : E \to E'$ est un F-morphisme de corps, $\sigma \in G$. En particulier, $G = \operatorname{Aut}_F(E)$.

Corollaire 3.1.2 (Injectivité) Si E/F est galoisienne de groupe G si $H_1, H_2 \le G$, alors $E^{H_1} = E^{H_2} \Leftrightarrow H_1 = H_2$.

Exemples:

- a) $k(x_1,...,x_n)^{\mathfrak{S}_n} = k(s_1,...,s_n),$
- b) $\mathbb{Q}(\sqrt[3]{2}, j)/\mathbb{Q}$ est galoisienne de groupe de Galois $G := \langle s, t \rangle \simeq \mathfrak{S}_3$ où s est le $\mathbb{Q}(j)$ -automorphisme qui envoie $\sqrt[3]{2}$ sur $j\sqrt[3]{2}$ et t le $\mathbb{Q}(\sqrt[3]{2})$ -automorphisme qui envoie j sur j^2 ;

c) soit G le sous-groupe des automorphismes de $\mathbb{C}(t)$ engendré par les changements de variables $t\mapsto t^{-1}$ et $t\mapsto 1-t$. Montrer que G laisse stable l'ensemble des 3 fonctions :

$$f_1 := t + t^{-1}, f_2 := 1 - t + (1 - t)^{-1}, f_3 := 1 - t^{-1} + (1 - t^{-1})^{-1}.$$

En déduire que G est isomorphe au groupe S_3 .

Soit K le sous-corps des fractions rationnelles $f \in \mathbb{C}(t)$ invariantes par les changements de variables

$$t \mapsto 1 - t \text{ et } t \mapsto t^{-1}$$
.

Montrer que $K = \mathbb{C}\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right)$.

En déduire que l'extension :

$$\mathbb{C}\left(\frac{(t^2-t+1)^3}{t^2(t-1)^2}\right) \subset \mathbb{C}(t)$$

est galoisienne de groupe de Galois S_3 .

Exercice: on pose $y_1 := x_1 + jx_2 + j^2x_3$, $y_2 := x_1 + j^2x_2 + jx_3$. Montrer que $\mathbb{C}(x_1, x_2, x_3)^{A_3} = \mathbb{C}(y_1^2/y_2, y_2^2/y_1, \sigma_1)$.

Proposition 3.2 On pose $L := k(s_1, ..., s_n)$ et $L_i := L(x_{i+1}, ..., x_n)$, $0 \le i \le n$ $(L_n = L)$.

- a) $[L_{i-1}:L_i]=i$ et $1,...,x_i^{i-1}$ est une base de L_{i-1}/L_i .
- b) $\{x_1^{a_1}...x_n^{a_n}: \forall i, a_i \leq i-1\}$ est une base de $k(x_1,...,x_n)/L$.
- c) tout $g \in k[x_1,...,x_n]$ est une combinaison $k[s_1,...,s_n]$ -linéaire de monômes $x_1^{a_1}...x_n^{a_n}: \forall i, a_i \leq i-1$.
- d) On retrouve que $k[x_1,...,x_n]^{\mathfrak{S}_n} = k[s_1,...,s_n]$.

3.2 Surjectivité

Théorème 3.3 Soit E/F une extension galoisienne de groupe de Galois G. Si F < B < E, alors il existe H < G tel que $E^H = B$.

Démonstration: Soit $H := \operatorname{Aut}_B(E)$. On a : $B \leq E^H$. Soit $s_1, ..., s_r$ un système de représentants de G/H. On a $B^{\{s_1, ..., s_r\}} = F$ donc $[B:F] \geq r$ et $[E:B] \leq [E:F]/r = |H| = [E:E^H]$ d'où $B = E^H$. Q.e.d.

Exercice : donner la liste des sous-corps de $\mathbb{Q}(\sqrt[3]{2}, j)$. $(réponse : \mathbb{Q}(\sqrt[3]{2}, j) \ge \mathbb{Q}(\sqrt[3]{2}), \mathbb{Q}(j\sqrt[3]{2}), \mathbb{Q}(j^2\sqrt[3]{2}), \mathbb{Q}(j) \ge \mathbb{Q}).$

Cours du mercredi 5 février 2014

3.3 Théorème fondamental

Théorème 3.4 Soit E/F une extension galoisienne de groupe G.

i) On a 2 bijections réciproques :

$$\{H \le G\} \stackrel{\text{1:1}}{\longleftrightarrow} \{F \le B \le E\}$$

$$H \mapsto E^H$$

$$\text{Gal}(E/B) \leftarrow B .$$

- ii) L'extension E/B est galoisienne et [E:B] = |Gal(E/B)|;
- (iii) $[B:F] = |G/\operatorname{Gal}(E/B)|;$
- iv) l'extension B/F est galoisienne si et seulement si $Gal(E/B) \triangleleft G$. Dans ce cas, $Gal(B/F) \simeq G/Gal(E/B)$.

Proposition 3.5 Soit E/K une extension galoisienne. On suppose que $K \le B \le B' \le E$. On note $U := \operatorname{Gal}(E/B)$, $U' := \operatorname{Gal}E/B'$. Alors B'/B est galoisienne $\Leftrightarrow U' \triangleleft U$. Et dans ce cas, $\operatorname{Gal}(B'/B) \simeq U/U'$.

3.4 Caractérisation des extensions galoisiennes

Théorème 3.6 Soit E/K une extension finie. On a toujours : $|\operatorname{Aut}(E/K)| \le [E:K]$. L'extension E/K est galoisienne $\Leftrightarrow |\operatorname{Aut}(E/K)| = [E:K]$. Dans ce cas, $\operatorname{Gal}(E/K) = \operatorname{Aut}(E/K)$.

Exemple: si
$$E = \mathbb{Q}(\sqrt[4]{2})$$
, alors $|\operatorname{Aut}(E/\mathbb{Q})| = 2 < 4 = [E : \mathbb{Q}]$.

3.5 Séparabilité

Soit $P \in K[X]$. Alors : P est premier avec P' si et seulement s'il n'existe pas d'extension où P a une racine multiple (i.e. d'ordre > 1).

Si E/K est une extension. On dit que $\alpha \in E$ est algébrique séparable si $P(\alpha) = 0$ pour un polynôme séparable $P \in K[X] \Leftrightarrow$ le polynôme minimal de α est séparable.

Une extension est séparable si tous ses éléments le sont.

Proposition 3.7 Si $P \in K[X]$ est irréductible, alors P est séparable si $P' \neq 0$. En particulier, en caractéristique nulle ou sur un corps fini, tout polynôme irréductible est séparable.

Contre-exemple: $X^p - t$ est irréductible non séparable sur $\mathbb{F}_p(t)$.

Théorème 3.8 Soit E/F une extension galoisienne de groupe G. Soit $x \in E$. Soient $x_1, ..., x_r, r \le n$ les images distinctes de x par les $\sigma \in G$. Le polynôme $(X - x_1)....(X - x_r)$ est le polynôme minimal de x sur F. En particulier, E/F est séparable.

Théorème 3.9 Une extension finie E/K est galoisienne $\Leftrightarrow E$ est le corps de décomposition sur K d'un polynôme $P \in K[X]$ séparable. Dans ce cas, on dit que Gal(E/K) est le groupe de Galois de P sur K. De plus $Gal_K(P)$ s'identifie à un sous-groupe de \mathfrak{S}_r où $r = \deg P$.

3.6 Normalité

On dit qu'une extension E/F est normale si pour toute extension Ω de F, et pour tous F-morphismes $\sigma, \tau : E \to \Omega, \ \sigma(E) = \tau(E)$.

Exercice: Cela revient à dire que $\sigma(E) = E$ si ci-dessus $\Omega \geq E$.

Proposition 3.10 Si E/F est un corps de décomposition, E/F est normale.

Exemple: $\mathbb{Q}(\sqrt[3]{2}, j)/\mathbb{Q}$, contre-exemple: $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$.

Théorème 3.11 Soit E/F une extension finie. Alors l'extension E/F est galoisienne si et seulement si elle est normale et séparable.

Cours du mercredi 12 février 2014

Exercice : vérifier que $Gal_K(P)$ agit transitivement sur les racines si et seulement si P est irréductible sur K.

Remarques:

- i) Si M/L et L/K sont normales, M/K ne l'est pas forcément. Par exemple : $K=\mathbb{Q}, \ L=\mathbb{Q}(\sqrt{2}), \ M=\mathbb{Q}(\sqrt[4]{2}).$
- ii) Si M/L et L/K sont séparables, alors M/K est aussi séparable.

3.7 Composée de corps

section non faite en cours

Soit L/K une extension. Soient $K \leq E, E' \leq L$. On note EE' le souscorps de L engendré par E et E'.

Proposition 3.12 Soient L/K une extension galoisienne de groupe $G, K \le E, E' \le L, H := Gal(L/E), H' := Gal(L/E'). On a :$

- i) $\operatorname{Gal}(L/EE') = H \cap H', \operatorname{Gal}(L/E \cap E') = \langle H, H' \rangle.$
- ii) Si E'/K est galoisienne, alors EE'/E aussi et $Gal(EE'/E) \simeq Gal(E/E \cap E')$, $s \mapsto s|_E$.
- iii) Si E/K et E'/K sont galoisiennes, alors EE'/K aussi et Gal(EE'/K) est isomorphe à un sous-groupe de $Gal(E/K) \times Gal(E'/K)$ via $s \mapsto (s|_E, s|_{E'})$. Si de plus, $E \cap E' = K$, $Gal(EE'/K) \simeq Gal(E/K) \times Gal(E'/K)$.

Exercice: Soient $L:=k(X_1,X_2,X_3,X_4), K:=L^{\mathfrak{S}_4}=k(s_1,s_2,s_3,s_4), E:=k(x_4)=L^{\mathfrak{S}_3}, E':=L^{K_4}$ où $K_4=\{1,(12)(34),(13)(24),(14)(23)\}.$ On a $H=\mathfrak{S}_3, H'=K_4, [E:K]=|\mathfrak{S}_4/\mathfrak{S}_3|=4, [E':K]=|\mathfrak{S}_4/K_4|=6, EE'=L=L^{H\cap H'}, E\cap E'=L^{\langle H,H'}=K.$ Comme H n'est pas distingué dans $\mathfrak{S}_4, E/K$ n'est pas galoisienne. En revanche E'/K est galoisienne de

dans \mathfrak{S}_4 , E/K n'est pas galoisienne. En revanche E'/K est galoisienne de groupe de Galois $\simeq \mathfrak{S}_4/K_4 \simeq \mathfrak{S}_3$. Vérifier que $E' = K(\beta)$ où $\beta = \sum_{\sigma \in K_4} \sigma \alpha$ où $\alpha := x_1 x_2^2 x_3^3 x_4^4$.

4 Corps finis

4.1 Sous-groupes finis de K^{\times}

Soit G un groupe fini. On note $\omega(G)$ l'exposant de G : c'est le ppcm des ordres des éléments de G.

Exemple: $\omega(\mathfrak{S}_3) = 6$

Lemme 4.1 Soient $a, b \in G$ tels que ab = ba. Si a, b sont d'ordres finis m, n premiers antre eux, alors ab est d'ordre mn.

Corollaire 4.1.1 Dans un groupe abélien fini, l'ensemble des ordres des éléments est stable par ppcm.

Proposition 4.2 Soit G un sous-groupe fini de K^{\times} , alors G est cyclique.

Exemple : les \mathbb{F}_q^{\times} sont cycliques ; les sous-groupes finis de \mathbb{C}^{\times} sont cycliques : ce sont les μ_n .

Contre-exemple: $\mathbb{Q}_8 := \{\pm 1, \pm i, \pm j, \pm k\} \leq \mathbb{H}^{\times}$ n'est pas cyclique. Exercice: déterminer les sous-groupes d'indice fini de \mathbb{C}^{\times} , de \mathbb{R}^{\times} .

4.2 Structure

Un anneau A est de caractéristique n si $n\mathbb{Z} = \ker(\mathbb{Z} \to A, n \mapsto n1_A)$. Si A est intègre, la caractéristique est un nombre premier.

Proposition 4.3 Si A est un anneau de caractéristique p, un nombre premier, alors $\operatorname{Fr}_q: A \to A, \ x \mapsto x^q$ est un morphisme d'anneaux si q est une puissance de p.

Soit K un corps fini. Sa caractéristique est un nombre premier p et son cardinal q une puissance de p. De plus si $q = p^n$, alors $(K, +) \simeq (\mathbb{Z}/p)^n$ et $(K^{\times}, \times) \simeq \mathbb{Z}/(q-1)\mathbb{Z}$.

Théorème 4.4 Soit p un nombre premier. Si $n \geq 1$, il existe, à isomorphisme près, un unique corps de cardinal $q = p^n$ c'est le corps de décomposition de $X^q - X$ sur \mathbb{F}_p .

Théorème 4.5 Soit q une puissance d'un nombre premier p. Si $\mathbb{F}_q \leq K \leq \mathbb{F}_{q^n}$, alors K est de cardinal q^m où m|n. Réciproquement, si m|n, il existe un unique sous-corps K de \mathbb{F}_q de cardinal q^m : c'est l'ensemble des racines de $X^{q^m} - X$ dans \mathbb{F}_q .

Théorème 4.6 Soit K un corps fini. Pour tout n, il existe une extension L/K de degré n. Cette extension est galoisienne, cyclique et unique à isomorphisme près.

Démonstration :
$$K \simeq \mathbb{F}_q$$
 et $L \simeq \mathbb{F}_{q^n}$. Q.e.d.

Remarque : si k est un corps, alors il existe une extension algébrique \overline{k} de k telle que \overline{k} est algébriquement clos. Ce corps \overline{k} est unique à k-isomorphisme près. On dit que c'est une clôture algébrique de k. Pour \mathbb{F}_p , on a : $\mathbb{F}_{p^n} = \{x \in \overline{\mathbb{F}_p} : x^{p^n} = x\}$ et $\overline{\mathbb{F}_p} = \bigcup_n \mathbb{F}_{p^n}$.

Dans la suite, on fixe pour tout p une clôture algébrique de \mathbb{F}_p : notée $\overline{\mathbb{F}_p}$ et $\mathbb{F}_{p^n} := \{x \in \overline{\mathbb{F}_p} : x^{p^n} = x\}.$

4.3 Polynômes sur les corps finis

4.3.1 Nombre de polynômes irréductibles de degré donné

Théorème 4.7 Soient p un nombre premier et q une puissance de p. Pour tout $n \geq 1$, il existe $\theta \in \mathbb{F}_{q^n}$ tel que $\mathbb{F}_{q^n} = \mathbb{F}_q[\theta]$ et il existe un polynôme irréductible de degré n sur \mathbb{F}_q .

Lemme 4.8 Soit $P \in \mathbb{F}_q[X]$ irréductible de degré m. Alors P divise $X^{q^n} - X$ sur \mathbb{F}_q si et seulement si $m \mid n$.

Démonstration: Si
$$m|n$$
, alors $q^m-1|q^n-1$ donc $X^{q^m-1}-1|X^{q^n-1}-1$ et $X^{q^m}-X|X^{q^n}-X$. Q.e.d.

Corollaire 4.8.1 On a:

i)

$$X^{q^n} - X = \prod_{d|n} \prod_P P(X)$$

où P décrit les polynômes irréductibles unitaires sur \mathbb{F}_q de degré d.

- ii) $q^n = \sum_{d|n} d\nu_d(q)$; où $\nu_n(q)$ est le nombre de polynômes irréductibles sur \mathbb{F}_q unitaires de degré n.
- iii) $\nu_n(q) = \frac{\sum_{d|n} \mu(n/d)q^d}{n}$ où μ est la fonction de Möbius.

Rappel: si $\zeta(s) := \sum_{n \geq 1} n^{-s}$ pour s > 1, alors $\zeta(s)^{-1} = \sum_{n \geq 1} \mu(n) n^{-s}$ (on peut prendre cette formule comme définition de μ). Plus concrètement, on a :

$$\mu(p_1^{a_1}...p_r^{a_r}) = \begin{cases} 0 & \text{si l'un des } a_i \ge 2, \\ (-1)^r & \text{sinon.} \end{cases}$$

Exemple : dans \mathbb{F}_3 , on a :

$$X^{9} - X = X(X+1)(X+2)(X^{2} + X + 2)(X^{2} + 2X + 2)(X^{2} + 1)$$

et
$$\nu_2(3) = \frac{3^2 - 3}{2} = 3$$
.

Exercice: Donner un sens au produit infini $\prod_P (1-t^{\deg P})^{-1}$ où P décrit l'ensemble des polynômes irréductibles unitaires sur \mathbb{F}_q et montrer que :

$$\prod_{P} (1 - t^{\deg P})^{-1} = (1 - qT)^{-1} .$$

Cours du mercredi 19 février 2014

4.3.2 Ordre d'un polynôme, polynôme primitif

Théorème 4.9 Soit $P \in \mathbb{F}_q[X]$ irréductible de degré m. Alors P est scindé à racines simples sur \mathbb{F}_{q^m} . Si a est l'une d'elles, les autres sont $a, ..., a^{q^{m-1}}$. En particulier, si $P \neq X$, toutes les racines de P ont le même ordre multiplicatif dans $\mathbb{F}_{q^m}^{\times}$.

Démonstration: Soit a une racine de P. Le corps $\mathbb{F}_q[a]$ est une extension galoisienne de \mathbb{F}_q de groupe engendré par $x \mapsto x^q$. Le groupe de Galois agit transitivement sur les racines de P. Q.e.d.

Soit $P \in \mathbb{F}_q[X]$ un polynôme premier à X. L'ordre de P est le plus petit entier e > 0 tel que $P|X^e - 1$. Si $P = X^hQ$ avec $h \ge 1$ et Q premier à X, on pose $\operatorname{ord} P := \operatorname{ord} Q$.

Remarque: dans le premier cas, e est l'ordre de X dans $(\mathbb{F}_q[X]/(P))^{\times}$ c'est aussi l'ordre commun des racines de P dans $\overline{\mathbb{F}_p}^{\times}$.

Proposition 4.10 Si P est irréductible sur \mathbb{F}_q de degré m, l'ordre e de Pdivise $q^m - 1$. De plus, si e > 1, m est l'ordre de q dans $(\mathbb{Z}/e\mathbb{Z})^{\times}$.

Démonstration: Soit a une racine de P dans une extension de \mathbb{F}_q . Alors $\mathbb{F}_q[a] = \mathbb{F}_{q^m}$. Donc l'ordre de a, qui est e, divise q^m-1 . Si $q^n=1 \mod e$, alors $a^{q^n-1}=1$ donc $a^{q^n}=a$. Donc $a\in \mathbb{F}_{q^n}$. D'où, $\mathbb{F}_q[a]\leq \mathbb{F}_{q^n}$. Par conséquent, $m = [\mathbb{F}_q[a] : \mathbb{F}_q]|n = [\mathbb{F}_{q^n} : \mathbb{F}_q]$. Donc m est bien le plus petit entier tel que $q^m = 1 \mod e$.

Théorème 4.11 Soient e, m > 1. Le nombre de polynômes irréductibles sur \mathbb{F}_q et unitaires de degré m, d'ordre e est :

 $N_{q.m.e} = \varphi(e)/m$ si m est l'ordre de q dans $(\mathbb{Z}/e\mathbb{Z})^{\times}$, 0 sinon.

Démonstration: Soit $\Phi_e := \prod_{x \in \mathbb{F}_{q^m}} X - x \in \mathbb{F}_q[X]$. Si P irréductible divise Φ_e , alors P est d'ordre e donc $\deg P = m$ l'ordre de q dans $(\mathbb{Z}/e\mathbb{Z})^{\times}.$ Donc $mN_{q,m,e}=\varphi(e)=$ le nombre d'éléments d'ordre e dans le groupe cyclique $\mathbb{F}_{q^m}^{\times}$. Q.e.d.

Exemple: $2^{11} - 1 = 23.89$. On a:

$$X^{23}-1 = (X+1)(1+X^2+X^4+X^5+X^6++X^{10}+X^{11})(1+X+X^5+X^6+X^7+X^9+X^{11})$$

dans $\mathbb{F}_2[X]$. Il existe $a \in \mathbb{F}_{2^{11}}^{\times}$ d'ordre 23 tel que :

$$1 + X^2 + X^4 + X^5 + X^6 + X^{10} + X^{11} = \prod_{i \in \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18\}} (X - a^i);$$

$$1 + X + X^5 + X^6 + X^7 + X^9 + X^{11} = \prod_{i \in \{5,7,10,11,14,15,17,19,20,21,22\}} (X - a^i) .$$

Pour e = 23, q = 2, 2 est d'ordre 11 mod 23; les polynômes d'ordre 23 sur \mathbb{F}_2 sont de degrés 11, il y en a $\varphi(23)/11=2$.

Exemple : si q=2, m=4, alors $N_{2,4,e}=1$ si e=5, 2 si e=15. On a : $\Phi_5=1+X+X^2+X^3+X^4$ irréductible et $\Phi_{15}=(1+X+X^4)(1+X^4)$ $X^3 + X^4$).

On dit qu'un polynôme $P \in \mathbb{F}_q[X]$ de degré m est primitif s'il est le polynôme minimal d'un générateur de $\mathbb{F}_{q^m}^{\times}$.

Théorème 4.12 Un polynôme de degré m est primitif si et seulement s'il est unitaire, premier à X et d'ordre $q^m - 1$.

Exemple : les polynômes primitifs unitaires de degré 4 sur \mathbb{F}_2 sont : $1+X+X^4$ et $1+X^3+X^4$.

4.4 Algorithme de Berlekamp

Théorème 4.13 Soit $P \in \mathbb{F}_q[X]$ un polynôme de degré d sur \mathbb{F}_q . On suppose que P est séparable. Alors P est irréductible sur \mathbb{F}_q si et seulemnt si l'endomorphisme $\operatorname{Fr}_q - \operatorname{Id} \ du \ \mathbb{F}_q - \operatorname{espace} \ \operatorname{vectoriel} \ \mathbb{F}_q[X]/(P)$ est de rang d-1.

Remarque : le rang est toujours $\leq d-1$.

Démonstration: Si le rang est < d-1, il existe un polynôme $Q=a_1X+\ldots+a_{d-1}X^{d-1}$ non nul dans le noyau. Alors, le pgcd de P et Q-a est non constant pour un certain $a\in \mathbb{F}_q$ car $P|Q^q-Q=\prod_{a\in \mathbb{F}_q}(Q-a)$.

Réciproquement, si P n'est pas irréductible, $P=P_1...P_r$ pour des polynômes irréductibles deux à deux premiers entre eux P_i et un r>1. Mais alors :

$$\mathbb{F}_q[X]/(P) \simeq \bigoplus_i \mathbb{F}_q[X]/(P_i)$$

Les sous-espaces $E_i := \mathbb{F}_q[X]/(P_i)$ sont stables par Fr_q – Id donc le rang est :

$$\sum_{i} \text{rang}(\text{Fr}_{q} - \text{Id}|_{E_{i}}) = \sum_{i} \text{deg } P_{i} - 1 = d - r < d - 1.$$

Q.e.d

 $Exemple: q=2,\, P=X^5+X^4+1,\, {\rm Dans}$ la base $1,X,X^2,X^3,X^4 \bmod P,$ la matrice de Fr $_2$ – Id est :

$$\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)$$

Le rang est 3 < 5. Donc P est réductible. Dans le noyau, on trouve : $Q := X^2 + X^3 + X^4$. Donc $P = \operatorname{pgcd}(P,Q)\operatorname{pgcd}(P,Q+1) = (1+X+X^2)(1+X+X^3)$.

Clôture algébrique 5

Soit K un corps. Une clôture algébrique de K est une extension akgébrique de corps \overline{K}/K telle que \overline{K} est algébriquement clos.

Théorème 5.1 Soit K un corps. Il existe une clôture algébrique de K. De plus si K_1, K_2 sont deux clôtures algébriques de K, alors il existe un K-isomorphisme $K_1 \simeq K_2$.

Démonstration: Existence: Soit I l'ensemble des polynômes unitaires de K[X] de degré ≥ 1 . Pour tout $f \in I$, on introduit des variables $T_{f,i}$, $1 \le i \le \deg f$.

On pose $A := K[T_{f,i} : f \in I, 1 \le i \le \deg f]$ c'est un anneau de polynômes en une infinité de variables.

Soit J l'idéal de A engendré par les coefficients des polynômes :

$$f(X) - \prod_{i=1}^{\deg f} (X - T_{f,i})$$

lorsque f décrit I.

On a $J \subseteq A$. En effet, sinon, il existe $f_1, ..., f_N \in I$ et certains coefficients $c_1,...,c_N$ respectivement des polynômes :

$$f_j(X) - \prod_{i=1}^{\deg f_j} (X - T_{f_j,i})$$

 $1 \leq j \leq N$ et des éléments $a_1, ..., a_N \in A$ tels que $a_1c_1 + ... + a_Nc_N = 1$. Soit L une extension de K où $f_1, ..., f_N$ sont scindés :

$$f_j(X) = \prod_{i=1}^{\deg f_j} (X - r_{f_j,i})$$

pour certains $r_{f_i,i} \in L$.

Soit $\phi: A \to L$ le morphisme de K-algèbres tel que :

$$\phi(T_{f,i}) = \begin{cases} r_{f_j,i} & \text{si } f = f_j \\ 0 & \text{sinon.} \end{cases}$$

On étend ϕ en un morphisme $\phi: A[X] \to L[X]$. On a: $\forall j, \phi(f_j(X) - \prod_i (X - T_{f_j,i})) = f_j(X) - \prod_{i=1}^{\deg f_j} (X - r_{f_j,i}) = 0 \in \mathbb{R}$ L[X]. En particulier $\forall j, \phi(c_j) = 0$.

Donc $\phi(1) = \sum_{j} \phi(a_j)\phi(c_j) = 0$ absurde!

Soit $I \leq \mathfrak{m} < A$ un idéal maximal. On pose $\overline{K} := A/\mathfrak{m}$. C'est un corps. De plus $K \cap \mathfrak{m} = 0$ donc on peut identifier K avec son image dans A/\mathfrak{m} .

L'extension \overline{K}/K est algébrique. En effet, \overline{K} est engendré par les $t_{f,i}:=T_{f,i}$ mod \mathfrak{m} . Or par définition :

$$f(X) - \prod_{i=1}^{\deg f} (X - T_{f,i}) \in I[X] \le \mathfrak{m}[X]$$

i.e. $f(X) = \prod_{i=1}^{\deg f} (X - t_{f,i}) \in \overline{K}[X]$. En particulier, $f(t_{f,i}) = 0$ et les $t_{f,i}$ sont algébriques sur K.

Le corps \overline{K} est algébriquement clos. En effet, soit $P \in \overline{K}[X]$ un polynôme irréductible unitaire. Soit α une racine de P dans une extension Ω de \overline{K} . On a $K \leq \overline{K} \leq \overline{K}(\alpha)$. L'élément α est algébrique sur K. Soit Q son polynôme minimal sur K. Comme P est irréductible unitaire, P est le polynôme minimal de α sur \overline{K} . Donc P|Q dans $\overline{K}[X]$. Or Q est scindé sur \overline{K} . Donc les facteurs irréductibles de P sont de degré 1 et deg P=1. Q.e.d.

Exemples : \mathbb{C} est une clôture algébrique de \mathbb{R} , $\overline{\mathbb{Q}}$ une clôture algébrique de \mathbb{Q} et $\cup_{n>0}\mathbb{C}((t^{1/n}))$ une clôture algébrique de $\mathbb{C}((t))$.

COURS DU MERCREDI 26 FÉVRIER 2014

5.1 Retour sur la notion de séparabilité

Soit E/F une extension finie. On fixe un corps algébriquement clos Ω et un morphisme $\sigma: F \to \Omega$. On note $[E:F]_s$ le nombre de prolongement de σ à E, c'est le degré séparable de E/F. Remarque : ce nombre ne dépend pas du corps algébriquement clos choisi ni du morphisme σ . En effet, soit $\sigma': F \to \Omega'$ est un autre morphisme vers un corps algébriquement clos. Soient $x_1,...,x_n \in E$ tels que $E = F(x_1,...,x_n)$. Soient $P_1,...,P_n$ les polynômes minimaux des x_i sur F. Soit $E(x_1,...,x_n)$ le corps de décomposition des polynômes $P_i^{\sigma} \in \sigma(F)[X]$ dans $E(x_1,...,x_n)$ (resp. $E(x_1,...,x_n)$). Il est clair que tout prolongement de $E(x_1,...,x_n)$ dans $E(x_1,...,x_n)$ dans

$$\{\widetilde{\sigma}: E \to \Omega : \widetilde{\sigma}|_F = \sigma\} \xrightarrow{1:1} \{\widetilde{\sigma'}: E \to \Omega : \widetilde{\sigma'}|_F = \sigma'\}$$

$$\Sigma \longmapsto \tau \circ \Sigma$$

Proposition 5.2 $[E:F]_s$ est fini $\leq [E:F]$.

Proposition 5.3 Si E = k(a), alors $[E : k]_s = [E : k] \Leftrightarrow a$ séparable sur k.

Proposition 5.4 Si $K \leq L \leq M$, alors $[M:K]_s = [M:L]_s[L:K]_s$.

Proposition 5.5 L'extension E/F est séparable $\Leftrightarrow [E:F]_s = [E:F]$.

Corollaire 5.5.1 Si $K \leq L \leq M$, alors M/K séparable $\Leftrightarrow M/L$ et L/K séparables. Si $E = K(x_1, ..., x_n)$ et si les x_i sont séparables sur K, alors E/K est séparable.

6 Base normale

6.1 Éléments primitifs

Soit E/K une extension.

On dit que $x \in E$ est un élément primitif de E/K si E = K(x).

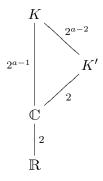
Théorème 6.1 Si $x, y \in E$ sont algébriques sur K, si y est séparable sur K, alors il existe $z \in E$ tel que E = K(z). En particulier, si $x_1, ..., x_n \in E$ sont algébriques séparables, alors $K(x_1, ..., x_n)/K$ admet un élément primitif.

Exercice : si E/K est finie, alors E/K admet un élément primitif si et seulement s'il existe un nombre fini de corps $K \leq L \leq E$.

Contre-exemple: si $K := \mathbb{F}_p(X^p, Y^p)$, $E := \mathbb{F}_p(X, Y)$, alors les corps K(X + tY), $t \in K$ sont deux à deux distincts.

Théorème 6.2 (d'Alembert-Gauss) Le corps $\mathbb C$ est algébriquement clos.

Démonstration: Le corps des réels n'admet pas d'extension de degré impair > 1. Si $K \ge C$ est une extension galoisienne de degré n, alors il existe $a \in K$ tel que $K = \mathbb{R}(a)$. Soit G son groupe de Galois, soit P un 2-groupe de Sylow de G. Alors K^P est une extension d'ordre impair de \mathbb{R} donc $K^P = \mathbb{R}$ et P = G. Mais alors, $|G| = 2^a$ pour un certain $a \ge 1$. Si a > 1, il existe un sous-groupe $H \le \operatorname{Gal}(K/\mathbb{C}$ d'ordre 2^{a-2} . Mais alors K^H est une extension de degré 2 de \mathbb{C} absurdo!



Q.e.d.

Exemple : soit k un corps. Soient $L := k(x_1, ..., x_n)$, $K := k(s_1, ..., s_n)$. Alors $a := x_1 x_2^2 ... x_n^n$ est un élément primitif de L sur K et x_n est un élément primitif pour $L^{\mathfrak{S}_{n-1}}/K$.

6.2 Théorème de la base normale

Soit E/K une extension galoisienne de groupe G. Une base $e_1, ..., e_n$ de E sur K est normale si pour tout i, il existe $\sigma \in G$ tel que $e_i = \sigma(e_1)$.

Exemple : le polynôme $P := X^4 + X + 1$ est primitif sur \mathbb{F}_2 et toute racine a de P dans \mathbb{F}_{16} est un élément primitif de $\mathbb{F}_{16}/\mathbb{F}_2$. La base $1, a, a^2, a^3$ n'est pas normale (car $a^8 = \operatorname{Fr}_2^3(a) = a^2 + 1$).

Cependant:

Théorème 6.3 (de la base normale pour un corps fini) Soient q une puissance d'un nombre premier, $d \geq 1$, $q' := q^d$. Il existe $\theta \in \mathbb{F}_{q'}$ tel que $\theta, \operatorname{Fr}_q \theta, ..., \operatorname{Fr}_q^{d-1} \theta$ est une base de $\mathbb{F}_{q'}$ sur \mathbb{F}_q .

Démonstration : Soit $T^d-1=P_1^{r_1}...P_s^{r_s}$ la factorisation de T^d-1 en irréductibles distincts dans $\mathbb{F}_q[T]$. Comme \mathbb{F}_q -espaces vectoriels, on a :

$$\mathbb{F}_{q'} = \bigoplus_i \ker(P_i^{r_i}(\operatorname{Fr}_q)) .$$

Comme T^d-1 est le polynôme minimal de l'endomorphisme Fr_q , pour tout $i, P_i^{r_i}$ est le polynôme minimal de Fr_q sur $\ker(P_i^{r_i}(\operatorname{Fr}_q))$. Pour tout i, soit $x_i \in \ker(P_i^{r_i}(\operatorname{Fr}_q)) \leq \mathbb{F}_q'$ tel que $P_i^{r_i-1}(\operatorname{Fr}_q)(x_i) \neq 0$. Alors $x_i, ..., P_i^{r_i-1}(\operatorname{Fr}_q)(x_i)$ est une base de $\ker(P_i^{r_i}(\operatorname{Fr}_q))$. On pose alors $\theta := x_1 + ... + x_s$. On a :

$$\sum_{k=0}^{d-1} \lambda_k \operatorname{Fr}_q^k(\theta) = 0 \Rightarrow \forall i, \sum_{k=0}^{d-1} \lambda_k \operatorname{Fr}_q^k(x_i)$$

$$\Rightarrow \forall i, P_i^{r_i} | \sum_k \lambda_k T^k \Rightarrow T^d - 1 | \sum_k \lambda_k T^k$$

$$\Rightarrow \forall k, \lambda_k = 0.$$

Q.e.d.

Remarque : si θ , ..., $\theta^{2^{d-1}}$ est une base de \mathbb{F}_{2^d} sur \mathbb{F}_2 , alors $(a_0\theta + ... + a_{d-1}\theta^{2^{d-1}})^2 = a_{d-1}\theta + a_0\theta^2 + ... + a_{d-2}\theta^{2^{d-1}}$.

Théorème 6.4 (de la base normale pour les corps infinis) Soit E/K une extension galoisienne. Il existe une base normale de E/K.

Démonstration: Soit $e_1,...,e_n$ une base de E/K. Soit $\operatorname{Gal}(E/K) =: \{\sigma_1,...,\sigma_n\}$ avec $\sigma_1 = \operatorname{Id}$. On pose $D(T_1,...,T_n) := \det((\sum_{k=1}^n T_k \sigma_i^{-1} \sigma_j(e_k))_{i,j}) \in E[T_1,...,T_n]$. Comme la matrice $(\sigma_i(e_k))_{i,k} \in \operatorname{GL}_n(E)$, il existe $c_1,...,c_n \in E$ tels que $\sum_k c_k \sigma_i(e_k) = 1$ si i = 1, 0 si $i \neq 1$. Mais alors $D \neq 0$. Donc comme K est infini, on peut trouver $b_1,...,b_n \in K$ tels que $D(b_1,...,b_n) \neq 0$. Or:

$$D(b_1, ..., b_n) = \det((\sigma_i^{-1} \sigma_j(x))_{i,j})$$

si $x := \sum_{k} b_k e_k$. Q.e.d. Exemples:

- a) $\{1+i, 1-i\}$ est une base normale pour \mathbb{C}/\mathbb{R} .
- b) l'ensemble des conjugués de $1+\sqrt{2}+\sqrt{3}+\sqrt{6}$ est une base normale de $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ mais non celui des conjugués de $\sqrt{2}+\sqrt{3}$.
- c) Si p est un nombre premier, si $z:=e^{2i\pi/p}$, alors $\{z,...,z^{p-1}\}$ est une base normale mais non $\{1,z,...,z^{p-2}\}$.
- d) Soient $E=k(x_1,...,x_n),~K:=k(s_1,...,s_n),~x:=x_1x_2^2....x_n^n.$ Alors, $\{\sigma(x):\sigma\in\mathfrak{S}_n\}$ est une base normale de E/K.

Remarque : le théorème signifie que le k[G] — module E est libre de rang 1 (où $G := \operatorname{Gal}(E/K)$).